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Abstract. Neuronal systems can be described by their
transfer functions, which can be represented by a
Volterra series expansion. While the high level of
abstraction which characterizes this representation
enables a global description, it is problematic, to some
extent, in the context of linking the formal represent-
ation of the system to its actual structure. The formal
representation is unique, yet there are multiple phys-
ical realizations of this representation. Separating the
system’s output into its logical components (linear,
cross-linear, and self nonlinear, in this study), and
inspecting the relative contribution of these compo-
nents, might provide a key towards a linkage between
the formal and actual representations. Based on results
drawn from identification of MGB cells of the squirrel
monkey, it is shown that the relative contributions can
be described in neurobiological terms such as excit-
ation and inhibition and thus be attributed to actual
subsystems.

Introduction

In an attempt to characterize the role of the Medial
Geniculate Body (MGB) of the squirrel monkey in
auditory signal processing, we have recently described
a method for obtaining the first and second order
kernels of the system which culminates in a single
MGB cell (Yeshurun et al. 1985), and presented some
findings based on it (Yeshurun et al. 1987). According
to our approach, data concerning early auditory
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processing (Le. spectral separation taking place be-
tween the ear and the auditory nerve) is incorporated
into the model, so that the input to the system is not the
raw signal impinging on the ear, but rather a multi
input representation, consisting of 6 inputs or 18
inputs, for a spectral resolution of 1 or !5 octave,
respectively. Obviously, any process which can be
directly described and be removed from the “black
box”, reduces the complexity of the system and facili-
tates the interpretation of the results, obtained through
the process of identification.

In neurobiological applications of system identific-
ation methods, attempts were made to define the
relationships between the kernels and the inner logical
structure of the systems under study (e.g., Poggio and
Reichardt 1976). These efforts concern mainly systems
where the information about the inner structure is
available. For example, if it can be assumed that a
system consists of two building blocks, say a rectifier
and an adder, then it is possible to decide according to
the kernels, if the rectifier precedes the adder or vice
versa (Hung et al. 1977). This can be done mainly when
dealing with a small number of neurons, whose
connections are well studied (Marmarelis and Naka
1973).

The process of exploring and understanding the
nature of information processing in a “Black Box™ by
Volterra methods, usually faces a fundamental dif-
ficulty. These methods are aimed at a mathematical
description of the input to output transformations in
the explored system. In an ideal case, when the system
satisfies the related mathematical requirements (Vol-
terra 1930) and can formally be represented by its
transfer function (kernels), this representation is valid
and unique. On the other hand, the relation between
these kernels and the inner structure of the system is
not at all unique: while the kernels are unique in the
functional aspect, there might be numerous realiz-
ations of the implied transformation, all of them valid
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and having the potential of being the actual realization.
However, when data concerning the inner mechanisms
of the system is available, the gap between the func-
tional and the structural descriptions can be narrowed,
and speculations concerning this structure, based on
the kernels, might bé proposed, and be used as a basis
for further working hypotheses.

It is possible to investigate the inner mechanism of
a system not only by its kernels, but also by its kernels’
products, by the predicted responses. Theoretically, a
description of a system in the kernel space is equivalent
to its description by the predicted responses space. The
kernel description is more convenient, since it has a
compact form, and we avoid the need to consider a
large set of possible outputs of the system. On the other
hand, the main advantage of using the predictions as a
tool for peeking into the system, resides on the fact that
we are more familiar with the system’s types of
responses and usually known how to “read” their
meaning much better.

Due to these reasons, namely, lack of detailed
information concerning the inner structure, and the
experience gained in the analysis of auditory neurons’
responses to vocalizations, we investigate the inner
mechanisms of the system under study mainly by the
“prediction space” approach, although some analysis
of the kernels themselves is also represented.

Linear and Nonlinear Kernels

The system being identified is represented in this study
(see Yeshurun et al. 1985) by the two leading terms of
the Volterra representation:

where
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Here M denotes the length of the memory, and n is the
number of inputs. Identification of multi input systems
by kernels of first and second order, consist of the
computation of three main types of kernels (Mar-
marelis and Naka 1974; Windhorst et al. 1983). These
kernels are: linear (HJ1)), cross quadratic
(H, {t;.73) |s—r|=1 in this study), and self quadratic
(H,/{t,,72)). The cross quadratic kernels are convolved
with two components (x, and x) of the input, and the
self kernels are convolved twice with the same single
component (x,). Notice that since the time resolution
used for the inputs is 3 ms (Yeshurun et al. 1985), we
consider only global effects of the kernels, and not
time-dependent fine details.

The linear kernels (Fig. 1) have, in most cases, the
form of damped oscillations, with the peak near zero
{up to 9 ms) and vanishing time of about 5-10 ms, The
linear kernels resemble each other, in general, and
differ only in the amplitude and the sign of its
extremum values. The comparison between the contri-
bution of the linear and the second order ones is
discussed elsewhere (Yeshurun et al. 1987),

Regarding the second order kernels, cross and self
kernels differ from each other in several aspects. When
compared by eye, it is very clear that the amplitudes of
the self kernels are greater than those of the cross
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Fig. 2. A Typical self kernels. Two (different) kernels are described
by a 3D perspective view. The view is from behind the origin of the
t,—1, plane, 1, is to the right. Time scale —9 ms. B Cross
kernels, details as in A

max|H(z,.1,)| as a measure of the amplitude, it turned
out that the self kernels are larger by 1-2 orders of
magnitude then the cross kernels, and this holds for all
the 41 cells in our sample. The self kernels are “bigger”
than the cross kernels even if some other norms (as the
L) are employed.

Another aspect, by which the cross and self kernels
differ from each other, is their structure. The self
(Fig.2A) and the cross (Fig.2B) have a typically
different form. In most of the cases, the self kernels have
their extremal amplitude (positive or negative) im-
mediately after the rise time (up to 9 ms), with oscill-
ations which are rapidly damped in all directions (since
the self kernels are symmetrical). Such kernels can be
considered as a crude approximation of a two dimen-
sional & function, which represents, as a kernel, a
mechanism whose output resembles a mere time shift
of the input.

On the other hand, the cross kernels are more
complex, and have no common outstanding feature is
the self kernels. The extremal amplitude does not
always occur immediately after the rise time, and even
if it is, attenuation is much slower, and in some cases it
lasts more than 10 ms. The kernel demonstrated in
Fig. 2B is characterized by the fact that its amplitudes
in T, <1, are greater than in t, > t,. Such a structure, in
its extreme form, namely, when H,Jt,,7;)=01for 1,0
represents a system where the comtribution of the
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interaction between input’s components x, and x, at
time t depends on the past values of x,, x,(t), t=t, and
on the instanteneous value of x,, x,(t).

The major differences in amplitude and structure
between cross and self kernels, are apparently pointing
towards the existace of two types of transformation
taking place in the processing of single component
channels (self kernels), and multi component channels
(represented by cross kernels). In single component
channels (ie. limited band), the transformation is
relatively simple, and has a short memory. A possible
neuronal realization would consist of a relatively small
number of cells through which the information is
processed, until it is reflected and recorded in the
MGB. The realization of the cross component chan-
nels, involves more complex transformations and has a
longer memory, and therefore consists of more “pro-
cessors” (cells?) along its pathway. The possible neuro-
nal correlate of these “processors” is, obviously, specu-
lative in nature, and may consist of cells spatially
located at various sites of the auditory pathway,
including the MGB.

Relative Contributions of Cross and Self Kernels

As mentioned earlier, the maximal amplitudes of the
cross kernels are about 1-2 orders of magnitude
smaller than these of the self kernels. A question thus
arises, what does this finding mean, concerning the
inner mechanisms of the system? At a first glance, it
would suggest that the contribution of the cross
kernels to the system, compared to that of the self
kernels, is negligable. In order to test this hypothesis,
we separated the total predicted response of the system
into its components, and evaluated the relative contri-
butions of the cross and self components:

n MM
Y.=Y()= r=21 ; % H,,_lt,, to)x(t— ), dr,,

n MM

L=Y0= ¥ [ | Heptxft—t)xft—n)drde,.

These contributions were computed for all the cells. It
was found, that in spite of the differences in the kernels’
amplitudes, the contribution of the cross kernels to the
output was not negligable, as compared to the contri-
bution of the self kernels. Actually, in some cases it was
even greater (Fig. 3). The fact that the contributions ¥,
and Y, were not proportional to the amplitudes of the
kernels can be explained by the oscillatory nature of
the kernels which might have a cancelation effect in the
convolution with the wvocalizations. It should be
stressed that there might be types of inputs for which
this cancelation does not happen (these can be arbit-
rarily tailored input functions), and then, an amplitude
of a given kernel actually reflects its corresponding
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contribution. However, natural vocalizations com-
prises a highly significant subset of the possible inputs to
the studied system, hence, it can be concluded that
there is no trivial connection between the amplitude of
a kernel and its relative contribution.

While analysing these relative contributions, we
noticed that the cross and self components of the
predicted response are related in a rather typical
manner (e.g, Fig.4). In many regards, though not
totally, they look like a mirror image of each other, and
this is even clearer if one considers only the baselines of
the responses and neglectw the superimposed high
frequencies.

Obviously, ¥, and ¥, are not exactly symmetrical
(for they would cancel each other completely), but the
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Fig. 3A-D. Relative contributions of
sell and cross kernels to the output of
the model. A and B amplitude of

A cross and self kernels respectively (for
each t,, the extremal value of
H(zy, ;) over 1, is drawn. Time is ms.
C and D summed contribution of the
cross and self kernels, respectively.
Time scale (denoted in D) —400 ms

trend is clear. In Fig.4 one can also see that the
amplitudes of | ¥(t)| and | ¥(t)| are high, relative to the
total predicted responses Y(t), while ¥(t)+ Y,(r)is of the
order of magnitude of the total response, as is the linear
contribution ¥, It should be stressed, that since all the
numerical calculations are made with 14 (and in
critical loops with 28) significant digits, and the ratio of
the partial contribution to the net outcome is less than
10:1, it is not probable that the cancellation and
“mirror” effect cause severe numerical errors.

It is convenient to classify a component (e.g., ¥, ¥,
Y}) of the predicted response as “excitatory™ if it
resembles the positive part of the envelope of the input
which elicits it, and as “inhibitory” if it resembles the
negative part of this envelope (Fig. 5). The meaning we
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assign to the terms “excitatory™ and “inhibitory” is not
identical to the conventional neurobiological meaning,
but is a generalization of these concepts, since actual
inhibition can be manifested by “zero” activity and not
by a “negative” activity. In most cases, ¥, and ¥, can be
classified as “inhibitory™ or “excitatory” according to
this definition, yet there are cases where inhibitory and
excitatory components are intermingled.

We found that in many cells the cross contribution,
Y, is opposite, according to this classification, to the
self contribution Y. This phenomenon is most promi-
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Fig. 4. Components of a predicted
response. A actual response, P predicted
response, N nonlinear contribution to P, §
sell contribution, C cross contribution, L
linear contribution. Time scale —400 ms

nent in those cases where the baseline of the input,
namely, the envelope of the call, is clearly convex or
concave (like the Shriek). However, when it exists and
is manifested clearly in the prediction to this one call, it
exists, though less prominently, in all other predicted
response of the cell. This is also true in responses to
vocalization which were used for the calculation of the
kernels. The “symmetry” of the cross and self contri-
bution is, therefore, a feature of the system, namely, it
can be attributed to the neuronal system and the type
of vocalizations which give rise to these responses.
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Fig. 5. Demonstration of the relations between envelopes of the
input's components and response’s components, Left: contri-
butions of cross kernels, numbered on their left. (i, j) means the
contribution of cross kernel of band i and band j. Right - filtered
envelopes of spectral bands, bands’ numbers on their right.
Motice, for example, the influence of band 3 on the first part of
(3,2) and band 4 on (4,3} and (5,4). Notice also that the similarity
can be in reversed polarity [e.g. (4,3) and (4,5)]. Time scale
=400 ms
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Fig. 6A-C. Categorization of 3 responses’ components. Each of
the 3 frames consists of cross (upper) and scll (lower)
contributions. A—C “excitatory”, unidentified and “inhibitory™
cross contribution, respectively, Time scale — 400 ms

Table 1. Distribution of quality of predictions between 3 types of
cells — “inhibitory cross”, “excitatory cross”, and unidentified,
Mean guality (mean Q) is the sum of distances between the actual
and predicted responses for each type, which is evaluated by a
modified MSE (Yeshurun et al. 1985), sd: standard deviation.
Significance level of the one way variance of analysis=0.1

Cross type n Mean @ sd

Inhibitory 25 492 0.77
Excitatory 10 5.51 0.2
Ambiguous 6 5.78 1.57

More formal approaches to the classification of ¥,
and ¥, were also tested. We approximated the re-
sponses to the vocalization “Shriek™ (which has a
concave baseline) by a second order polynomial, fitted
by least squares, and used the coefficient of the
quadratic term of this polynomial as a measure to the
convexity (“inhibitory”) or concavity (“excitatory™)
nature of the response. This measure was found to yield
identical results to these achieved by the described
“manual” classification.

In the analysis of the cross and self contributions
for all 41 sampled cells, inhibitory cross contributions
were frequently encountered, along with excitatory self
contributions. The cells were classified into three major
classes: inhibitory cross, excitatory cross, and uniden-
tified (Fig. 6). Table 1 summarizes the distribution of
these three types. It can be seen that the impression of a
relatively higher incidence of inhibitory cross contri-
butions is indeed confirmed also if the averages are
considered. When the quality of the prediction is tested
vis a vis the distribution of inhibitory cross contri-
bution, it can be seen (Table 1) that, on the average,
inhibitory cross cells have better predictions (low
distance values) than excitatory cross cells. Consider-
ing the quality of a predicted response as a measure of
the degree to which a cell can be characterized by a
second order Volterra representation, our findings
suggest that whenever a cell is well described by the
model - the cross contribution to the total response is
inhibitary.

Subsystems of the Black Box

The Volterra kernels supply a functional description of
systems only, and there are no clear cut rules which
relate the features of the kernels to unique structures of
the system. We face an even more complex situation
when the borders of the system themselves are very
broad, as is the case in our model. However, inspite of
this uncertainty, it is possible to point at some
structural conclusions.
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Fig. 7. Schematic illustration of the proposed subsystems. The
input is passed through band pass channels (designated by the
triangles). The “cross” subsystem involves multiplication of
signals from multi channels (only nearest neighbor in our model)
and summation. The “sell” subsystem involves the multiplication
of signals from a given channel by themselves and summation.
From the viewpoint of the cell which is being recorded (desig-
nated by a circle), the output of the “cross” subsystem is
inhibitory, while the output of the “self” subsystem is excitatory

In order to do it, we must assume the following:

1. The multi input system has a physical realiz-
ation, namely, there are specific channels for band pass
spectral components of the input signal. This assump-
tion follows the current theory of the auditory system
(e.g, Evans 1977), although reality is much more
complicated then the octave bands, or even the non
overlapping '/, octave bands, of our model.

2. The self kernels and cross kernels represent
some actual subsystems. This involves the existance of
subsystems (not necessarily spatially adjoined, and not
necessarily consisting of adjacent cells), where only
inputs from a narrow spectral band is processed, and
subsystems where interactions of inputs from neigh-
boring spectral bands are processed. This assumption
is not based on physiological evidence, but does not
violate any known knowledge, and can be well in-
tegrated with the structure implied by the first
assumption.

We assume that the MGB cell under investigation
receives its inputs from several neural subsystems, and
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in particular, from a “cross” subsystem and a “self™
subsystem (Fig. 7). These subsystems perform non-
lincar transformations on interacting neighboring
spectral bands (cross) and on single bands (self). The
typical structure of the kernels imply that the single
input transformation (self) is relatively simple (can be
approximated by a two-dimensional é function), and
has a short memory. The processing of neighboring
channels of input (cross), on the other hand, is more
complex and has a longer memory.

The inhibition-excitation phenomenon of the cross
and self kernels is very similar to its physiological
correlates, even if it is not identical, and calls for a
physiological explanation. The fact that in many cases,
the output of the cross subsystem is inhibitory, can be
related to a very known processing mode where cross
interaction of neurons is inhibitory, namely, lateral
inhibition. Our model does not handle the processing
level of single axons, where the classical lateral inhi-
bition occurs. However, as illustrated in Fig. 7, the
interaction between several components of the input
yields primarily inhibitory effects, whereas the process-
ing of a single input component is mainly excitatory.
This phenomenon can be operationally realized by a
“lateral inhibition like” mechanisms. One should bear
in mind, however, that linking the difference between
cross and self contribution to excitatory and inhibitory
responses of the suggested subsystems is speculative in
nature, and while being a plausible explanation of the
results, is by no means the only one.

As we deal with the inner structure of the “black
box™, an obvious direction is to search for the “real”
subsystems where the actual processes takes place. The
natural candidates for such a research are the Inferior
Coliculus and the Auditory Cortex. Undoubtedly, at
present, it is still premature to point at the exact
neurobiological context of these subsystems. Yet,itisa
plausible idea that such subsystems do exist, and that
they can be described and detected by Volterra
methods.
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