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Hence, if p;(w*) > 0 (i.e., if secondary features of the optimal value are in
existence in the initial population), then, since y(w)/x(w*) << 1 for all non-
aptimal values of w, we get

Ealde) 1 (@) 1 p(dw)
@) = [y] daty 0 18 n @-5)
Together with (3.2), this becomes
Emy — f X(@) paldew) § x(w*) as m > co. (3.6)

As a corollary, we now get the following.

THE SEconp LAW OF INDIRECT SELECTION. When type-substitutions of the
primary feature occur successively with similar intensities of direct selection, an
optimal value of the secondary feature tends to become fixed in the population.

Here again, indirect selection reveals a strong similarity to the classic fitness-
selection, .

An example of the effect of indirect selection may be the accelerating pace by
which pest populations become adapted to the use of new pesticides. Keeping in
mind the theoretical possibility of a second-order adaptation of pest populations
towards the dynamic process of pesticide introduction, it is suggested that
possible changes in the secondary feature of pest populations subjected to re-
peated use of pesticides be experimentally studied. This includes sexual behavior,
demographic mobility, and intrinsic rates of mutation and recombination.
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Let p,, be the frequency measure of w in the population after n gene-substi-
tutions. Then the survival probability of a typical clone throughout the # + 1-th
gene-substitution will be

By = | x(o) pofde).

Knowing (see 2.5)

) = M L) G3.1)

we readily obtain

fn [X(w)]g f-"ﬂml(dw) Varte—1 X
“x = = (n-1) {n—1)
v X .f!:' X(w) f“'ﬂ—l(dw) E('n—l)x + & X = E X (32)

where for all # = 0, 1, 2,...

Vart y — f [x(@) — E™XI pn(dew) (33)

= [ )l uald) — [ = 0

is the variance in survival probabilities of clones throughout the n 4 1-th
gene-substitution.

‘Whenever y(w) assumes any variation in the initial population (i.e., whenever
indirect selection is operating on the w feature), then inequalities (3.1) and (3.2)
become strict.

As a corollary, we get the following.

Tar First Law or Inpimrecr Sereertion. When fype-substitutions occur
successively with similar intensitics of divect selection, an indirect selection of
secondary featuves (if it occurs) always increases the espected clone-survival-
probability in the population.

Furthermore, the increase in average probability of clone survival being
achieved during a single type-substitution in the primary feature is proportional
to the standard deviation of clone-survival probabilities in the population.

On a longer scale of time, though not in terms of change through successive
generations, this stands in virtual agreement with Fisher’s fundamental law of
natural selection. (For comparison, see Cavalli-Sforza and Bodmer (1971)).

Furthermore, by an iteration of (3.1}, we readily get

fn(dr) = —[’-‘(ﬁ)%g‘”—) : (3.4)
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For the optimal clone survival probability, we get
X(@¥) 2 205(1 — O)((w*)fr)

which is of the order of (1 — 8)(sfr) mins, r).

More precisely, it may be shown that up to a multiplication coefficient of
order (1 + 0(s)), we get the following values of w* and y(w*) as functions of r
and s:

Intensity of

environmental Optimal Optimal
deterioration mutation rate clone-survival-probability
Case I ¥ Es (rs)r2 21 — &)
virtually unchanged with
Case I P ) (212 — 1)s 20212 — {1 — s
Case 111 [ sf2 [(1 — &)s4/2r

virtually unchanged with »

Case | represents a situation with insubstantial environmental deterioration,
Optimal clone survival probability is essentially not affected; whereas, optimal
mutation rate increases as a square root of the intensity of the environmental
deterioration.

Case IIT represents a situation with relatively intensive deterioration. Optimal
mutation rate is no longer affected, while a further deterioration results in a
substantial increase in the extinction probability of the optimal clones and, thus,
of the entire population (see Eshel (1972b)).

3. INDIRECT ADAPTATION

We now take into consideration a succession of gene substitutions caused by
repeated changes of: the environment. We will see that while fitness selection
operates anew each time toward an adaptation of the population to a given,
static, environmental condition, indirect selection operates on a longer scale of
time towards an adaptation to the dynamics of this repeated process. For this
purpose, the dynamics of a change will be measured in terms of the intensities
of the selection forces it imposes on primary features. We already know that the
survival probability of a clone during gene-substitution depends both on the
selection forces operating on the substituted primary features and on the
secondary feature which is carried by this clone. Thus, if throughout successive
gene-substitutions the dynamics of the process are kept approximately
unchanged, then the probability y{w) of a clone to survive a gene-substitution
stays an invariant function of its intrinsic secondary feature o,



CLONE-SELECTION AND MODIFYING FEATURES 203

The multitype generating function of the nonlethal progeny born to an
 individual of a type 4, is then

b = (1 — )t + @ 3 pusty + b @6

The Fishertan fitness of this type is given by
afw) = (1 — Bw) B;/(1) = (1 — O;0) a{0),

which for all { = 1,..., # 7s a decreasing function of w. This reflects the fact thata
direct fitness selection always operates toward a zero rate of mutation (see
Kimura (1967)). Yet, we know that neither a population nor a clone within it
can survive in a changing environment unless it is subjected to some positive
rate of mutation.

In terms of our model, let us start with a conservative primary feature A, ,
and assume c;{0) < 1. In this situation, a clone with a zero mutation rate assumes
a one dimensional subcritical branching process and, thus, is bound for extinction,

-1.e., x(0) = 0. For a general w, 0 <{ w < 1, it has further begn shown (Eshel,
1972b) that the clone-survival-probability y{w) is a continuous function of w and
is positive only within the open interval,

a,;(O) — l
T6(0)

An optimal rate of mutation is, thus, obtained for a positive value within this
interval,

Assume, morcover, a Poisson distribution of the progeny size, i.e., Df{s) =
exs-1, (For a validation of this postulate, see Karlin and McGregor (1964,
1968).) Let n = 2, o < 1 and o, > 1. (Here, A, may represent the class of all
adaptable types.) Let the value r = 1 — oy 22 0 measure the intensity of
environmental deterioration, while § = a, — 1 >= 0 is the Fisherian measure of
the selection coefficient in favor of the adaptable type. When these two values
are small, it may be shown that clone-survival-probability virtually behaves like

PN Gl I
Fw) = 20(1 — 8) 1w 0 < w <5,
0 otherwise,
and |
w® oy pLli? (r -+ (1 —r))/2 — ,1/2

l1-—-»

This last value, as readily established, is of the order of min{s, {rs)'/%}.
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DrrmvrrioN 2. If the clone probability y(w) assumes a maximum at a point
w = w¥, then w* will be called an optimal value of the secondary parameter.

The value y(w*) is the survival probability of an optimal clone. From the
definition of the optimal value w*, it immediately follows that ¥(w™*) = Elhy with
a strict inequality unless the frequency-measure of the optimal value in the
initial population is already 1. We conclude that in the long run, indirect selection
always increases the frequency of the optimal value in the population. A stronger
statement will be proved in the next chapter.

In the general case an optimal value w* of the secondary feature w may or may
not maximize the individual fitness of its carrier,

Examrie 1. Let

i) = P )

where ,(u)is a probability generating function determining some law of progeny
distribution, and the right side of the equation converges. Biologically, this is the
simplest case where w represents 2 pure fertility parameter, increasing the
number of viable offspring born to its carrier by a monotone likelihood ratio
(see Karlin (1968a)).

Employing (2.2), the fitness of the 4% type is readily given by

a(w) = w(didw) l{w,..., w).

Owing to the logarithmic convexity of generating functions, this is, not suz-
prisingly, a monotone-incteasing function of w. Classic fitness-selection is shown.
to always operate in favor of high w values, But it is also not difficult to show
that the smallest positive vectorial solution of the system

Pty ooy )
B0y ) s

is monotone decreasing with w. We, thus, conclude that when a contribution in
fertility (or viability) does not interfere with other aspects of the process, clone
selection leads to the same end result as fitness selection,

= l,m.,n,

ExampPLE 2. w is an intrinsic rate of mutation. In this example we assume
that the total number of offsprings, either viable or lethal, born to a parent of a
type A;~, depends only on its primary feature and not on its rate of mutation .
Thus, the generating function of its total progeny size is denoted by @,(s).
Now, once a primary feature 4;(/ = 1,..., ) is mutated, assume a probability
8; > 0 that it will be mutated to a lethal form, and a probability p,; that it will be
mutated to the nonlethal form 4;, j=1,2,..,#; 60, + Yipy =1
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The expected number of all viable offspring born to an A~ parent is given by
afw) = [(2]On) do(aty..., 0)] g - (2.2)

Employing the classic Fisherian terminology, this is the individual fitness of the
type A, If for all { = 1,..., n the functions «{w) are constants—say, a{w) = oy
—then no fitness-selection operates on the secondary feature cw. If, on the other
hand, the a;(w) are all monotone increasing (decreasing) with w, then we say that
individual fitness-selection operates in favor of (against) high values of w.
We will now see that long-run survival of a secondary feature in the population
may not depend on short-term forces of fitness-selection operating directly on it.
Let (#; ,..., #,) = u{e) be the smallest positive vectorial solution of the system
of equations
Pty o, 8) = 0y ; 1 =1,..,n (2.3)

As a general result of the theory of branching processes (e.g., Mode (1971)),
we know that the 7th component #{w) of the solution represents the extinction
probability of a clone beginning with a single parent of type 4, As a special
case, if the conservative primary feature is represented by A, , then y(w) =
1. — #;(w) represents the survival probability of a clone carrying the secondary
feature w. The frequency of the w-feature within the surviving population, if
it exists, will, thus, be multiplied by a coefficient proportional to the clone-
survival-probability y{w).

In a formal way, let p, be the frequency-measure of the value w in the initial
population as distributed over the set £2 of its relevant values. The expected
survival probability of a random clone starting with a single parent in the initial
Aj;-population is

By — jﬂ () puldew). (2.4)

‘We assumne that this value is positive{otherwise, the whole population is bound for
extinction). The frequency-measure of the secondary feature among surviving
clones becomes
_ X(w) py(dw)
poldew} = g, (2.5)
We then say that an indirect (or second ovder) process of natural selection alter-
nates the frequency-measure of w from p, in the initial population to p, in the
surviving one,

DeriviTioN 1. A value w, of the secondary feature is said to be favorable
aver a value w, if it endows a clone carrying it with a higher probability of
survival, i.e., if

x(wr) > x{ws).
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mental change. The intensity of a change is measured in terms of a decrease in
the fitness of the conservative type. This optimal value is shown to maximize the
survival probability of the entire population when facing new environmental
changes of the same intensity. In this sense, second order selection enables the
adaptation of a population to the pace of the environmental change, rather then to
a static ecological situation. This sort of an indirect adaptation is carried out
through modifications in modifying features, which, though not likely to in-
crease individual fitness in any specific environment, facilitate further adaptation
to repeated environmental changes of the same intensity. It is speculatively
suggested that this aspect of a second order adaptation may be responsible for the
accelerating pace by which pest and bacterial populations adapt themselves to
newly introduced pesticides and medicines (see Section 3),

Finally, the method of second order selection as well as the concept of bio-
logical favorability in the wide, are not restricted to features which are labelled as
modifying. For example, when applied to primary features, it is shown that the
eventual result of second order selection virtually agrees with classic predictions
of fitness selection. In this sense, fitness selection may be interpreted as a case
of a clone-selection.

In Sections 2 and 3 we describe the analytic model and basic results of clone-
selection in an asexual population. The mathematical analysis of an optimal
mutation rate is carried out in a different paper (Eshel, 1972b). A research
dealing with some quantitative aspects of second order selection in a sexual
population is now in development.

2. Direcr PRODUCT-BRANCHING-PROCESS AND SECOND-ORDER-SELECTION
IN AN ASEXUAL POPULATION

Let w represent any inherited feature in the population, either continuous or
discrete. £2 is the set of all relevant values of w. Let 4, ,..., 4, be the collection of
all possible types in respect to another feature in the population. For convenience,
we shall call A, the primary feature of the type 4. This feature generally
represents a directly selected trait in the population. w is called the secondary
feature and penerally represents a modifier.

An individual in the population may produce offspring of either his own
primary feature or another one. The vector-distribution of progeny-sizes of an
individual of type 4, is given by the multidimensional probability-generating-
function i#(u). This function depends both on the primary feature 4; and on the
secondary one w. More specifically, we denote by p(k, ,..., k,) the probability
that an individual of type 4,» produces exactly %, offspring of the type
Af =1,..,n); then

o

Y(u) = oy e, 1) == Dy yesy ) W1 o ulbn, 2.1y
k=0

Eyrrnikiy
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about second order selection in their favor, For example, clones characterized by
a too low rate of mutation are likely to become extinct when environmental
conditions become unfavorable to the conservative primary features. On the
other hand, a too high mutation rate is likely to cause extinction of a clone even
after the establishment of a new, adaptable, mutation. This fact introduces into
the model a probabilistic equivalence of fitness selection operating for a favorable
modifying feature. Hence, it can be shown that most surviving clones are charac-
terized by a mutation rate which cannot be far away from some optimal value
which is small but not zero. A similar process may be responsible for a second
order selection for an optimal rate of recombination. In this case, the modifying
feature is determined by the geometrical location of genes on the chromosome
as well as, possibly, by a specific medifying locus (Simchen, 1967).

In 2 sexual population, possible recombination between the modifying and the
primary genes makes quantitative analysis of second order selection very com-
plicated to carry out. In an asexual population, however, a useful tool for such
analysis is offered by the theory of multitype branching processes (with some
qualitative results hopefully extended to the sexual case).

Since modifications of primary features in an asexual population can occur
only through mutation, the most natural modifying feature to be studied in such
a popuiation is the intrinsic mutation rate itself. Yet, assuming a given (nonzera)
mutation rate, other features affecting the spread and establishment of a new
mutant in a clone may also be regarded as modifying—for example, an intrinsic
tendency for migration. Furthermore, in the connotation of a biological type it
is sometimes convenient to consider spatial as well as genetic factors. In this
case, from the analytic viewpoint, mutation rate may be replaced by the tendency
to migrate (Crow and Kimura, 1970).

Note that a crucial prerequisite for application of the theory of branching
processes to second order selection is that the success of an individual in the
population (measured in terms of progeny size) is independent of the size of its
clone. This postulate proves quite acceptable for a large population consisting of
many intermingled, small-sized clones, with relatively weak interactions between
individuals of the same clone (for a more detailed argument see Mode (1971)).
The situation becomes completely different when the size of a surviving clone
approaches the capacity of a natural niche or habitat. However, it may be
assumed that the clone-size behaves like a respectable branching process up to
some critical, not too small size. In this case we know that the more conveniently
calculated survival probability of the branching process is quite close to the
probability of a clone to approach this critical size and, thus, to become
cstablished in some habitat (see Karlin (1966)).

While fitness selection, at any given time, is determined by ecological factors
which are prevailing at the moment, it appears that the indirectly selected
optimal value of a modifying feature depends on the intensity of the environ-
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example, Williams (1965)). Actually, it is hard to see how biological complexes,
like those governing sexual systems, recombination, or even optimal mutation
rates, will be spontaneously established in any population without (or cven
against) selection forces operating within that population. Indeed, without the
establishment of a feature, at least within a few populations, interpopulation
selection for this feature cannot occur.

From the foregoing it, thus, appears that some mechanism of selection
operating in favor of advantageous modifying features at the population level is
still to be studied. It also appears that this mechanism is not likely to be
thoroughly explained by Fisherian methods based on the repeated effect of a
direct fitness selection in a completely mixed, normalized-size population,
Moreover, if we are not to regard the apparent, long-run biological function of a
modifying feature as an evolutionary coincidence, this function should be in-
coporated into the selection mechanism of the modifying feature in question.
To this end we are interested in the long-run survival probabilities of whole,
evolving lines of descendents catrying a given modifying feature, rather than in
the short term success of individuals in the population.

- In an asexual population, such lines are naturally represented by clones. In' a
sexual population we speak about lines of identity by descent in a given locus @
as generalized clones with respect to this locus (see Kempthorn (1960), Karlin
(1968a)). More specifically, a generalized clone consists of all individuals
descending from a single parent, that carry duplications of a single allele in their
w-locus regardless of their genetic inheritance in other loci. Indeed, all individuals
of the generalized clone are offsprings of the original parent but not all offspring
of this parent belong to the generalized clone. In a diploid population we respec-
tively speak about generalized clones of haplo-gametes.

Like individuals in an asexual population, all haplo-gametes of a sexual
population are divided into mutually exclusive (generalized) clones each carrying
a specific w-gene. Unlike the asexual case, this division is not uniquely deter-
mined by the original parents but also depends on the choice of the specific locus
in question. Generalized clones are, therefore, difficult to trace empirically.
On a theoretical probabilistic level, however, it can be readily shown that clones
characterized by different modifying features are likely to become linked with
different primary features (i.c., genes which determine the fitness of their carrier)
or, in a recombinant population, with different combinations of primary genes
(see, for comparison, the deterministic analysis of Karlin and McGregor (1972) or
Feldman (1972)). Thus, differences in exposure to direct selection forces result in
differences in the long-run survival probabilities of these clones. Moreover, under
certain conditions, and taking into consideration the pressures of environmental
change, it can be shown that modifying features which maximize the survival
probability of a clone also maximize the long-run survival probability of the
entire population. We call these features favorable in the broad sense and speak
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also been studied in connection with sex and diploidy (Eshel, 1970, 1972a),
various mating systems (Karlin, 1968) and optimal mutation rates (Kimura, 1960,
1967). All these features appear to serve long run survival of a population,
usually through maintaining a polymorphism at a minimal cost. Yet, in
terms of individual fitness, modifying features often prove to be immediately
costly for their carrier. Exceptions such as sexual coupling serving as an
efficient regulator of team activities among higher vertebrates are from an
apparently late, secondary path of adaptation. (For a different view see Scudo
1972.) Consequently it is often difficult to explain many phenomena in the
evolution of modifying features based upon a strict analysis of fitness sclection
within a population.

Thus, for a fairly general condition it can be shown that in the long run,
fitness-selection always operates to decrease nonzero rates of mutation (Karlin
and McGregor, 1972) or recombination (Nei, 1967; Feldman, 1972). Further-
more, a maximum equilibrium-fitness is obtained in the case of a zero rate of
either mutation or recombination (Karlin and McGregor, 1972, 1972a).. The
readers might note that these results are proved only asymptotically for the
duration of the process. In fact, some simple models analysing fitness selection in
a changing environment seem to reveal a temporal increase in the rate of mutation
(or, with certain prerequisites, also in the rate of recombination). This is the
case, for example, when, for mathematical convenience, only one mutant form
is allowed which is advantageous in comparison with the conservative type. The
situation is completely different, however, if irreversibly deleterious and lethal
mutations are incorporated into the model in a higher frequency than the
advantageous one is. In this case, despite the necessity of the rare advantageous
mutation for future survival of the population, a strict analysis of fitness-selection
paradoxically demonstrates a monofone decrease of the mutation rate up to a zero
level.

Similar phenomena are manifested by applying fitness-selection to problems
involving the evolution of intrinsic population controls (Wynne-Edwards,
1962; Lloyd and Christian, 1969), patterns of altruistic behaviour {Haldane,
1932) or tendencies to a negative assortment in mating (Karlin, 1968). Thus,
unless a population is very sparce, fitness-selection is shown to favor tendencies
to positive assortment while intrinsic tendencies to a negative assortment as well
as to self incompatibility are always selected against, their existence being
explained on the basis of their advantage in maintenance of polymorphism.

Complementary to the Fisherian approach, there is a natural tendency to
explain the evolution of a modifying feature on the basis of some benefit with
which it supposedly endows-the future population. Yet, if unsupported by anal-
ysis of selection forces operating within a population, such a tendency devolves
to an explanation of interpopulation selection. This type of selection now faces
substantial theoretical objection as being a major force in evolution (see, for



Reprinted from "THEORETICAL POPULATION BioLoGy Vol. 4, No, 2, June 1973
All Rights Resetved by Academic Press, New Yotk and London Printed in Belgiwon

Clone Selection and the Evolution of Modifying Features

IraN EsHEL

Department of Statistics, Tel Aviv University, Tel Aviv, Israel
Received May 16, 1972

A statistical mechanism of long-run selection is formulated in order to
explain the evolution of modifying features governing mutation, recombination,
sexual behavior, demographic mobility, and other factors that do not directly
increase the individual fitness of their carrier but which are, supposedly, essential
for future evolution of a population. Survival probability of a clone, rather than
that of the individual, is shown te play the main role in this mechanism.
Changing environment proves to be the main factor affecting it.

A theoretical possibility of a long-run adaptation to the dynamics of an
environmental change—rather than to a static situation resulting from it—is
demonstrated.

1. MopiryinG FeEaTURES AND SECOND ORDER SELECTION

T'he motivation for this work stems from studies concerning the evolution of a
variety of traits or features which are commonly labeled as modifying features
(see, for example, Karlin and McGregor (1972, 1972a) and references therein).
When speaking of modifying features we mean inherited features with the
following characteristics:

(i) Their main biological function does not involve a direct contribution
to the Fisherian fitness of either their carrier or its neighboring individuals.
This requirement distinguishes a modifying feature from an altruistic trait (see,
for comparison, Haldane (1932), Hamilton {1964), Maynard-Smith (1964), and
Eshel (1972)).

(ii} In affecting the process of reproduction within a population, modifying
features determine further evolution (or preservation) of other features. These,
in turn, may be directly advantageous for the survival of the future population.

Prevalant examples of modifying features are patterns governing sexual
reproduction, mating systems, rates of mutation and recombination, and,
possibly, also diploidy and polyploidy. In recent years, the long-run evolu-
tionary function of sex and recombination has been extensively studied (e.g., see
Crow and Kimura (1965), Bodmer (1970), Eshel and Feldman (1970), Mynard-
Smith (1968) and references therein; see also Muller {1932)). Similar effects have
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1. INTRODUCTION

The possible mechanisms for the establishment of altruistic traits in-2 popula-
tion have been discussed by several wotkers (e.g., Haldane, 1932; Fisher, 1958;
Hamilton, 1963, 1964a,b, 1973). In agreement with the termmology of previous
authors, we adopt here the term altruist in its biological meaning for any inherited.
trait which reduces the fitness of its individual carrier but which is beneficial to -
the neighboring population of this carrier. In this sense, altruistic traits may be
either behavioral, physiological, or biochemical. Altruistic traits can be spread
and maintained in a population only if the benefit endowed by the altruistic
action of an individual altruist benefits other altruistic individuals more than it
benefits selfish individuals in the same populatlon {(Hamilton, 1963; Maynard-
Smith,. 1964). Without a kinship structure which is recognizable by the indivi- .
dual, this usually means that the average frequency of altruists in the area near
an average altruistic individual must be greater than the frequency of altruists in
the population as a whole. In general, this would be the case in any population in
which mobility and mixing are not high enough to overcome the local random
fluctuations in gene frequency (Wright, 1945). More specifically, whenever a
population is naturally divided into (not necessarily isolated) subpopulations or
demes, one may measure the demographic mobility of such a population by the -
probability that an arbitrary individual of an arbitrary deme has been born to
parents of other demes. In this case it has been shown (Eshe] 1972) that for any
altruistic trait there is a critical level of demographic mobility under which
selection would always operate for the establishment of the altruist. If, on the
other hand, demographical mobility surpasses another critical value, selection
will favor the selfish, Moreover, these two critical values depend on the average
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size of the deme, both values tending to zero as the standard deme size-becomes
very large (Eshel, 1976). In other words, when the standard deme size is large,
then even a very small immigration among demes will be enough to endow the
.-selfish with 2 permanént advantage over the altruist (see, for comparison,
Levins, 1970 and also, for critical discussion Boorman and Levitt, 1972}, Thus,
a model based on a permanent deme-structure of a population fails to explain
the evolution of certain characters of biochemical altruism in large colonies
of nonsocial insects, fungi, bacteria, etc. Such characters, for example, are
economic utilization of food resources at the expense of fast growing, passive
restraint from overpoiluting of the environment (or the host), active cleaning of
the habitat or, in some cases, distascfulness of insects (sse the Discussion).

In all these examples, the large number of individuals in a standard colony
does not allow local drift within colonies to create a significant and permanent
variance among them or to provide the altruist with a sufficient statistical
advantage due to the neighbor effect. However, such a variance may be dynamic-
ally maintained when colonies are temporal, each bemg reestablished by a
relatively small group of founders.

In our model we consider a specific case of population structure in which the
random distribution of altruist and selfish in small founder groups generates
subpopulations with different frequencies of altruists and selfish. 'The selection
in the whole population is the balance between' sélection against the altruist
within each subpopulation and the advantage that subpopulations with a higher
frequency of altruists have over subpopulations with a low frequency of altruists.
This model is essentially an extension and generalization of the model of
Maynard-Smith (1964), with a special emphasis on the possibility of a stable
polymorphism of altruist and selfish in the whole population and on the effect
of population density on the number of founders.

We consider several ways in which altruism can be expressed. -

I. The fitness of the subpopulation is an increasing function of the
proportion of altruists. This would correspond, for example, to a situation in
which nonaltruists pollute their environment and altruists act to remove the
pollution. ’

" 2. The fitness of the subpopulation is an increasing function of the
number of altruists, This would correspond to_a situation in which a minimal
number of altruists is requlred to ‘perform some essential service for the whole

population,

3. ‘The altruists are more economic in the utilization of a limiting resource.
They are also slower, so that the piesénce of altruists leaves more of the resource
for the nonaltruists.
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2. A GENERAL SETUP OF THE MODEL
Let us assume'a'large haploid populaﬁon of two types, say 4 and E. The

population reproduces in two phases. First, smali groups of individuals colonize
available habitats, multiply there, and increase in number. Then they get

. mixed together again to form the next generation of colonizers. More specifically,

if p is the proportion of the 4 type in the pepulation at the time of colonization,
then we assume that a fixed proportion a(m, #; p) of all colonies will be founded
each by exactly m individuals of the type 4 and # individuals of the type E.
Throughout this work we concentrate on the two simplest cases.

. Case I, The 1n1t1al size of a colony is fixed, say N. Individuals of the different
types are equal in their chances of being included in each founding group,
mdependently of the types of other founders We then get

t{(m,,n,p)-O . m-fn £ N,

a(;n, "y p) = (Z) p"q"  m+n=N, (2.1)
where g = 1'— p. o - '

Case II. The various founding individuals reach the habitat at random,
with equal chances and independent of each other. In this case the size of the.
founding group, as well as the sizes of the subgroups of founders of each type,
will be Poisson distributed: : :

AN-Hie
a(m, nyp)=e” d

¥y .
L e, e
~where v is the density of colomzatwn, i.e., the average size of a founding group.
Following the phase of colonization, a phase’of incubation takes place. During
this phase, each individual propagates according to both its own type and the
interference of its nelghbor colonizers. A type A is said to be altruist if:

(1) Its existence in a colony increases the average rate of reproductlon
within this colony.

(1) At a given colony, the rate of reproduction of an individual of type 4
is less than that of its neighbor of type E, if it exists,

More specifically, let a{m, #) and B(m, 1) be the total value by which altruistic
and selfish founders multiply themselves, respectively, during the period of
incubation in a colony founded by exactly m altrulst and z selfish individuals,
Then; (i) can be formally replaced by

(m + &) a(m + k, 1) + nf{m + k, n) = ma(m, n + k) + (n + kj B(m, n + k).
(2.3)
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for all m, n, k =0, 1, 2,... with a sharp inequality at least in some cases, i.e;, o
afn, 0) > B(0, ). | _ _ | (2.3a)

In the same ‘-,vay, _(ii)_may be replaced by ' - _
olmn) <Plmn)  forallmn=0,1,2.0 . (24)

‘with a sharp inequality at least in some cases.

For comparison, see the definitions of altruism in Haldane (1932), Hamilton
(1965), and Eshel (1972). In cases where a fixed ratio of fitnesses between
altruist and selfish may be assumed throughout a fixed period of incubation, (2.4)
may be readily replaced by a stronger condition,

B(m, n) = Aa(m,n)  forallm,n=0,1,2,..; A > 1. (2.5)

-Thus, in the discrete situation of % generations of incubation with a fitness
ratio of 1 -} 5 (s > 0) we get

A ={1 4 s~
In the case of continuous differential growth within the célonies we similarly get
A =eT,
where T is the length of incubation time.

Esanple A: The Generalized Haldane's Model

This model (compare Haldane, 1932, Appendlx B) corresponds to the situa-
tion where -

(i) - the infinitesimal growth rate of the altruist is smaller than that of the
-'selﬁsh by a fixed ratio of 1/(1 - 5); and :

* (i} the welfare of the entire colony is increased with the relative frequency
of the altruist in the colony.

In this postulate we generalize the more specific assumption made by Haldane
that the average reproduction of the entire group increases linearly with the
relative frequency of the altruist within it. We shall later give further considera-
tion to the linear assumption of Haldane.

In the general case, let K + B (B > 0) be the relative growth rate of a purely
altruistic colony. If at a given moment the relative frequency of the altruist in a
colony is £, 0 << § < 1, then the relative rate of reproduction of the selfish in
this colony is denoted by K 4 Bii(£), where, by definition, y(0) = 0, ¢(1) = 1.
B > 0 is the supremal advantage endowed to a selfish by its altruistic neighbors,
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Assumption (2.3) is equivalent here to a monotone increase in #(£). (With
Haldane’s assumption of lineatity we get $i(§) = £.) Finally, assumption (2.5)
implies an altruist relative rate of reproduction which is smaller than that of the
selfish by a-constant, say s >0, at any time and in any colony. Designate
% == %(t) and ¥ = ¥(¢) for the respective number of altruistic and selfish indivi-
~ duals ex1stmg at a time ¢ (0 <C ¢ < T) in a given colony; we get

?t, (K+Bl’b(x—l—y))y ‘ A (2.6)

=k ¢(

);qm | @.7)
With the initial conditions %(0) — 1, $(0) — we get | o

ﬁ(n;, ) ==, 2C )_ = ¢ exp IKT—l—B f ¢(F~—1"—) th (238)

m -+ ne®t
and
afm, n) = x(T)fm = e~ f(m, n). 29
- For the linear case, (2.8) becomes R
_oxr{ mn B ; - o
B, m) = ce . (m__e" 7 ?) . | (2.10)

"~ While Haldanes model corresponds to a situation of an active contribution of
the altruist to.the colony, the following two examples correspond to a situation
of passive restraint of the altruist from damaging the colony. ‘

© Example B: The Case of a Nonpolluting Altruist

Th{e‘inﬁnitesimal'growth rate of all individuals in the colony is decreasing
with the number of the polluting selfish individuals in the colony; the growth
rate of the altruist is smaller than that of the selfish by a fixed value 5. We get

dyldt = yi(y), '
dxfdt = x((y) — 9),

while ¢( y) is a decreasing function of y. Taking over the mmplest linear structure,
() == a — v (a fixed damage per selfish- mdmdual), we get

@11

ae(ﬂ“‘ﬂ)T
a— 1 -+ ne’t
aef;T )
rp—

a(m, ) == (@2.12)

B(m, n) = = eTa(m, n). (2.13)
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Example C: An Altruistic Economy in Exploiting Environmental Resources |

In this example we assume a limited rate of supply of resources ¢ for the whole
_colony per a unit. of time, ¢ is measured in units of supply necessary for an
* altruistic individual in the colony. The amount of supply consumed by a selfish
individual in a unit of time is 4 > 1. The colony stops growing when the total
amount of resources consumed becomes equal to ¢; at this moment

ma(m, n) Anﬁ(m n) = ¢’ ' 219

If, as a result of its more economlcal metabollsm, the growth ‘rate of the
altruist is lower than that of the selfish, we may assume (2. 5) which in con-
junction with (2.14) renders

‘ofm, 1) = cf(m + AAn); ﬁ(m n) = dofm, m). - @ 15)

. We now study the general rules by which the frequency p of the altrmst is
changed in the entire population from one generation to the next.
Let A(p) and g(p) be the average numbers of altruistic and’ selfish individuals -
. emerging from a smgle colony at the end of the 1ncubat10n time. Clearly,

M7

A(p) = z mam,ni pamm), L (216)
C4(8) = X nam, ;) B ). 2.17)

T'he relative frequency of altruistic individuals in the entire popu]atxon after
one generation of colonization and incubation will thus be

S R ORI 219
say. - ' '
We know F(0) = g(1) = 0; therefore,

f(0) =0 fy=1 | (2.19)

and the monomorphmc pomts p =0 and p = | are obviously equilibria of the
system. The point.p = 0 is stable if f’(0) </ 1 and only if f(0) < 1. In order
- to check the stability of this point we use the equality _

F1(0) = K(0)fg(0).
Knowing a(m, #; 0) = 0 for all m > 1 we obtain

.‘g(O) =Y, na(0, n; 0) B(O, n),

n=0



282 - "+ . COHEN AND ESHEL

whereas -

HO) =% malon, ) 3T a(m, n; p)I

w.n p=0

Hence p= 0 is a stable equ1lrbr1um if

3 mofm, n) 3 a(m ; p)l < E nB(0, ») a(0, =; 0) (2.20)
m.n n=>0
In this case selectio_n operates against the altruistic trait unless perhaps its
frequency surpasses some critical value. If the reverse of inequality (2.20) hoids,
# = 0 is unstable and the altruistic trait is to become established in the popula-
tion whenever it is introduced into it.
In a similar way, employing the equality f’ (1) = —g'(1}fA(1) we find that
P = 1is a stable equlhbnum if '

3 ufm, n) id— am, n; p)i < S mam, 0 1) afm, 0). (221

m,n n=1- m=0

We see that with the addition of quite elementa'ry assumptions made about the

founding groups, inequalities (2.20) and (2.21). will become much simpler.
Finally, it may be shown that an inner equilibrium p == f($), if it exists, is .

stable if

(r— 15) h’(ﬁ) - e (h) < WY 222)

Itis unstable if. the reverse'of (2.22) holds,

We now restrict our study to the two simplest situations of colonization
_mentioned above: The, case of a fixed-sizé colonizing group with a binomial
distribution of types within it and the case of colonization by independent
individuals with a two-dimensional Poisson distribution of types in the colonizing

group.

3, Tue Case oF A Fixep-Size FOUNDING GROUP

With the assumptions of a random sampling of NV founders out of a large
parental population we get _
a(m,n; p) =0 m+n#N, _
: =aim,p) m+n=N, (3.1)
where :

am ) = (0) prgt-m (g =1—p). (3.2)
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We also denote

o, N—m)=on; m=12.,N

a=0

, _ 3.3)
Bm, N—m) =8, m=0,1,.,N-—1.
Thus : '
h — - N 1 aN—m s '
B N—1 . NN o o :
80) = X N =) () Bapra (3:5)
and with assumption (2.5}, (3.5) Becomes' .
. N .
&p) =W % (V) prg®na, — i), 69

Here, by definition, o, = A18,. For convenience we also denofe By = Aay.
Condition (2.22) for stability of an inner equilibrium p becomes

L+ — 1N
T G— DA 3.7

()
k()

To check the stability of the monomorphic equilibrium p = 0 we can readily
obtain

<

ﬂ;ﬂ mom, 1) {% afm, .n; ) 'ﬂ:u =N (3.8)
- and ‘ ’ V
Eo na(0, #; 0) B0, n) = B,NV. (3.9)

Inserting (3.8) and (3.9) into (2.20), we get

CoroLLaRY 3.1.  When founding groups are of a fixed size and colonizers are
sanipled at random then f'(0) = o, /B, and the monomorphic equilibrium p = 0 5
stable if :

N oy <. ' (3.10)
It is unstable if o, > B, -

In a similar way it is shown that
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COROLLARY‘ 3.2, Wztk the assumptzons of Corollary 3.1, f (1) = ﬁN_llocN
and the monomorphzc egmlzbnum p =1is stable if

oy > ﬁN_ : ' (3.11)
o Ttis unstable if o <fBy_g.. B
* Note that stability of the poinit p = 0 means that gelection will operate against
the altruist when it is rare. In this case, almost-all altruistic founders will appear
as single representatives of their type in the founding groups to which they
" belong. Thus, during the incubation time, these individuals will multiply by a
factor of o .- Yet, when the altruistic type is very rare, most colonies will lack
this type at all, and thus, most founding individuals will multiply during the -
incubation time by a factor of By . Thus, heuristically, the condition oy << 8 for
stability of  — O asserts that when the altruist is very rare in the population, its
- growth rate is less than that of the average selfish individual in the population.
In the same way, the condition oy > fy_, assures that the growth rate of the
selfish, when rare, is less than that of the altruist.

Employing Corollaries 3.1 and 3.2 we now study some of the typical situations
described in the previous section, _—

Example 4: The Generalized Haldane's Model
From (2.8), (2 9), and (3. 3) ‘we get for a ﬁxed-31ze foundlng group

K_T-i—BL_a,b(N met_ ) a}

e 11 -} e

Bi = c exp
: =g,
From Cordllary 3.1, it thus follows jthat P ~ 0 is stable if
| sT

B I B -|—(N 1) ) df BN(T), _ (3.12)

" say.

From Corollary 32it follows that p =1 is stable lf

_SM )
or _ _ ' , (3.13)

sT

B T TR S DN =T ¥ e &

= Bz*(T)'
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say. As 0 <3 (2) << 1 and lim,,..q ¥(2) == 0, we have
}iﬁr’g B ¥T)=w
%—iﬂ Ba*(t) =
For any B > s, we therefore infer that if the time of incubation is suﬁicz'en:tly
long, then both edges are stable and selection favors the majority. Note that the
requirement B >> s means that a purely altruistic colony will do better than a

Apurely selfish one {Postulate 2.3a).
With continuity of f(x) we have, on the other hand,

limg BXT) = 5wy

i BaX(T) = w—uw»

If  is convex then for values B ann s satisfying
1m¢(1—_1—)'<L'<¢(—1—) - (3.14)
-yl <gm<viy) . B

and for a sufficiently short time of incubation, a protected polymorphism of
‘the altruistic and the selfish types will be maintained, i.e., both edges are unstable.
Moreover, it might.be shown that B, *(T) is a monotone increasing and B,*(T’)
is a monotone decreasing function of 1% therefore, convexity of ¢, and a short
time of incubation are also necessary conditions for the maintaining of a
protected polymorphism,’
In the linear case one can directly calculate -

NsT

B = I Sl (V=D e
' NsT
By (T) = 1n(N— Tren—Tnn ~ 27

for all T > 0, and B,*(0) = B,*(0). = Ns.
' Condltlons for selection near both edges for and agamst the altrmst are
dep1cted in anure 2. :

If (x) is either linear or concave, B, *(T) > Bz*(T) for alI T >0and at least
one edge is always stable No protected polymorphlsm can be maintained in
these cases.
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I‘ Selection for
the altruise

Protected
Tolymorphisn

Selcction for the majority

Felection against the altruist
S R m—

Fic, 1. A convex version of the Haldane’s model. Selection for and against the
aitruist near both edges is manifested as a function of the altruist benefit B and the
incubation time 7. Note that a protected polymorphism is possible only for a short time
of incubation, With long incubation times there is selection for the majority. :

Example B: A Nonpolluting Altruist—The Linear Case
In this case_(éee previous section} we get from (2.12), (2.13), and {3.3)

: ne'o—3T
Om =g + (N — m)(e’T — 1)
Bm = ey,
and thus
' a -+ N(eT — 1)

fO = g = e W e

a

’ . p8T :
i) =e a1

Here a is the stable capacity of the habitat in terms of number of polluting
individuals it can stably support. s is the individual disadvantage of the altruist.
In this case it is readily shown that the selﬁsh equilibrium p = 0 is stable if

1 abNet—1) v,
S>T]n(a+(N—'l)(e“T— ) = 9*(T)
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B Selection for the altruist

Sclection for the majorkty

Sclection against the alrruist

s f—

»:

Fi1G. 2. The linear version of the Haldane's model. Selection for and against the
altruist near both edges is manifested as a function of the altruist benefit B and the
incubation time T. Note that no protected polymorphlsm is possible, A long time of
mcubatmn is always favorable for the majority.

say. p = L is stable if
. ‘ ] a - e —

s<——ln(—— -

T ! ) = 5*(T),

say. ‘
It is not difficult to see that for all T

(i} s*> sl* and, therefore, no protected polymorphlsm can be main-
tained. : . ‘

(ii) Both s* and s* are monotone decreasing with T and, thus, a long
period of incubation always favors the polluting selfish. Moreover, since
Hm. ., 5;*(T) = 0, the selfish-equilibrium is always stable if T"is long enough.

Example C:  Economy in Exploiting Environmentai Resources
In this case we employ (2.15) and (3.3) to get

, AN
710 = 1+ 2N =1}
i) =7 };N+AA ’
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where 4> 1 is the ratio between the amounts of food consumed by the selfish
and by the altruist, respectively. '
"The selfish equilibrium p == 0 is stable if
AN—1.
_ N>—A(A—1),"N ,'

say. The altruist equilibrium p =1is stable if

AN —1
N < S S AN*,

Having 4 > 1, we see that at least one edge, -and possibly both .of them, is
always stable with the result of selection in favor of the majority. _
We also see that large caluny size is always favorable for the gelfish (see

next section).

We now concentrate on conditions for the maintainence of a polymorphlsm
between altruists and a selfish in the population First, we know that a condition
for a protected polymorphism is that both inequalities oy << By_; and o) >, -
hold. With condition (2.5), this requirement becomes

Blbo>A>Bulfya- (1S

For appropriate values of A, (3.]15) holds whenever the benefit endowed on a
colony by a single altruistic founder (with all other founders being selfish) is
larger than the damage inflicted on a colony by a single selfish founder (with all
other founders being altruistic). Here benefit and damage are measured in terms.

- of the total growth of the colony throughout the entire period of incubation.
~ Note that this reqmrement does not hold in most of the cases being analyzed
above, as well as in many other cases studied by the authors.

- The reason for this may be the fact that the relative frequency of the altruist
in the colony is ever decreasing during the time of incubation; therefore, the
accumulated effect of a single altruist founder on the total growth of the colony
is generally small. On the other hand, a small group or even a single selfish
founder, by ever increasing its relative frequency in the colony, may cause larger
damage, especially when the incubation time is long.

It is not difficult, however, to imagine asituation in which the existence of
even few altruistic individuals in the colony is crucial for.its welfare. In such a
situation, condition (3.15) is more likely to be satisfied, with the result of a
maintaining of a protected polymorphism, '

We end this section by globally analyzing a situation in which, although
selection operates against the altruist near both edges a stable potymorphism is
maintained in the interior of the interval (0,1). -
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Example D

.. In fig wasps, the males mmde the closed syconium of Ficus sycomorus work
together to make an escape tunnel for the females through the syconium wall
(Galil and Eisikowitch, 1968). In such a population it may be of some advantage
for a selfish male not to part1c1pate in the work, provided that there is a sufficient
nutnber of altruistic workers to accomplish the work without his help.

In this example it is reasonable to assume as usual B, = Aw, for all
n=0,1,.,N. We also assume the existence of a critical number KX

1 <K<N—-—lsuchthat

m=lob<l n<K,
_ =1 n>K. . (3.16)
We get ) & : :
 (Bols) = (Braalon) =A>1; .
hence, p = 0 is always stable and p = 1 is always unstable. Thus, we ﬁnd that

selection favors the selfish near both edges, a theoretical finding that seems to be - '

- contradicted by empmcal observations. Yet let us consider any frequency
0 <-p < 1 of the altruist in the population.
Employing (3.4), (3.5), and (3.6), we readily get

h(p) = Np — b éﬁ m (M) prg

and

ep) =2 {iN =5 3 @7 —m) (%) o,

m=0

(3.18)

We now show that for A sufficiently close to 1,f(p) > p. This means, that
selection favors the altruist whenever its frequency in the population is p.
T'o show this, we exploit the simple equality

N- :
Py (m) "N — m] = 0. (3.19)
. The sequence { pN m} is decreasmg with m and, therefore, the sum of the
first K terms of (3.19) is posmve since it is positive for K = N ~ 1

K

3 (M) pmgr-n(oN — m)

m=0

épZ( ) g-m(N —m)—q):( Mgt >0,

M=0 =10}
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From this, in conjunction with (3.17) and (3.18) we infer

Nog — b : maN—m .
) _ Ny m{,) e o
. X - N -
Pg(P) NPQ — bp Z (N _ m) (m) quNvﬂl
. N _ m= .
and for A sufficiently close to 1 (depending on p),
gh(p) > re(p)-
Hence .
ME) o (3.20)

T®) =gy + hay

CoroLLARY. For any mixture of altruist and selfish there is a critical value of
altruist—disadvantage, below which selection will favor the altruist.

- For any specific value of ), if it is close enough to 1, it is likely that two points
of equilibrium exist in the interior of the interval (0, 1): an unstable equilibrium
$1 with a low frequency of the altruist, and a stable polymorphism $,
(1 > $, > p,) maintaining a relatively high frequency of the altruaist, with a
~domain of attraction (# , 1). Furthermore, when X | 15,1 1, the stable frequency
of the altruist increases, tending to 1 and $, | 0 (the domain of attraction of B

increases).

]
r
[
|
f
|
I
|
!
-
l
|

0 % >y e— 1

L2

1

Fi1c, 3. Points of equilibrium and domains of attraction in an altruist-selfish poly-
morphism maintained in a population of the fig wasp. The arrows indicate the djrection

_of the selection forces. :
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4. Tue Cast of Two-DiMENsIONAL Po1sson DISTRIBUTION OF
Founbping  Groups

This case corresponds to the situation of a random diépersp.l of independent
individuals of both types over the available habitats. If » is the expected number
of founding individuals, either altrmstlc or selﬁsh being. settled in a single
habitat, then -

v‘nl+ﬂ

a(ﬁ, ?.z; p)=e" g

n! )

W) = hip) = e T et ) g @1

§0) = 8A) = ¢ T i lom ) g

L, n

‘ and thus

" i(p)
FOY =5 = 3y etp)

. om.a (R0l nl) malm, n) prgn
K Zonn (40 ml wl)[me(m, 1) + nfi(m, #)] p™g® '

We also. have‘r

ia(:m n; p) = —e? L m=0;n321
dP ¥ :P p=0H (n_l)! - :n/
1 .
=g i m =1
7! :
=0 . . otherwise,

4

Inserting this into (2.20), we see that p=0isa stable equilibriilm if

Z [8(0, 2 + I} — a1, n)] >0, 4.3) -
n=0
In a similar way - .
- P ' 0 4
—‘tdp a(m, n; 1.'))!111-1 —e TEE n=0m=1
. m41
e n=1
m!

= ' otherwise,
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Employing (2.21) we see that p = 1 is a stable equilibrium if

Z [a(m + 1, 0) — ﬁ(m, 1)] (44
L] )
“The parameter v, namely, the expected number of colonizers settllng in a
 single habitat, may measure the dens1ty of the colonizing population. Thus, if the
population is very spatce, and » is very small, the condition (4.3) for stabxllty of
" the selfish equilibrium becomes ,

ofl, O) - B(0,1) < 0(v)
“The condition (4.4 for stability of the altruistic equilibrium becomes
o1, 0) — B0, 1) > 0().

However, as a special case of this assumption (2.3) that a purely eltrutstlc
co]ony is better off (in terms of growth rate) than a purely seifish colony of the
same siz¢, we have

(1, 0) > (0, 1), R @.5)

. and thue, when the population is sufficiently sparse, p = 1 is always stable and
‘P = 0 is always unstable. In other words, selection then favors the altruist near
both edges. Furthermore, from (4.2) and (4.5) we get forall 0 < p <l

a(l, O)p

B =m0 g0 7P 49

Hence we get

. 'Tueorem 4.1. In a two-dimensional Poisson. process of colonization and
selection there is a critical density v* of the colontzing population tnder which
selection will always operate in favor of the altruist, whatever ils frequency.

Proof. As we have seen, for any 0 < p <{ 1 (including the edges) there is a
critical density »*(p) > O under which selection will favor the altruist when its
frequency is p, v¥(p) being finite or infinite. More. specifically, v = v*{(p) is a
positive solution of f(p} = p, if such a solution exists, ot o0 if such a solution
does not exist, But £,(#) is a continuous differentiablé function of both v and p;
thus, from the theory of the implicit functions we know that v*( ) is a continuous
function of p in any interval in whlch it is finite. Now, for a positive constant
¢ >0, :

L= vH(p) <o 0<r<n

_is a compact set (maybe empty) and v¥(p) is continuous on this set, If L, == ¢,
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then the chain of the proof of the theorem is complete. If L, 7 ¢, then v*( ) has
i 1ts minimum

* H %,
v* = minv*(p)

over L, . 'This.minimum is positive and satisfies the requirement of the theorem.
' Q.E.D.

Under a somewhat less general assumption we now show that if the dens1ty
of the population becomes sufficiently high, selection will” always-operate in
favor of the selfish type, at least (but, presumably not. only) near the edges.

For this, we first take over the assumption

Bom ) =damn)  (A>1) @5

for all m, > 0.

We further assume that the effect of any sifigle founder on the total growth of
its colony becomes negligible as the size of the foundlng group of the colony
-tends to mﬁmty More specifically, we assume

e | BOm N —m)— B+ 1, N —m — 1)
A o max, _ 8O, MY ‘

~0. @)

¥inally, dealmg w1th a situation in which the densuy of the population grows
indefinitely, it is natural to assume that S(0, N) does not tend to 0 as N — co.
We assume, less than this, that a value § > 0 exists- such that

B0, n).> 8"  for all # = 1, 2, e (4.8)

With these assumptions, we readily get

11mie—6v 5 (B0, 7 + 1) — (1,n)]—;-’;—

y-300
K=l

‘— 1 e B AB(O n + 1) _ B(li ﬂ)- B(Oan + 1) (Ivs)n .
=i [ R e e o

> A1 0. , . N (RN

t1e=(

Hen__ce, for large enough »,

Y B0+ - st w2 >0

=0

and condition (4.3) for stability of p = 0 is satisfied.
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in a similar way, we get
“0 V . H
Y. [Bn+1,0) — afn, D] - >0
C om0 . . ’ n

" which, being the inverse of (4.4), ensures instability of the altruistic equilibrium
~ p = 1. We have thus proved that for a density v sufficiently high, selectnon will
operate against the altruist near both edges.
Furthermore, for any 0 << p << 1 it may be shown that for a suﬂicxently large
v (say, v > #(p)), f(p) < p (the proof is technical and will be omitted), Therefore,
in the same way as we have proved Theorem 4:1, we get '

Tueorem: 4.2. In a two-dimensional Poisson process of colonization and
selection with assumptions (2.5), (4:7), and (4.8), there is a critical density #(D > v¥)
of the colonizing population, above which selection will always operate agamst the
altruist. .

Theotems 4.1 and 4.2 may have interesting implications for an ecogenetical
model wherein (unlike in our model) not only p, but also », changes from one
generation to the next (see, for comparison, Motro, 1976). If ecological forces
operate to stabilize the population around a value v(p), it is likely that such a
value will be an increasing function of the frequency of the altruistic type in the
population. Thus, any increase in the altruistic type in the population is also
likely to increase the density of the population. However, such an increase may,
in turn, impose selection forces against the altruist. In some cases, such a
situation may lead to a stabilization of a specific density with a polymorphism
of altruist and selfish. However, in most examples treated in this work, no stable
equilibrium of altruist and selfish may be maintained with any density of the
population. In these cases, the population is likely to be fixed on either the
altruistic or the selfish type, with a stable density determined thereby. However,
it seems possible that a similar situation may lead to a more interesting case of
stable fluctuations in the population—starting with a sparse population, the
altruistic type becomes fixed in the population, which thereby, increases in
density. If the increasse is large, selection forces against the altruist may then
cause a fixation or at least establishment of a selfish mutant with a resulting
decrease in density, and so on. A more rigorous treatment of such a situation is
now in development. :

For better understanding of the behavior of the population under conditions
of neither an extremely low nor an extremely high density, let us treat in more
- detail some of the examples being treated in the case of a fixed founding group. -
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Example A: Haldane's Linear Model
. In this case we know

m.-|~n )"_f’s,

a(m, ’n) = e_srﬁ(m, n) = lk—aIT (m .

where B > s (see.(2.10) and (2.11), and for companson, alsc see the development
of this mode] for a fixed sized foundmg group in Section 3)..

We get
-~ ] L e gt (PR L e
e LIEOn+ ) —ally )] S =& — et nz:_o(nJre—xT) l
' (4.10)
and .
e \BHK—9IT i [a{m + 1, 0) — B(m, 1)] P oo i ( m + 1 )Bls L
. m=0 i ’ ml m=0 L + el ml’
g | | - (@4.11)
Thus, from{4.3) and (4.10) it follows that p = 0 is stable if
v g 3 (L AP
o> e E(n+e_w) - @12
From (4.4) and {(4.11) it follows that p = 1 is stable if
v 8T i + 1 \Bhs ,_‘il__ -
e > e Z(n+ear) - | (4.13)

Having B > s, the nght hand sides of both (4.12) and (4.13) tend to zero
as T'— oo and, therefore, for a long enough time of incubation, selection always
favors the majority. For a short time of incubation, (4. 12) and (4.13) readily
become : ‘ _ '

o .
Cese(l- —”_sv—*i T) + o(T), . (4.12a)

e>e(1+ 228 1) Lo, . (@13)

where, as we recall, »* = v(1 — ) is the expected number of colonizers being -

settled in a nonempty habitat. We, thus, see that for a short enough time of

incubation, selection near both edges operates against the altruist if B < v*s

and for the altruist if B > »*s. With some difficulties, it also may be shown that -

the value B,*(T) for which (4.12) becomes an equality is monotone increasing
s _



., 296 , - ' COHEN AND ESHEL

~with T and the value B,*(T') for which (4.13) becomes an equality is monotone
~ decreasing with T Therefore, we have ‘

'COROLLARY. Subsﬁtﬂtm’g N by v*, all the results achieved for the Haldane's
Enear model with a fixed size of a founding group stays correct for a Poisson dzstrt—
: buted founding group. (See Figure 2 above.)

_ With few more difficulties, most of the results being obtained for the nonlinear

case, also may be generalized for a Poisson-distributed founding group. In this
case, the effect of the randomness in the size of the foundmg group appears to be
_ qualitatively unlmportant

Example B: 4 Nonpollutmg Altruist—The Linear Case

In this case, we know
B(m, n) =T oft, n) = ée“T/(a — n -} ne’),

(See (2.15) and (2 4), and see also the development of this model for a fixed size

founding group in Section 3.)
From (4.4) we infer that p = 1 is a stable equilibrium if

=T = getf(a — 1 -} e%)

of, equivalently if

5 < e In (i:—l;iii) — &%, (4.14)

Note that this condition is again exactly similar to the condition: achieved
for the case of a fixed-size founding group, Note, moreover, that the condition
(4.14) is independent of the density v of the population. This, however, does
not contradict Theorems 4.1 and 4.2 since neither condition (2.3) nor (4.8) is
satisfied by this model. (A purely selfish colony, starting with a single colonizer
may do better than a purely altruistic colony starting with a single colonizer,
provided the period of incubation is short. Indeed, in this case there is no point
in wasting energy on avoiding pollution, even from the standpoint of the entire

~ colony.)
It also can be shown that the equilibrium p = 0 is stable if

Dol el Ly

~ula--n(eT — 1)

> 1. (4.15)

.1 a
n=1

Moreover, it is shown that at least one of the’ condltmns 4.14) and (4 15)
_ always holds, and no protected polymorphism can be maintained. These results .
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again stand in agreementuwith the results mort easily obtained for the case of 2
- fixed size founding group. :

" The same phenomenon is, at least qualitatively, mamfested by an analysis

of the case of economy in exploiting environmental resources. However, the

expected conclusion that randomness in the size of the founding group does

not baswally affect the evolution of altruistic traits is incorrect.

DiscussioN

As already mentioned, our model is a more general and analytic form of
previously suggested ideas on genetic mechanisms for the maintenance by
selection of altruistic characteristics in a population (Maynard-Smith, 1964;
Fisher, 1958). We certainly do not suggest that most of the altruistic genes in
natural popiilations are maintained by a mechanism which could be described
by this model. The model is, however, a good representation of some quite
- commonly occurring natural situations, and we shall cons:der some of them in
- some detall

1. Dtstasefulness in Insects

Our model is a good representation of a situation in which adult female moths
or butterflies fly large distances and lay all their eggs within a restricted area.
The larvae have a limited mobility and stay in-the area. A strictly territorial
predator (a bird) is the only selective agent. The number of layings within each
territory is small. The number of founders is equivalent to twice the number of
layings since a fertilizéd female carries two sets of genes.

The degree of protection copferred on all the larvae in the territory is an
increasing function of the relative frequency of larva which have poisoncus
body fluids.. Experimental work with Monarch butterﬂy larva suggests that a
faitly low proportion (25-30 %,) of poisonous 1nd1v1duals is sufficient to protect
the subpopulat1ons {Brower, 1969). :

This situation corresponds, therefore, to the generalized Haldane model
‘with a highly convex benefit function (example A) with a possibility of a stable
polymorphism. In- fact, the Monarch population in the eastern and central -
United States is phenotypically polymorphic (only some 25—50 o of the larva
contain the poison, which has to be ingested by eating a poisonous food plant). '

Note that with respect to our model, a relevant subpopulation is the collection
of all larvae within the territory of a single predatory bird. The relevant number
of founders in such subpopulations is twice the number of females laying there.

~ For a given density of layings, the number of founders per subpopulation
obviously increases with the size of the territory of the predator. According to -
the analysis of the model, an increase in the size of the territory will decrease
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the tendency towdrd an evolutlon of distastefulness. The evolution of distaste-
fulness is not expected when the predators are nonterritorial.

Similarly, for a given size of territory and larvae density, a tendency of females
to distribute their layings over a wide area, larger than the bird’s territory, will
also increase the effective number of founders in each subpopulation, and thus,

hinder the evolution of distastefulness. This_result agrees with the conclusions
of Fisher (1958) that, in general, distasteful larvae hatch either from eggs laid in
_ batches by strongly flying moths or from singly laid eggs of poor fliers. The
second case implies a slow mixing of the population in adult stage. The evolution
“of distastefulness in this case cannot be fully explained by our model, and it fits
“better some form of neighbor effect (Eshel 1972). :

2. Cooperative Behavior in Bacteria

Active conditioning of the environment commonly occurs in many bacteria. .

In general, since individual bacteria are very small, the effect of a single cell on.
its environment is very limited. Effective conditioning of the medium depends,
therefore, on the joint localized action of many cellst This can allow a single
selfish cell in a group of altruistic cells to benefit from the conditioning without
contributing to it. Such cooperative characteristics can Be maintained in a
population according to our model if local subpopulations have a small number
of founders.

The following examples serve to illustrate the point. B

a. Secretion of extracellufar hydrolytic digestive enzymes, e. g  in the genera
Bacillus and Clostridium, Myxocaccus, ete.

b. Secretion of antibiotic substances, e.g., Bacillus, Pseudomonas, ete.,
and anti-antibiotics, such as penicillinase by Bac#llus and others.

¢.. Preventing the pollution of the medium with harmful metabolic waste
products by developing special nonpolluting pathways, e.g., acetyl:methy- °
carbinol formation in‘Aeiobacter, Bacillys, Serratia, etc., when the pH becomes
too low or when the concentration of waste products is high (Wood, 1955).

These genera are typical soil bacteria which occur in the soil in microcolonies
of possibly a few hundred cells, which are probably started by a small number of
founders (Jones and Griffiths, 1964). These conditions would lead to selection
for cooperative altruistic characteristics. On the other hand, none of these
cooperative characteristics is expected in bacteria which live suspended in
water or attached to the solid substrate in flowing water.

3. Heterogenetic Associations in Fungi

- In heterokaryotic fungi or myxomycetes and in aggregations of slime mold
amoeba, there is always the theoretical possibility for an unequal contribution
~ to the next generation by-different genetic types within the association. This .
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could lead to domination by those types whlch are able to contribute more than
- other types.
The “fitness” of any particular type within an association may very likely be
_ correlated with a decrease in the reproductive success of the association as a
whole. When the number of founders of an association is small, the “founder -
effect” will be able to maintain the altruistic genes in the whole population, in
spite of selection against them within each association,
In most heterokaryotic fungi, the optimal nuclear ratio is maintained in the
- mycelium even when the number of founders is large, and the period of incuba-
tion is long. This is the result of locdlized “hyphal selection” between localized
sections which have different nuclear ratios as the result of random assortment
during growth. Those hypha in which the nuclear ratios are close to the optimum
grow faster than these in which the ratios are further away from the optimum,
Thus, the average ratio in the whole mycelium is maintained near the optimum
(Davis, 1966). This mechanism is essentially similar to the founder effect, or the
neighbor effect, each hypha acting as a local subpopulation within the whole
-mycelium. A stable polymorphism results when the heterokaryon hypha grow -
-~ faster than the homokaryon ones.
*The founder effect must be important at the level of the whole colony in order
. td'eliminate nuclear types with a tendency to migrate preferentially into forming
comdlophores or into other reproductlve organs, Some such mechanism must be
~operating, since there is usually a very close similarity between nuclear ratios in
vegatative mycelia and in the conidia which they form (Davis, 1966).

In Myxomycetes and in Neurospora there is a rapid cytoplasmlc streammg
which preverits a localized genetic effect. The excessive multiplication of
“parasitic’” nuclei is prevented by the strict synchronization of nucleéar divisions.
Thus, the nuclear ratio is maintained at the level it had reached at the initial
formation of the plasmodium or mycelium. A few cases of parasitic genes have
been described, however: (e.g., Pittenger and Brawner, 1961). The founder
effect between colonies must be responsible for the maintenance of whatever
altruism there is in the whole population. :

In the cellular slime molds, the Acrasiales, there are pronounced altruistic
characteristics in the reproductive cycle, such as the differentiation of the mobile
pseudoplasmodium into fertile spore cells and infertile stalk cells. In this case
there is a problem, since Filosa (1962) has found that mass subculturing for many
generations did not increase the proportion of a mutant of Dictyosteliuri discoides
which tended to turn preferentially into a spore above 10-15 %. Under such
conditions of mass subculturing, this type of mutant could be expected to
completely dominate the population after several generations. It is possible,
however, that spores for re-innoculation were always taken from those fruiting
bodies which had ripened earlier and those would have had a lower, proportion -
of the mutant cells.
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4. Economic Utilization of Exhaustible Resources by Restricting and Restraining
' Competztzon

Restrained utilization can be expected when the founder effect is éffective. A -
good example of the founder effect is of aphids, in which a colony is often
founded by a single fertilized female. It has been shown that regulatory mecha-

" nisms maximize the steady production of adult aphids by the colony restraining
* the full reproductive potential of the insects and avoiding damage to the food
- plant (Way and Banks, 1967). :

Many other examples are known of parasites which do not caus¢ excessive
damage to their hosts (Hamilton, 1972). Assuming that restraint may slow the
~growth of the henign parasites, the benign character may be maintained jn the
population by the founder effect, since: quite often parasitation is initiated by a
very small number of founders. :

In general, conservative utilization of depletable resources may be expected
in territorial animals and not in mobxle animals or in large herds.

5. lee Fig Wasps i

These wasps pollinate the fig, and they lay eggs on]y in. the short styled
flowers, allowing the other flowers to make seeds, and in some species such as
Ficus sycomorus, the males have to tunnel through the wall of the syconium to
‘allow the females to escape. Each one of these characters is altruistic, in the sense
that not performing any of these functions by an individual décreases the
reproductive success of the group or of the whole species, while conferrmg an
advantage ‘to the individual.

-, Bince normal development of the fig syconium in most Ficus spec1es depends
on the existence of developing seeds, both pollination and the restricting of egg
laying to the short styled flowers can be maintained in the population by the
founder effect, since each fig is normally entered by a small number of females,
and almost each species of Ficus has its own specific pollinator (Ramirez, 1970).
Tunneling by the males also can be maintained by the founder effect.

Various types of parasites are also found, In F. sycomorus in East Africa,
Ceratosolen arabicus is the pollinator. Sycophaga sycomor! is parasitic on the fig
as it does not pollinate, but its males bore exit tunnels.

Other wasps which lay their eggs through the outer wall into the galls of these
two species depend on tunneling by the males of these two species, and thus
remain trapped inside if parasitizing too heavily (Galil and Eisikowitch, 1968).

The existence of such parasites suggests that the benefit function is highly
convex, for example, that successful tunneling does not require the cooperation
of the maximal possible nuinber of males, or that complete pollmatnon can be
achleved by a smaller number of females.

Remark. While rewsmg the manuscript, our attention has been called to -
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recent works by Wilson' (1975) and Matessi and Jayakar (1975), which are
- essentially developed on the same line of a4 témporal group—effect in a seasonally -
“mixed population. The reader is also referred to Matessi and Jayakar (1973)
and to Charnov and Krebs (1975). These works, although concentrating on

specific biological phenomena, employ the same general principles. '
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