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In a two-locus system of multiplicative fitnesses with a mixed selfing and
random mating, the maintenance of a polymorphism in each locus is not
independent of its maintenance in the other one.

INTRODUCTION

An intriguing problem in theoretical population genetics is what conditions
and limitation permit the analysis of a genetical structure of a natural population
at one or a few loci, while ignoring the possible interaction of these with other
loci. It is sometimes argued that for nonepistatic fitness expression and loose
linkage, the biological realizations are determined by the individual loci effects.
An empirical question, yet to be settled, is whether there is one locus (or even a
small set of loci) which is virtually in epistasis with all other loci. On a theoretical
level, however, it is correct that in any multilocus selection model of a randomly
mating population in the presence of loose linkage, the existence of a stable
polymorphism at a nonepistatic locus is independent of selection forces operating
at other loci (e.g., see Karlin, 1975). Moreover, if nonepistasis is defined in terms
of fitness multiplicity (which, in the case of relative fitness, seems to be the
natural way to define it), the very selection forces—and, thus, the limit allelic
frequencies at each nonepistatic locus—will not be affected by other loci.

This may not be the case in nonrandom mating patterns. It is definitely not
the case in mixed selfing and random mating systems. An interesting result in
this direction was first achieved by Strobeck (1977). As he has shown, a two-allele
polymorphism being stably maintained at one locus will cause an increase in the
frequency of heterozygotes at any neutral Jocus.

For a heuristic discussion of this result in relation to some new results, see the
last section. As it is shown, the quantitative result of Strobeck can be extended to
any two-locus multiplicative fitness model in which polymorphism is maintained
in both loci. More importantly, it is shown that in a general two-locus multipli-
cative model subjected to a mixture of selfing and random mating, the very
existence of -a stable polymorphism at one locus changes the conditions that a
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polymorphism be established at the other locus. More specifically, it is shown
that as the heterozygote advantage at one locus increases up to a certain value
(to be explicitly calculated), the range of parameters for which a protected
polymorphism is maintained at the other locus enlarges. As the heterozygote
advantage at the first locus increases above this level, the polymorphism-en-
hancing effect on other loci is reduced, tending to null as the heterozygote
advantage tends to infinity.

Moreover, it is shown that a two-locus protected polymorphism can be
maintained stably under conditions which are not sufficient to maintain a stable
polymorphism at each separate locus. Actually, this is always the case for a
high-enough rate of selfing and moderate values of heterozygote advantage at
each locus. For two interesting cases-—free recombinaticn and homozygous—
lethal rmitation with any rate of recombination—the quantitative conditions for
a two-locus polymorphism (which are different from the combination of condi-
tions achieved for each locus separately) are explicitly calculated. It is interesting
that in the special case of nonlinked homozygous-lethal mutants, an increase
in the rate of selfing above a given value (2 — 21/2) does not affect the conditions
for a protected polymorphism. For any rate of selfing above the critical one, the
condition will be of a geometric mean heterozygote advantage in-both loci being
above 21/2, This result stands in contrast to any result achieved for a one locus
model with a mixed selfing and random mating.

MATHEMATICAL ANALYSIS OF THE GENERAL MULTIPLICATIVE MODEL
wITH MIxeEp SELFING AND Ranpom MaTING

We assume a two-locus model of an infinite size population undergoing recom-
bination, mating, and selection in this order. Each generation, a proportion
o (0 <X & <7 1) of the individuals in the population propagate by selfing, indepen-
dently of their genotypes. The rest of the population mates at random (see, for
comparison, Benet and Binet, 1956; Kimura, 1957; Parsons, 1957; Karlin, 1968).
For mathematical tractability, we assume that recombination occurs only in one
sex, We assume a general rate of recombination between the two loci, although
part of the calculation is done under the assumption of free recombination. We
believe that the qualitative results are likely independent of these restrictions.
An important ingredient in the model is the assumption that selection operates
according to a multiplicative fitness model with heterozygote aduvantage at each locus.

More specifically, we assume the following fitnesses and relative frequencies
of the 10 genotypes:

AB AB AB AB Ab Ab Ab aB aB ab
AB Ab aB ab Ab «B ab aB ab ab
Relative fitness 1wy, W, waw, oy WW, WO, 0 Weoy 040,
Relative frequency  w, &, &y g X5 Xy ¥ Xy Xy ¥y

Genotype



MUTUAL EFFECT OF NONEPISTATIC LOCI 101

w; > 0y > 1 (i = 1, 2). Relative frequencies are measured after selection. We
are interested in conditions for a simultaneous maintenance of a protected poly-
morphism in both loci. For this end, one should check the stability of the four
monomorphic equilibria as well as of the four surface equilibria corresponding
to situations of one-locus polymorphism. In the case of 2 multiplicative model,
however, instability of the favorable fixation equilibrium ab (say, that of the
wild type) readily implies instability of the other three fixation equilibria (say,
the mutant monomorphisms). Moreover, we see that in an interesting situation,
instability of the fixation states also implies instability of the other edge equilibria.
We thus start by local analysis of the stability of the monomorphic equilibrium
ab. Denote x == 1 ——ELI ¥;. We are interested in changes in the relative
frequencies (#, ..., %) in the vicinity of the wild-type equilibrium state (0, ..., 0).
Discarding quadratic and smaller terms, we obtain the matrix of the state linear
approximation for the changes in the relative genotype frequencies (Table I).
Two eigenvalues of the matrix are immediately extracted:

Ay = ozy foyop; Ay = oyfoyey .

The other eigenvalues coincide with those of the matrixes

o &
1 4
By=o- 2o |
2(] - ), 5%
o o
1 4
Bg = ;— —a )
20 — o) w, 3 %
and
o (1 —4 ?‘) [c4 :IOE‘
B, = 0_1102 2(1 — o) w,mw, g;—“wlwa(l — ) 2—;{1‘ TR
0 T Ty o] —r) ww,
| 2 )

The first two eigen\}alues correspond to changes in the frequencies of AB[Ab
and AB/aB, respectively. These eigenvalues are easily seen to be smaller than
the largest cigenvalues of B, and B, , respectively. The matrix B, corresponds
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,busalm Tofa(m—1)T 0 Sot(u— ) —1) 0 . omu{z—Y) 0 0 0
14 4 14 14 ,
Tow oo 0 Yon(s—1) 0 Youm Tom 0 0
0 0 g T-DU-D WaEenr o) o wae-p o
[4 T
0 0 0 e r— 0 P 0 0 0
J _r 3 r_ = i
0 0 Zom to(a— o o Soum 0 Fon 0 I
0 0 0 ot % 0 wnu—g) o wiae—y) ume—1) Fantaa{o— )z
»—7 ©x—7
T
] 0 0 0 0 -0 Tom ] 0
z
0 0 0 0 0 0 0 Py 0
14 4 ¥ ¥
0 0 0 e 0 o(4—1) © 0 z
1 a18v.L
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to changes in frequencies of the types 4b{4b and Abfab. The matrix B, corre-
sponds to changes in the frequencies of aBfaB and aBfab. The matrix B,
corresponds to changes in the frequencies of AB/AB, AB[ab, and aB[Ab (the
homozygous double mutant and the two double heterozygotes).

Let +; denote the largest real eigenvalue of the matrix B; ({=1,2,3). By
Frobenius’ theorem, it follows that these eigenvalues are also the largest in
absolute values. For i = 1, 2, it is readily shown that

: oo By oy —a)

P > 1 if and Oﬂly if o = m = K(OC, 0'1), (2.1)
. . Wy Aog—a)

123 -2 1 lf aﬂd Only lf 0—2 - m = K(OC, 0'2). (2.2)

Not surprisingly, these are exactly the conditions for a polymorphism being
maintained stably in each locus separately. Thus, conditions for one-locus
instability of the monomorphic states are sufficient for instability of the two-
locus monomorphic state. A study of the matrix By , however, specifies conditions
for which py > 1 and g, , pg << 1. Under these conditions, the wild-type mono-
morphic equilibrium is unstable, and all other monomorphic equilibria are even
more so. Moreover, in this case, having w,/o, < K(e, 0,), 7 = 1, 2, one can resort
to one-locus analysis to show that no surface equilibrium corresponding to
fixation at only one locus can be stable in respect to allelic frequencies at the
other locus. Thus, when 1, , g, << 1 but s = 1, both the A4 and the B alleles are
to be maintained stably in the population, yet none of them can be maintained
alone. Quite surprisingly, this result is to be manifested even under the condition
of no linkage (as well as of no biological epistasis) between the two loci, with
linkage disequilibrium tending to zero. Heuristically, it may be explained on the
basis of a statistical bias imposed by selection in one locus, on the frequency of
surviving heterozygotes (though, without linkage disequilibrium, not directly on
the alielic frequency) in the other locus.

Starting with the most interesting case of free recombination # — 3 By
becomes

o & &
8 8
By (%) = clc 2(1 — o) w0, :; m W0, : < o0, Wy
192
0 oty o W,
4 4

and the eigenvalues of B, are the solutions of the equation
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‘ 3 ®
@ — Oy 0% = =
_ ' v 8 , g
s : 1 2 —a 2—a.,
By —Ix| = | 21 — w) wywwy ——— 0y, — 00X e 0
l 3 ] 0.13023 ( ) 1%a 4 1% 1Y2 1 1%
. . : o o 0 : Lo
0 7 7 P 7 Y1 — 010p%
. o
o — 10 =
_ P 182 8 _0
o 0y2a,? " Wty e
21 — «) wywy e

(The second equality is obtained by subtracting the second column from the
third one and then adding the second row to the third one). p, is, therefore, the
largest eigenvalue of the matrix

o

1 * 8
7% 2] — o) e, 9%2’”;%
Hence, py > 1 if eithet
@+ 2 > 200, | 2.3)
or
1 Wyl (1 -1 «) wyow,
010 (0£ + 2 ) > 14 40,202

which is equivalent to

WU, -~ 4(0‘10'3 — 01'-) — Kg(a,-c]_o‘z), . (24)

o0y~ 2090y — oo+ 1)

say.
But it is readily shown that with wyw, > o105 2= 1, 0 <{ « < 1, (2.3) implies
(2.4). Hence (2.4) is a necessary and a sufficient condition for g, = 1. In this
case we also have | By — I'| > 0.
We thus conclude that a necessary and a sufficient condition for instability of
the wild-type equilibrium is that at least one of the inequalities (2.1), (2.2), or
(2.4) holds. But for all oy > 1, o, > 1:

K(0, o) K(0, 03) = 0 << 2 = K0, 010,) = Ky(1, ny0) < 4 = K(1, 03) K(1, o).
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‘From the continuity of the functions X and K , we therefore infer that for a
sufficiently high rate of selfing o - '

Koloy 103 5 3) < K(w, 01) Ko, 73) (2.5)

and vice versa if o is sufficiently small.

- For a low rate of selfing (depending on o, and oy), we therefore conclude that
the wild-type menomorphism is unstable in respect to two-locus rionepistatic
mutation only if it is unstable in respect to the occurrence of the mutation in at
least one of these loci. (The reverse of condition (2.5) means that if p, , p, << 1,
then indeed gy < 1.)

If, on the other hand, the rate of selfing is high encugh, condition (2.5) indi-~
cates the existence of a nonempty range of values oty and =, for which

) w,;[ozi < K(O’,, O'i), i == 1, 2
and, therefore, p), uy << [, but
Wyyfoyoy > Kol 0y03)

and, hence, uy > 1. As we have seen, this implies instability of all the other
corners. Moreover, u; , p, << 1 implies that no equilibrium exists on the edges.

CoroLLARY. With free recombination and a high enough rate of selfing a
protected polymorphism can be maintained in both loci simultaneously when neither
one-locus protected polymorphism can be maintained.

Quite expectedly we now see that linkage only enhances simultaneous poly-
morphism in both loci (indeed, it does not affect the maintenance of polymor-
phism in each locus separately), More specifically we show that for any rate of
recombination 0 <7 << 4, a critical value Ky(s, o0, , r} exists, Ky(o, oy, 7) <
Ky(o, ¢109) = Ky(er, 0405, 1), such that if

W tW,/0y05 > Ko, oy, r) (2.6)

then the wild-type equilibrium is unstable.
Recall that the wild-type equilibrium is unstable if s = pa(r) > 1 and py(r)
is the largest (positive) solution of the equation

| By(r) — Ix | = Q.
Since
lim | Byr) —Ir | = —oo,
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wa(r) =1 if (but not only if) | Br(r) — I| >0, A straightforward calculation
indicates that | By(r) — Ix | is a linear function of r (all nonlinear terms -are
cancelled out). Thus :

I

| By(r) — I'| = (1 — 2)| Bs(0) — I'1 + 2r | By(}) — I|. @7

As we have seen, | By($) — I'| > 0if and only if wmyfo0y > Ky(w, 0,0,). For
r =0 we get: S

@ o .
T90g - 40'10'2 0
S T oWty 2 — awywy
| B0y —I'} = 2(1 o) Py 7 o0 1 0
DWWy .
0 0 20y0,

Wty
G0

— o () T 0 0oy — ] D 2y — )

4 040,
which is positive if and only if

2w, 2oyoy — o)
& 000 T (2—a)oyoy — o

(It can also be shown that the right inequality is a necessary and a sufficient
condition for uy(0) > 1.) But

2oy03 — ) 4(0y0; — @)
2—a)ooy —a " 200, —ofa+ 1)

= Kz("f: 010,).

It therefore follows from (2.7) that for any O <{r <} there is a value
Ky(o, ay0, ., 7} in the interval S

[ 2 %EU:)IZU;:)_ o Koo, 0'10'2)]

such that if
2w,

E = -0:;; - Kz(d, o0y f)

then | By(r) — I'| > 0, py(r) > 1, and the wild-type equilibrium is unstable.
But if it is unstable for given values of @, /o; and wy/e, , it will indeed be unstable
for higher values of the relative fitnesses of the heterozygote mutants and we get
Ha(r) = 0 for all

wytbyfoyoy > Kyw, oy0, , 7), (2.8
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In.the special case where both mutant alleles 4 and B are lethal in their
homozygous form, K, can be calculated explicitly for all 0 <7 < 4. In order
to study this case we let oy, 05— oo but keep the ratios w;fo; (namely, the
heterozygote advantage at each locus) fixed. By omitting rows of zeros (corres-
ponding to lethal genotypes) together with their corresponding columns, the
matrix 4 becomes;

(2 — a)(1 — 1) wywy

(2— of) euyavy
20,0, 2040, 0 0
IR ol — 7) a0,
—_—= —_— % 0 0
A% — 2oq0 20y0,
0 (1 —oa)ay 2 —a)w 0
0’1 _' 20’1
0 (l_m)wﬁ 0 (2—&)502
oy 20,

with eigenvalues

ty = (1 —%)ﬂ,

51
e (-5
o = G (L= 7 o (L — 271 — )t 4 r2),
o = o (1= = (= 2r)(L — a5,

Conditions (2.1) and (2.2) become;

. - wy 2 T
g > 1 if and only if o > i=1,2). (2.1a)
Condition (2.4) becomes
Wity 2 = Kyfo, 00,7).  (2.40)
P—r 4+ (I —2r)(1 — o) + 79172 CA )

OO0y

Kyw, 00, 7) is monotone increasing with 7, from
Kooy 00, 8) = 2 = lim, g, .o Kyfer, 540,).

Thus, for free recombination, if « <2 — 212, the wild-type equilibtium is
stable if and only if

Kye, 0,0) =2/(2 — o) to

Max(ﬂ,&) < 2305’

0 oy
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which is. the exact condition for stability in each locus separately. For
o > o -~ 2172, an additional requirement is needed: . ‘

Wy
010

< 2

It is quite interesting that this additional condition is independent of any further
increase in the rate of selfing. Thus, for w, /oy == w,fo, = we, the condition for
a protected polymorphism becomes

2 . 12
) — 212
W 2—a if 022
[+]

> : (2.9)
2172 a2 — 2

COROLLARY. (i) For a low rate of selfing o << 2 — 2M12, the one-locus hetero-
aygote advantage required for the establishment of two nonepistatic nonlinked homo-
xygous-lethal mutations with the same heterozygous effect is equal to the one-locus
heterozygote advantage wlo > 2/(2 — «) needed for the establishment of each of
these mutants separately. This critical heterozygote advantage is increasing with c.

(i) For a high-enough rate of selfing, o == 2 — 212, the required one-locus
heterozygote advantage becomes independent of any further increase in the rate of
selfing, being 2112 for all @ > 2 — 22,

We finally investigate the case where g, << 1 but u, > 1, i.e., the situation
where a polymorphism could be maintained in the locus B but not in the locus 4
separately. In. this case we know that (independently of u;) the wild-type equili-
brium is unstable and so are all other corners. However (unlike in the case
where wp; << I, pp <1, g > 1), there is an additional adge equilibrium
% = (£;,..., &) corresponding to a polymorphism at the B locus alone. We
assume fixation of the favorable « allele at the other locus. (It is readily
shown that instability of this equilibrium indeed implies instability of the
edge equilibrium corresponamg to fixation of the less favorable A allele.)
Equivalently we assume Zi 1 #; = 0, while &; and 4, satisfy the equations

=2 (8 +32) +o o+, (2.10)
£ = A28 a1 — o) (4, + )(1 — iy — —‘%9-) e, (211)

o

w = o+ (o — o) 201 — ) (8 4 221 — 4, — ) 4 5

+(1~#02)j(1—a)(1—x8 gf*) +o¢(1-—-£3—3f9)!o-1. (2.12)
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The genetic frequencies among the newborn offspring of the selfing parents will
be

£y == &y -+ (£,/4),
ﬁs’ = ﬁnlzv R

with an average fitness of
E © 34 -
Wy = 1+(w2_02)79+(1H"a)(l_ﬂs_Tg‘)‘ﬁ- (2.13)

It is readily shown that for all 0 < & << 1, w, < @. The frequency of offspring
born to selfing in the entire population will therefore be

of = wofw <o : - (2.14)

Finally, it is not difficult to show that the point & will be unstable in respect
to introduction of the mutant 4 if and only if

. ' wyfoy > K(o, o). O (15)

(The arguments are exactly the ones given for a one-locus situation with o* as
the rate of selfing.) But since K(, o,) is monotone increasing in o, K(a*, a)) <<
K{(o, o) and the condition (2.15) for instability of £ is weaker than the condition
(2.1) for a one-locus polymorphism.

COROLLARY. For any rate of selfing 0 < « < 1 (though not for o =0 or
o = 1), and for any rate of recombination 0 < r < 3, a stable polymorphism at one
locus always weakens the condition Jor a protected polymorphism at any other,
nonepistatic locus,

Again, it appears that a substantial heterozygote advantage in one locus, by
imposing selection in favor of offspring born to random mating, weakens the
relevant effect of selfing in all other loci. A natural question is thus whether a
high-enough heterozygote advantage in one locus can practically null the effect
of selfing in other loci. As we see, the answer to this question is always negative,
Morecover, it is shown that, as the heterozygote advantage in one locus increases
above some critical value, its polymorphism-maintaining effect in any other locus
is reduced, tending to null as the heterozygote advantage tends to infinity.

In order to illustrate this phenomenon in quantitative detail, we analyze the
symmetric viability case o, — 1. In this case, a necessary and a sufficient condi-
tion for a polymorphism maintenance at the B locus is 2y > 1. From (2.11)-
{2.14) we then obtain

2wy — 1) 4,
e (o iy . @19

o¥
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and

Ll —a— (@t ] — o) — da(w, — RS

fo=1 20wy — 1)

(2.17)

(See, for example, Karlin, 1968). From (2.16) and (2.17) we readily get

do* ol — (e + 1 — o) — Aoz, — 1)]12
dwy, 2R4+(1 —a+ “ﬁs),(wa — 1

X By — 5 — o — ((wy + 1 — o) — dow, — 1), (2.18)

This expression is negative for 2o, <C 2 4 (1 — «)*/2 and positive for sy > 2 -
(1 — )2 A maximal polymorphism-maintaining effect of a heterozygote
advantage in a symmetric-viability locus is thus achieved for the critical hetero-
zygote advantage

w* =2+ (1 — o)tz (2.19)

This value is hard to estimate in the general, non-symmetric-viability case.
Yet for all o, — 1, it follows from (2.8) and (2.9) that

£y 1 as  wyfoy—> 0.
Hence, from (2.11), (2.12), and (1.13) we get
o* = weafw— o as  wyfop> 00 {2.20)

and the polymorphism-maintaining effect of the extremely high heterozygote
advantage is reduced to null. For heuristic understanding of this phenomenon,
note that in this case of close-to-lethal homozygotes in the B locus, almost all the
population will be heterozygote in respect to this locus. Hence, half of the
offspring of random mating will die, compared with almost half of the offspring
of the selfing—and the difference in the average fitness between offspring of the
two mating systems becomes negligible.

3. Discussion

It is known that in a random-~mating two-locus multiplicative model with free
recombination, a stable two-locus polymorphism exists if and only if it can exist
in each locus separately. As shown, this is not the case in a system with mixed
selfing and random mating. In such a system, a stable polymorphism in one locus
may enable the existence of a protected polymorphism in another locus which is
neither linked nor epistatic. Moreover, a protected polymorphism can be main-
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tained in the nonepistatic loci simultancously when it cannot be maintained in
either of them separately.

Intuitively, this phenomenon is explained on the basis of selection imposed
by a heterozygote advantage in one locus in favor of offspring born to random
mating, This, in turn, creates a statistical effect, similar to selection in favor of
heterozygotes in other loci. This argument is also suggested as an explanation
to the interesting phenomenon first revealed by Strobeck (1977). As he has
shown, in a system with mixed selfing and random mating, heterozis at one locus
increased the frequency of heterozygotes in another, neutral locus; this result
motivated the present study. The result of both works (see also Eshel, 1977)
leads to the same unfortunate gpnclusion that, unless we restrict ourselves to a
system of a complete randoin mating, any investigation, either theoretical or
empirical, of one locus or even of a finite set of loci, may be unsuitable, And it
may be so even if one can assume that the investigated locus (or loci, or even a
complete chromosome) is neither linked to nor biologically interacting with any
other loci. .
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