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On the Survival Probability of a Slightly Advantageous
Mutant Gene with a General Distribution of Progeny
Size— A Branchmg Process Model*
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Abstract. A ‘branching process method is employed to study the survival
probability of a slightly advantageous mutant gene with a general distribution

“of progeny size in a large population. A counter-example to a classic
proposition is given. A somewhat weaker result is proved,
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1. Introduction

The extinction probability of an advantageous mutant gene in a large population
depends not only on the fitness of the mutant, but also on the distribution of its
progeny size, especially (Gillespie, 1974), on its variance. In the case of a Wright-
Fisher model (see Fisher, 1930) with a slight advantage 5 > 0 for the new mutant,
the extinction probability of the mutant is well known to be

u(s) =1 — 25 + ofs). (1.1)

This approximation is obtained either by a diffusion model (e.g. Kimura, 1964)
or by 2 model of a branching process with a Poisson distribution of offspring (c.g.
Ewens, 1969). When the distribution of offspring is arbitrary, it has been
conjectured by Haldane (1928) and others, that the survival probability of a slightly
advantageous mutant gen¢ is proportional to the ratio between the selective
advantage of the gene and the variance of its progeny size.

Employing a branching process with a general generating function () =
of the progeny size, Ewens (1969) has atiempicd o show that the extinction
probability of the process, namely the smallest positive solution of the equation

flw) =u (1.2)
(e.g. see Harris, 1963}, is approximated by
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2s )
u(s)=1—;+o = (1.3)

where EX =14 s> 1, VarX = ¢2,

This result was obtained by replacing the left side of (1.2) by its three-term
Taylor expansion’around # = 1. Unfortunately, this method does not generally
guarantee a valid approximation of the solution of (1.2), even if this solution is
known to be close to 1. Moreover, we see that even if s/¢? > 0is as small as we wish,
w(s) may not be close to 1 at all. In §2 we prove, on the contrary, that for any values
g* > 0 and 0 < uy < 1 and for any s > 0 as small as we wish, there is a Galton-
Watson process with 1 - sand o as the expectation and variance of the number of
offspring born to a single parent and with u, as the extinction probability of the
process. '

1t is shown, however, that if the whole distribution of the progeny size of a single
parent is changed in a “smooth” way so that its expectation grows from 1 to 1 + s,
then the approximation (1.3) is valid.

The main purpose of this work is thus to find quite general conditions, hopefully
fitting most conceivable biological circumstances, under which the approximation
(1.3) is mathematically valid.

2. Counterexamples of the Approximation (1.3)

Example 1

Proposition. For any given values of 6> > 0 and 0 < uy < 1 and for any value & > 0
sufficiently small, there is a Gaiton- Watson process with | + ¢ and o* as the mean and
the variance of the number of offspring born fo a single parent, and with ug as the
extinction probability of the process.

Proof. Put
o2 —c+e2—(N—D(N-2)p
Po= 5 x @2.1)
62 +e+e*— NN-1 :
P = ( )PN’ 2.2)
2
pi=1—po—p2—pu (2.3)
where
' (6* + (1 — up)® — e(1 — ud)
Pn ° 0 (2.4

T (V= DV = 2)(1 — ug) — 2LV — 2o — (N — el + ul]

and N is any natural number sufficiently large as to assure that thé denominator is
positive {note that the denominator tends to cc as N — o0).
If & > 0 is sufficiently small, then the numerator of (2.4) is also positive and

py >0 2.5)



O the Survival Probability of Advantageous Mutants 357

Assume further

1-”0

< 2.6
e 5 (2.6)
‘From (2.4) it follows that for any fixed values of u,, &2, and ¢
1
lim (N — 1N — py = lim N(N — Dpy =a? + 2 — ¢ T o .
N-w N-w 1 - Up
Hence, from (2.1} and (2.2) one readily gets
lim pg == o > 0, 2.7
Nowm — Uy
. &
lim p, = > 0. ' (2.8)
N-wm — Uy
From (2.3) and (2.6} it follows that
1+
lim p; = Lim (1 — po — ps — p) = 1 — — % 5 0, 2.9)
N N- o 1 — Uy

Thus, for & > 0 sufficiently small and N sufficiently large we know that
J@) = po + piu + pau* + pyu® (2.10)

is a probability generating function. From (2.1), (2.2), and (2.3) (independently of
pw) it follows that the mean of the distribution generated by (2.9) is

m=FfDN=p +2p2+Npy=1+z¢ (2.11)
The variance of this distribution is
SO+ ) = LD =po(l + 6 + p1e® + pa(l — )* + py(N — 1 —¢) = &

(2.12)
Moreover, by a straightforward calculation we get
2[f(u) — u) = 2po(1 — 1) — 2pyu(l — u) — 2pyu(l — u¥™1)
= (o2 + &)1 —u)® — e(l — u?) — {(N — I)(N — 2)(1 — u)?
— 2[(N — 2y — (N — Du® + u"]}py
and for u = uy, it follows from (2.4) that
Jg) — g = 0.

But the equation u = f{(u) has, at the most, one solution at the interval (0, 1).
Thus, u, is the smallest positive solution of this equation and u, is the extinction
probability of a Galton-Watson process with f(u) as the generating function of the
number of offspring born to a single parent.

Indeed, example 1 is not intended to describe any realistic biological situation. It
is suggested merely as a mathematical tool to disprove (1.3) as a general
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mathematical statement. It manifests the fact that the inaccuracy in (1.3} may not be
minor; it may be of any order of magnitude.

Note, however, that regardless of immediate biological plausibility, the
generating function (2.9) cannot possibly correspond to the distribution of copies
produced by a single, rare (heterozygote) mutant in a randomly mated diploid
population. The generating function of such a distribution must indeed be of the

form . .
1
S) = co( : u) (2.13)

2

where @ is a probability generating function, corresponding to the total number of
viable offspring (mutant or non-mutant) reproduced by a single mutant parent. A
question raised by the referee is, thus, whether deviations from (1.3) are limited to
special, haploid situations. The following example is less dramatic, but somehow
more realistic, satisfying (2.13) and therefore fitting to both haploid and diploid
sitnations,

Example 2

Let the distribution of copies reproduced by a single mutant be determined by the
generating function

J) = (1 — 8t =1 4 5o+ =1, (2.14)

This corresponds to a situation in which any mutant individual can fall into one out
of two environmental situations. In each case it is bound to reproduce copies
according to a Poisson law. However, the expected number of copies willbe 1 + ¢in
the first, and 1 + A in the second environmental situation.

Assuming 0 <& < 1 and A > ¢ > 0, it is readily shown (and quite intuitively
clear) that the mutation survival probability is an increasing function of both § and
A. Especially, we know that it is at least 2z + 0(g), which is the value for § = 0 (or for
A = ¢). But the mean and variance of (2.14) are

m=1+¢+l—¢g) (2.15)
and
g =m 4 51 — i — )2, (2.16)

respectively. Hence, if A is very large and & is very small, so that 16 - 0 and
A28 — oo, thenm — 1 + ¢, 02 — oo, and (1.3) yields an approximation o(e) as much
smaller than e as we wish for the mutation survival probability. '

Moteover, for any fixed 1 > § > 0 (not necessarily close to 0), and for A large
enough, the right side of (2.13) still tends to 0 as A — oo, while the smaller positive
solution of f(u) = u is readily shown to be smaller than 1 — §, and the mutant
survival probability is, therefore, larger than &,

Remark. Both Examples 1 and 2 correspond to situations of rare mutants,
propagating moderately most of the time, but being extremely successful under very
rare conditions, admittedly not" a very common situation in nature. Exact
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conditions for (1.3) to hold are studied in the next two sections and, it is suggested,
cover most commeon natural situations,

3. A Model of Smooth Changes in the Distribution of the Property Size

We start with two examples of natural situations in which continuous changes in
fitness are determined by specific continuous changes in the entire distribution of
the progeny size of a single parent.

(i) The Case of an Increased Viability

If the effect of a new mutant is expressed in a change in the viability of its carrier,
then the distribution of the number of viable offspring born to a single mutant
parent is conveniently given by its generating function

Yat)) = (1 — o + o), @3.1)

where
W) = Z Pkuk
k=0

is the probability generating function (p.g.f.} of the number of offspring newly borh
to a single adult individual.
The fitness of the mutant can be written as

1 + (o) = aaf’(1) (3.2)

and small changes in the mutant fitness are determined by small parametric changes
in the generating function .

(i) A Case of Monotone-Likelihood Ratio Family of Progeny Size
Let (i) be any non-degenerated p.g.f. and let y(x) < oo. Then

Y(ows)
4CY)

isalso a p.g.f.. {if,(1)} represents a family of distributions, increasing geometrically
in monotone likelihood; and the expectation 1 + s(e) is, therefore, increasing with
o. The positive and negative binomial distributions of a given order as well as the
Geometric and Poisson families of distributions are all represented by the family-
structure (3.3). Moreover, any probability g.f. belongs to some family of this sort.
(For any g.f. i just define i, as in (3.3) and set o = yr.)

We now generalize these two examples to a more general structure, hopefully
covering most natural situations of continuous changes in fitness.

For oy < o < oy (possibly a; = o), let

W) = (3.3)

Yu) = 3 pilou
k=0
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be a probability generating function with
o0
k2p{a) < 0.

k=0

We assume

pr()=1 ie, EX,=1 where () =E™  (34)

yu()=0>>0. (3.5)
(3.6) The expectation /(1) = | + s(z) is an increasing function of a.

(3.7) Forall0 < u < 1 and oy < « < a4, there exist continuous second derivatives
(82/00®)Wr, () and (8%/0u da)r(u) (including the appropriate left and right
second derivatives at the edges). '

Note that the assumptions (3.4)—(3.7) are all satisfied by the families ()
described in the two examples given above.

Weé are now interested in the extinction probability (o) of a Galton-Watson
process with an individual progeny generating function ,(x) when « is close to e
or, equivalently, when s(x) > 0 is close to 0.

Since 5 is a continuous and increasing function of & with continuous second
derivatives over [, ), a continuous change in the parameter o readily yields a
family {¢s(1)}o<s<s@ satisfying the conditions

Don(®) = (1) for all op S o < 0ty O<uxl, (3.8)
bolu) # u, (3.9
¢ =1+s. | (3.10)

(3.11) The second order derivatives (82/05%)¢,(u) and (8*/0u 8s)¢p,(u) (including left
and right second order derivative at the edges) exist and are continuous for
al0Lu< 1, and 0 < s < s{oy).

4. Analysis of the Meodel

We know that for all s = 0, the extinction probability of a Galton-Watson process
with the individual progeny generating function ¢ () is given by the smallest non-
negative solution u = u(s) of the equation

1= (@), @.1)

We also know that for s = 0, (4.1) has a double solution #(0) = 1, while for any
s > 0it has a unique solution u(s) in the interval (0, 1), with an order of multiplicity
1. By implicit differentiation, (4.1) implies

d
W =) + Pl @2)
Ay

For any superctitical g.[. ¢(u), if « is the smallest non-negative solution of
u = ¢(u), then ¢'(1) < 1. Hence, for all s > 0, (4.2) may be written as
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é
—bs() |
ur =, ' 4.3
S @3
But from ¢(1) = 1, it follows that for all 5 = 0,

8 d
ﬁffh(l) = 5;4’)5(1) =0,

(8/3s) p(V} and (9*/05*) §,(V') are continuous functions of both V and s. It is
readily shown that lim,, o #(s) = 1, otherwise there is a value § > 0 and a sequence
5; = Osuch thatu(s;}) < 1 — §. In th1s case, it follows from (3.10) and the convexity
of ¢g(u) that forall 1 —d s u<'1

Z ¢o(W) Zu— (1 —ws

thus, as { — oo, we have qb,,(u) —u on one hand, and ¢, (1) — ¢() on the other
hand, in contrast to (3.9). We therefore, have

¢ (us)] = llm S dslul®)] = 4.4)

.5'10
Because ¢y(1) = 1, both numerator and denornmator of (4.3) tend to 0as 5|0,
Now since (3/0w)p(1} =1 + s

2

s 9400 = @)

is obtained in the same way as (4.4). Employing the I'Hospital theorem with (4.4)
and (4.5), (4.3) becomes

52
11ma 5 & (1)

w'(0) = 7
lim —— () + ¢ (1)2'(0)
sio Ouds

u'(0)
=—— 4.6
1 + ¢%u'(0) (4.6)
where #'(0) stands for the right derivative of u(s) at s =0 and ¢2 = ¢o(1)
EX? — | = Var X,.
The solution #'(0) = 0 of (4.6) corresponds to the constant solution u(s) = [ of
{(4.1). The other solution

w0y = — 4.7

=)
a
corresponds to the smallest relevant solution of (4.1) over s = 0. When s > 0 is
small, the survival probability of the process is therefore given by

2s
l — u(s) = g + o(s) (4.8)

independently of the family, provided that this family satisfies the conditions
(3.1)—-(3.4).
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5. Summary

A Galton-Watson process has been employed to study the extinction probability u
of a slightly advantageous mutant gene. The widely accepted approximation

25 . .
1—u=?+o(s) (1.3)

has been shown to be mathematically invalid. However, it has been proved to be
valid for a rather rich set of families of progeny distributions, and (1.3), even though
mathematically incorrect, may be accepted for most conceivable biological
situations.
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A general expression for the inclusive fitness of haplediploids is developed.
The optimal investment of colony resources in eusocial Hymenoptera is then
derived by maximizing the inclusive fitnesses of workers and queens subject to
an ergonomic constraint, Because of assymmetries in the coeflicients of related-
ness, there is a genotypic “conflict of interest” between the queen and her
daughters. We show how the inclusive fitness formula can be used to investigate
this situation and to determine who is controlling the colony investment policy.
Finally, we show that the optimization of inclusive fitness is consistent with the
equilibria of a detailed genetic model,

1. INTRODUCTION

In a recent paper, Trivers and Hare (1976) called attention to the possible
role of worker-queen conflict in the evolution of eusociality in Hymenoptera.
In particular, they concluded that in monogynous ants the investment of
colony resources should be near a ratio of 3:1 in favor of females, a conclusion
which their data appear to bear out. The importance of this work lies in its
support for the genetic theory of the evolution of eusociality in Hymenoptera
first proposed by Hamilton (1964). However, Trivers and Hare arrived at
their deductions largely by verbal reasoning—occasionally a treacherous path
in evolutionary theory. In this paper we would like to take one step toward
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quantifying their arguments, and in so doing perhaps illuminate some of the
difficulties that must be surmounted before a comprehensive theory can be
developed.

One of the principal difficulties in modeling the conflict between the workers
and the mother queen lies in defining the inclusive fitness of each party. As
we shall see, the “value” of a male or female offspring depends crucially on
the current sex ratio in the community (i.e., collection of colonies). Thus, the
colony population dynamics are tied inextricably to the dynamics of the whole
community, so neither can be studied independently. Trivers and Hare confront
this dilemma by restricting their attention to steady-state communities and
invoking the sex ratio argument of Fisher (1958) (cf. alse Hamilton, 1967)
to assume that the community sex ratio has equilibrated. Unfortunately,
it is difficult to justify Fisher's argument quantitatively; however, simple
models’ which assume that the sex ratio is controlled by a single autosomal
locus appear to support the. conclusion in diploid populations (Eshel, 1972;
Bodmer and Edwards, 1960; Spieth, 1974). Hamilton (1972) advances a verbal
argument for a 1:1 ratio in haplodiploids. The community sex ratio plays
a prominent role in our considerations here as well.

In Section 2 we define inclusive fitness of the workers and queens for steady-
state community. 'T'his definition depends on obtaining an expression for

“reproductive success’” which reflects the community sex ratio.

In Section 3 we formuiate the conflict between the workers and queen In a
game-theoretic context and discuss the notion of competitive (Nash) equilibria
in a general framework. In Section 4 a few special competitive sitvations are
examined and the equilibria are computed. This yields the “optimal’’ investment
and sex ratios which Trivers and Hare use to determine who is controlling the
colony investment policy.

A larger issue in population genetics underlies our modeling efforts here.
Throughout our discussion we assume without proof that natural selection
operates so as to favor genes which increase an individual’s inclusive fitness.
While such optimization arguments are common in the ecological literature,
it is by no means clear that natural selection can be viewed as an optimizing
process in the long run. Indeed, it is easy to construct models in terms of gene
frequencies for which no extremum principle can be constructed. Nevertheless,
gsince it is virtually impossible to track genotype structure for polygenic charac-
ters, one still hopes that macroscopic quantities can be constructed which will
give the general trend of evolutionary processes while averaging out the micro-
scopic dynamics of gene frequencies. In this connection it is known that the
classical fitness function of population genetics provides an extremum principle
only in very restricted cases (c¢f. Shahshahani, 1976; Roughgarden, 1976). In
Section 5 we offer some evidence that inclusive fitness may be a more broadly
applicable “macrovariable” with which to track evolutionary trends (cf. Seger,
1976). We do this by constructing, in one special case, a microscopic model
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whereby the trait in question is governed by one locus/two alleles, and we show

- that the gene frequency equilibrium does indeed correspond to that inferred
on the basis of inclusive fitness arguments. However, our macroscopic treatment
is limited to equilibrium situations.

2. 'THe INncLUsIVE FITNESS OF QUEENS AND WORKERS

2.1. Consider an individual who petforms an act which changes her
fitness, =, , by an amount 8w, . If this act affects her relatives, then their fitness
will change by amounts §w;, where j indexes all those affected by the act.
Hamilton (1964) proposed that the net effect of an act on the actor’s genetic
fitness be assessed by adding to 8w; the total of all the effects on the actor’s
relatives, Sw; , each: discounted by their “degree of relatedness,” #,; : '

SVi = BWi + EriSWﬁ . (2.])
4

V, is called the individual’s “inclusive fitness,” and the “relatedness” of two

individuals can be defined as (Li, 1955):

r4 O expected fraction of #’s genes which are identical
by descent to genes in j.

¥4 can be calculated by standard methods for haplodiploid populations (cf.
Crozier, 1970). A complete discussion of the difficulties of computing r;
explicitly can be found in Roughgarden (1978). For our purposes here we can
consider the ry's as phenomenological coefficients measuring the “degree of
relatedness’ between individuals. Figure 1 summarizes the relevant relationships
between individual in a monogynous hymenopteran colony assuming no
inbreeding and single insemination of the queen,

Notice that the relatedness between females is symmetric, #;; = #;;, while
those between females and males is asymmetric, #;; # r;; . Moreover, v;; = 0

Queen @ e King ®
|

12

1/2

174
Non-Laylng 2%, Femals Reproductive "W- Queen Male @

worker
® II/Z

5/8 :
Worker mole @

Fic. 1. Degree of relatedness, r;, among individuals in a monogynous, eusocial
hymenopteran colony assuming no inbreeding and single queen insemination (corrections
for these effects can be found in Hamilton (1972)). “Queen males” are sons of the queen
and “worker males™ are sons of laying workers.
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between a king and his “sons.” On the basis of these genetic relationships
alone it appears that female workers should be biased toward aiding in rearing
sisters and foregoing laying eggs of their own.! This would be in the queen’s
best interest since she would certainly prefer her own sons (r = 1) to grandsons
(r = 1). However, Trivers noticed that the aforementioned asymmetry implies
that the inclusive fitness of the workers and the queen are not identical, and
therefore, might be maximized in different ways, leading to worker—queen
conflict within the colony. It is the resolution of this conflict that we wish to
investigate. First, using Eq. (2.1) and the data summarized in Fig. 1, let us
formulate explicit expressions for the inclusive fitness of the queen and workers.

2.2, Denote by F the number of new queens produced by the founding
queen of a colony during the reproductive phase. Since drones can be produced
from either queen eggs or from worker eggs, we denote by A4 the number of
queen sons and by m the number of worker sons. T'wo derived quantities we
small need later are:

M

p= SRR the fraction of queen males . (2.2)
o= Jg# the colony sex ratio 2.3)

so that the composition of the colony reproductives can be characterized by
either the vector N == (N, Ny, Ny) & (F,M,m) or by (o, p, N), where
N = Z.i . N, is the total number of reproductives.

Next, we denote by S, Sy, and S, the reproductive success of a gene in
a new queen, queen male, and worker male, respectively. Henceforth, we
assume that both queen males and worker males are equivalent with respect
to their chances of siring a new colony: §,, = .S,, . We define these quantities
more exactly in a2 moment. First, we define the reproductive value of alt
individuals of type f to an individual ¢ by

Uy B #S;, Ny, i=F M, m. (2.4)
Then, the inclusive fitness of the queen can be defined as

VQ = Z CVo; = rOFFSF + rOMMSM - rQMmSm
i

= 3FSp + 1 MSM + dmS,, _ (2.5)
S —— o ——— A’
W() r(?mu/m

1 Workers can lay only male eggs since prior to the reproductive phase of colony growth
there are no males to fertilize them.
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Comparing Eq. (2.5) with Eq. (2.6) we sce that the “self-fitness,” W, , com-
prises the first two terms and the “indirect fitness” is the third term, Similarly,
the inclusive fitness of a worker is

VW = Z Vy; = %?fLSm —+ [%MSM +"!}?ﬁS’P,{].- (2.6)
Wy Z ruW;

Here # is the number of her sons (related to her by r = 4}and s is the numbers
of her nephews (r = #). For nonlaying workers, w,, =0 and the onlv contri-
bution to her genetic fitness is indirect via the quantity in brackets.

2.3. To proceed further we must derive expressions for Sz & Sy = S,
the reproductive successes of females and males, A moment’s reflection reveals
that the probability of, say, a male founding a colony depends on the number
of other males competing to mate with the new queens-to-be (we are assuming
queens mate but once, a common circumstance in Hymenoptera). That is,
reproductive success of an individual cannot be defined independently of the
community sex ratio. Thus, the strategies required to increase the inclusive
fitness of both the queen and workers depends on the community structure.
Conversely, if the community is small enough that the reproductive output
of a single colony significantly affects the commiunity sex ratio, then the optimiza-
tion of colony level fitness cannot be implemented independently of the com-
munity dynamics, Rather than attempt a comprehensive treatment of individual-
colony-community level selection, we restrict ourselves to the special case of
an equilibrium community. We denote by overbars quantities pertaining to
the community as a whole, e.g., @ = (M + @m)/F is the community sex ratio.

First, we give a precise definition for the reproductive success quantities
introduced above:

Stam = the expected number of genes in generation 7 (in
both sexes) which are identical by descent to a

particular gene in a male (female) in generation 0.

Sy = Lim'S,,” = the expected reproductive success of a
T

male,

This limit exists and can be shown to be unique (Lipow, 1977). Next, we
consider a stable community consisting of » colonies where the community
composition in generation ¢ at nuptial flight time is given by F =37, F;,
M=Y¥7,M,, # =1Y;_,m . The probability of a particufar male founding
a colony is just /(M + #). Each such colony will produce, on the average,
Fin female alates, M/n queen males, and #fn worker males. Each female will
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have, by definition, a reproductive success Sy and each male a reproductive
success, Sy, . (Note that S; is the expected number of genes passed on to
the next generation by a female which succeeds in founding a colony in genera-
tion 7. The number of F’s which succeed is just ».) Thus, we can write the
following difference equation for Sy, ' '

i {F M .
Sy = AT R TurSF + " PreSy” + p rMmSM
1 .
== 187 +p0-8y (1 *P) Sy (2.7)

Asymptotically, Sy"— S, S5 — SF (Lipow, 1977). Thus, we can solve
Eq. (2.7) for the relative reproductive success of males and females:?

Su _F 2
S8~ My @2 &0 +p) @8

In the case of a diploid population, Fisher’s argument implies (e.g., Bodmer
and Edwards, 1960) S = 1) — F/M; here we sec that the diploid value is
modified by the factor 1 < 2/(1 + §) < 2. This is due to.the presence of
worker males, m, which are “worth"’ only half of a queen male since they require
one extra reproductive event.

An analogous expression for Sy could have been written usmg similar rea-
soning, but would yield the same expression for the relative reproductive

SULCCESS.

2.4. In order to derive expressions for S,, and Sy separately we must
write another independent equation. Lipow (personal communication) has
shown us a method for deriving such an equation in the equilibrium case.
Imagine that, at time zero, we introduce into a steady-state community a collec-
tion of “marked” genes which we denote by “red” and “blue,” according to
the following scheme. Each female, being diploid, receives two red genes (or
chromosomes); each queen male and each worker male, being haploid, receives
one blue gene. The total number of these marked genes remains constant at
2F + M 4 # since the population is statienary, but the “colors” redistribute
themselves generation by generation throughout the population. We can write
an equation for this redistribution by defining S{ and S} to be the total number
of individuals (of both sexes) in generation # whose marked genes are identical
by descent to females (i.e., red) and males (i.e., blue) at t = 0, respectively.

2 Benford (1976} has shown us an elegant alternative derivation of Eq. (2.8).
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Since at ¢ = 0, 2F red genes were introduced along with (M + #) blue genes,
we must have at generation ¢ the relation

2F + M + 7 = 2FS® 4 (M +m) SY. (2.9)

Indeed, since this is just a conservation equation for chromosomes, it must
hoid for all £, and we have

2F + M + it = 2FSy + (M + ) Sy (2.10)
or, dividing through by (M -+ #),
S, =1+ ‘—; (1 — Su)- @2.11)

This equation is independent of (2.8) and can be used to obtain Sy and Sy,
separately,

som (EEL(ELE) - L
N

However, as we shall see, only the relative reproductive success & = Sy,[/Sp
are required for our calculations.

2.5. Using Eq. (2.8) we can express ¥V, and V), in terms of either S,
or SF s

' 1. S s
VQ’:SF [EF—{——Z—'M‘-*-'Im], (2'14)
3 s S .3
VW:SF[EF+TM-|—7m+§Sm]. (2.15)

If we focus attention on a particular (average) worker, then we can define her
average relatedness 7 to the worker brood: Let m = + 1, 0 <{ ¢ = mfm < 1;
then '

f<r=[01 -0+ <% (2.16)
Then we can write Eq. (2.5) as

Vi = S [§F+—§M—|—me],

3 ==

(2.17)

ool W
DI —

As Egs. (2.14) and (2.17) show, the inclusive fitness of the queen and her
daughters are functions of both colony and community quantities and, in
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general, they are not equal. Thus, we can indeed expect that some “conflict of
interest” will arise with respect to how colony resources are allocated. Let us
next investigate the nature of this conflict more deeply.

2.6. Remark. The general expression for inclusive fitness has the form:

all relatlve types : ’
V= ¥ SN = T8N (c.f. sect. 3.3). (2.18)

i=1

Several generalizations of this formula may be necessary in certain circum-
stances:

(2) The effective degree of relatedness, 7, , is increased by inbreeding,
so that »; < #(F), where F is the coefficient of inbreeding (cf, Hamilton, 1972).

(b} The reproductive success, S;, derived above assumed unrestricted
mating over the whole population. If local mate competition is important, then
8; must be modified (and inbreeding may be important).

(c) N; is the total expected number of relatives of type j. In models
which account for age structure this can be calculated from demographic data
alone, i.e., population mortality and birthrate schedules.

Hamilton (1967) and Alexander and Sherman (1977) have pointed out that
local mate competition between males devalues sons with regard to the queen’s
inclusive fitness, ‘This will have the effect of biasing sex ratios in favor of females
by a mechanism independent of the relative values of #; and thus independent
of haplodiploidy. In our subsequent analysis, we ignore this effect.

In populations where inbreeding is important, there may be a genetic “cost”
associated with excessive homozygosity (e.g., fecundity depression andfor
mortality elevation). In such cases, Eq. (2.18) must be further modified by a
factor g(#) < 1 which decreases the effective inclusive fitness.

Finally, we emphasize that expression (2.18) has been derived for a stationary
population only. Considerable modifications must be made to treat the dynamic
case,

3. Orrivom INvESTMENT RATIos POR QUEENS AND WORKERS

First, we examine the simplest case where one or the other party completely
controls the situation, so that only one inclusive fitness is maximized. For
example, in honeybees the workers control the queen’s egg-laying according
to the number of egg cells they construct. Morcover, in some cases they also
control the sex ratio by varying the size of the egg cells: Male eggs are deposited
by the queen in the larger cells, and female eggs in the smaller cells, On the
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other hand, in bumblebees, the ‘queen is able to suppress worker egg-laying
by aggressive behavior toward them. Let us examine the two extreme cases.
- Throughout our discussion we adhere to the following assumptions:

(i) 'The community is in equilibrium, and all colonies in the community
are identical in size.

Wilson (1975) and Cohen and Eshel (1976) have demonstrated that variations
in colony composition can have profound effects on community evolution;
however, we shall ignore this effect here.

(i} The cost of rearing an egg to maturity is constant, and equal to Cp,
C,;, and C,, calories for female, queen male, and workers males, respectively.

Because of economies of scale the true cost of brood rearing is surely different
for'small and large colonies (Oster and Wilson, 1978). However, by assumption (i)
we have ignored the fact that the community is composed of colonies in vatious
sizes and stages of their life cycle.

(iti) Since all colonies are assumed identical, and the commumty is at
equilibriuma, the total energetic resources of the community are shared equally
by all colonics. Thus, each colony is subject to the same “budget constraint”:

E = Z CilN; == Cplt CMM + Cm, 3.1)
=1

where E is the total energetic resources of the colony. Henceforth, we measure
all costs as fractions of the total available energy, a == CW[E, 8 = Cy/E,
y = C,/E:

Y Ny = aF 4 BM | ym = 1. (3.2)

Using the energetic constraint (3.2), the composition of the reproductive
population N = (F, M, m) = ((1 — BM — ym)|a, M, m) can be represented in
R? in terms of either M and m or o and p (cf. Fig. 2).

M

aFegM=1 i
N Vglhat}
<

178

-1 I/a\

Fic. 2. The colony sex ratio which maximizes the queen's inclusive fitness, The
point Q is the optimum sex ratio in a large community, where the g contour is tangent
to the ergonomic constraints. -



S8 _ OSTER, ESHEL, AND COHEN

3.1. Queen control. From Eq. (2.14) the queen’s inclusive fitness is
. S8 .
VolF, M, m; &) = Sy [§F+—2—M+Zm]. (3.3)

First, we compute the ratio of investment which maximizes the queen’s fitness.

In order to do this we must account for the dependence of the success ratio

8§ == 2/3(1 -+ p) on the size of the community. For our purposes we restrict

our attention to the case of n colonies, each containing M, 4 m; male and F;

female reproductives; so that M — 3 | M,, i — 22:1 m&F = Z?=1 F;, Each .
colony is subject to the identical ergonomic constraint «F; + BM; + ym; =1

go that we can write (3.3) for the 7th colony: :

vo=si gy ntz Mgl 69
From the second term we see that #'s are preferred to M’$ only if B > 2y,
that is, Bfy > 2 = rguf7 om - While this is obvious a priori, there are situations
where one or more workers do lay eggs despite the queen’s preference, which
affects the value of ¥, . For the moment, however, we continue with the
a sumption of total queen control and set m = (. (From the first term we see
that F’s are preferred to m's when yfa > Sf2 = 1/(G(1 + p))). _

Thus, in the case of queen control we must sclve the following nonlinear
programming problem

Max Vi(F; , M, , F, M) (3.5a)
subject to '
ofy 4 BM; < 1, i=1,2,.,n " (3.5b)

In this case it is just as easy to substitute the ergonomlc constraints into the
fitness equation. Noting that S = F{M = 3, Fyf>7  M; = (n — BM){(al),
we obtain
: S M
Vo = oL [1 2BM; 4 n M‘] (3.6)

To find the maximum inclusive fitness we need only apply the chain rule and
set '

- 0 . 3.
M, oM, ' oM oM, ' 8S, oM, (37)

0:

Since all colonies are assumed identical in this calculation, M == nM; . Further-
more, we are concerned only with the large community limit, # — oo and for
this case it can be shown that 8Sz/0M; ~ O(1/n), and we can neglect that term
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in the chain rule. (Terms involving S, however, are not negligible.) Carrying
- out the differentiations we obtain

_n—11 o411
M= =g =7y m (38)
so that
o, = E%i_i L i=12,un (3.9)
Therefore, each colony’s ratio of investment is
« _n—1  CyuyM; . *(or) —
R, =aF1 " O & Lim R (n) = 1. (3.10).

Thus O < R, <{ I, and we can expect R =1 only.in the large community
limit, # — oo. The situation is sketched in Fig. 2, In most ant species alates
disperse widely, and the effective community size is generally ~10% or more
(E. O. Wilson, personal communication). Therefore, in most cases R~ 1,
since R rises rapidly with z (however, see Wilson, 1963). The above calculation
shows how R varies with community size. More importantly, it demonstrates
that, one cannot treat G as a constant in Eq. (3.5). This would be tantamount
to treating the community as one large colony which would yield, by Eq. (3.5),
produce only fermales if o > 28. Mathematically, this is clearly inevitable. When
S = constant, ¥V, is linear, and so we maximize the linear function, V', , over
the linear ergonomic constraint set. Allowing the success ratio S to vary renders
V¥, nonlinear, however, and thus admits a “mixed” strategy of both males and
fernales.

The reason one cannot assume an infinite community at the outset is simply
that

Lim %4; S(n) # 21,“% Lim S(x) 3.11)
since the series defining Sn =3, FSe , M, + 4 ¥, m; does not converge
(uniformly). _

The assumption that all colonies are identical is also suspect since the uniform
distribution may well be unstable (cf. Wilson, 1975). However, we cannot
investigate stability of the optimum without introducing dynamical equations,
and so we continue with our static analysis. (Indeed, there is no guarantee
that the equilibrium of the dynamic equations corresponds to the fitness
optimum; cf. Rocklin and Oster, 1976; Slatkin, 1976).

If, for some reason, the queen loses all control of male production to the
workers so that only #'s are produced, then an identical calculation shows that
her optimum fitness is achieved when Ro* =
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3.2, Worker control. The case of total worker control of . investment
proceeds identically. Substituting the ergonomic constraint into Eq. (2.17),
the worker’s fitness is

e (L e D LE s

The second term yields the condition for M’s to be preferred to m’s by the
workers: '

I >4, <7<l | (3.13)

That is, worker sons (or nephews) are preferred to brothers unless the latter
are at least 509, cheaper to produce. Assuming that all adult males are essentially
identical, it is difficult to see how this could be the case since the only additional
cost to a worker In raising a son vs a brother is the energy required to manu-
facture an egg. In some cases, however, laying workers cease to forage, thus
depriving the colony of their energy profit, and conceivably this could raise the
effective cost of worker males to the point where M’s are more profitable. Let
us proceed assuming that the workers always prefer m's (M — 0).

Once again we see that maximizing V,, with 8 = constant subject only to
the linear ergonomic constraint will always yield an extremum consisting of
either all 's or all m’s, depending on whether y/« > $75 (i.e., the first term in
Eq. (3.12)). Therefore, we write Eq. (2.11) for the #th colony:

Vi = Sp [% F, + 7Sy
= % [3(1 — ymy) -1 8 (%) fm,].

Setting dV,}[dm; = 0 yields for the investment ratio

B7(n — 1)
LA )
R, TN (3.14)
which, for # — o becomes
R* =83 =1 7=14 non-laying workers,
=% ¥ =14 laying workers. (3.15)

Therefore, under worker control the colony investment ratio should be between
1 and 4. From LEq. (4.12) we see that if the queen is forced to abdicate all the
male production to a few of her daughters (so that, for the majority of workers
F == ), then both party’s inclusive fitness is maximized at the same value of
R=1.
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Trivers and Hare used the dry weight ratio as an estimate of R (although
they caution that differences in caloric value and water content might bias this
measure). In honeybees, males and females are nearly the same size, indicating
C/Cr ~ 1. However, the sex ratio is frequently biased heavily in favor of males,
despite the prediction of Eq. (3.15) that o ~ 1. One possible explanation (other
than invalidating the whole equilibrium theory) is that honeybee colonies
reproduce mostly by “fission,” or swarming. The new queen absconds the nest
accompanied by a substantial cohort of workers. Thus, the risk she runs in
starting a new colony is substantially lower than if she. had to found a colony
as a solitary queen. The males, on the other hand, must disperse singly and
compete for other swarming queens—a much riskier enterprise than that faced

by the queens. As 8. Macevicz (personal communication) has pointed out, it
appears reasonable to add to the cost of the reproductive females, CgF, the
cost of the worker entourage C,,JW which accompanies her at the time of swarm-
ing. Thus, the investment ratio should be modified to R = Cy,M|CF -+ C,W.
With this correction the investment ratios in species wherein colonies reproduce
by fission are brought more in line with kin selection theory, although a quanti-
tative assessment is difficult. ' o

This modification suggests another problem for the kin selection theory,
however. Why should a worker join a swarm, thereby trading an average 7 of
33+ D =1 for #'s of § (assuming that the new queen is fertilized by an
unrelated male} ? -

Despite controlling the rearing of brood the workers may not be able te lay
eggs themselves, either because of an inhibitory phefomone or by some form
of queen dominance, as happens in bumblebees. Then the workers’ fitness must
be computed from

Vi = Sel§F + pSM]. (3.16)

Repeating the above calculation yields the investment ratio when all males
are queen sons but the workers raise them in the proportions which maximize
their inclusive fitness: .

n—1

1
* o i = —
ReTTT MR- @)
3.3. We can derive a general expression for the optimum investment
‘ratio, R*, by solving the following programming problem:

~

N%IX[_X‘TS(E)N] = ¥, iI=0, W (3.18a)
subject to the constraints

N<1, N=0. (3.18b)
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Here N = (F, M, m) is the colony composition, « = («, B, ¥) is the cost vector,
r, is the relatedness vector (ry , 7,5, 75) for the Ith agent (Q or W) and

S{N) 0 0
S(N) = ( 0 SuN) o0 )
: 0 0 S

is the reproductive success matrix. _

One can show (e.g., using Lagrange multipliers) that there is no extremum
in the interior of the feasible set'and that any optima must lie on the boundary -
M =0 or m = 0, Thus, we can restrict our attention to the case p =0 or 1
and solve the easier problem

, Max[Sp(ry X + 7125X,)] {3.192)
subject to ' ' ' |
oX, FoX, =1, X,X =0 (3.19D)

Here the quantltles X1 & X, refer to females and males, respectwely Itm =0,
S =30 FS¥ M, whileif M =0, S = Y Fft3 m,; . Eliminating, say X,
via the constraint, and setting dV,/dX, = 0, we obtain for n — co:

Y2

R* _ oc = i[ when 1 — o] [2’“ when I = O]LO L W

where ¢ is the maleffemale cost ratio.
The expression for finite # is

RH(n) 2 rafn — 1)(ry -+ vary), e

where v = 1 if m =0, v = § if M = 0. In order for (3.21) to hold for small #,
however, the r;’s must be maodified to account for inbreeding. In an inbred
colony females are related to daughters by } <{rp < H(1 4 3F)(1 + F)),
where 0 <{F(n) <1 is the inbreeding coefficient {Hamilton, 1972). Therefore,
investment in females may be considerably enhanced by inbreeding even if
the queen controls investment,

3.4. In bumblebees the queen lays all the eggs for most of the reproduc-
tive phase, inhibiting worker egg-laying by dominance. However, toward the
end of the season her egg-laying and domineering abilities seem to decline.
Frequently, a single worker will commence to lay eggs of her own, while
preventing other workers from laying by assuming the dominant attitudes of
the queen. There may even be mutual egg destruction between the old queen
and the laying worker. The net result is that, averaged over the reproductive
season, 0 << p << 1 (p ~0.75, C. Plowright, personal communication). In this
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case one would expect that the measured investment ratio, R, would be inter-
mediate between the optimum for the queen and workers. We can define an
average R by ' '
= o M 4 cpn .
R & M+ cwm ot, . (3.22)
CFF .

where ¢ is the average cost. ratio

P ""MP + cm(l _P)
[ '
Trivers' data for several species of Bombus show 0.32 < ¢ < 0.85
1.14 < o << 1.72. According to the theory developed here, the optimum invest-
- ment ratio, R*, is bounded by

(3.23)

0.33 < R*'< 1.33.

3.5. Trivers and Hare observed that R ~ } for ants, indicating that the
workers’ were controlling the sex ratio while the queen controlled male produc-
tion. However, in many species laying workers do contribute significantly to
male production and values of p between 0 and 1 are commeon (Hamilton, 1972).
From the viewpoint of optimizing inclusive fitness one way this can come about
is if control shifts during the reproductive period from the queen to the workers.
One scenatio is that during the first part of the'season p = | when the queen
controls male production, but workers control rearing, R = }. Then, if the
queen becomes sencscent so that her egg production falls off or her capacity
to inhibit laying workers declines, worker males commence being reared. The
result is that at the time of the nuptial flight the male population is a mixture
of queen males and worker males, and the net observed ratios of investment
are neither the queen’s nor the workers’ optimum. Equation (3.22) is a “net,”
or season-averaged, investment ratio. If the community is in a steady state,
then R is indeed the “equilibrium” ratio of investment; it is not an optimum
for either party, but rather a sequential optimum for each party in turn. There-
fore, it is misleading to call R a “preferred’’ ratio. Rather, R should be viewed
as an index of which party in conflict has control of the situation.

If R =}, then the workers control the rearing, but the queen controls male
production. Values of } < R < 1 could mean either that workers control both
male production and rearing or that control of rearing has shifted from queen
to workers at some point. Thus, values of p between 0 and 1 could reflect a shift
of control from queen to workers during the reproductive period.

Another mechanisin whereby mixed male broods may be optimal is if the
ergonomic constraint is not linear. This could come about if the costs, Cg,
C,;, and C,, were not constants but varied somehow with N, p, or o. If laying
workers are less diligent foragers than their nonlaying sisters, then the ergonomic
constraint, E, is a function of #, which reflects the proportion of laying workers.
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‘In such a case the constrained maximum problem (3.18) could yield an internal
solution (0 << p << 1),

3.6. In the preceding section we derived the optimal ratio of investment
for both the queen and workers if each party were to act unilaterally. We saw
that only in the case where the queen laid all the female eggs and a few workers
laid @il the male eggs did their optimum investment ratios agree. In all other
cases there is a conflict of fitness interests. The regions of disagreement are
shown in Fig. 3. Outside the region, ABCD, both parties gain fitness by
moving toward ABCD, and presumably natural selection will produce
stratégies which fall within this region. In our subsequent analysis we restrict
ourselves to the more realistic case where 7,,, — &, and so the region of conflict
reduces to the triangular region ABC. The opposite extreme, 7 = §, implies
that each worker essentially tends to her own eggs, which contravenes the
assumption of eusociality. '

"T'able I summarizes the optimal investment ratios for the four cases computed
above, :

M

Fic. 3. The trapezoid ABCD represénts the region of conflict between the queen
and the workers., Only at vertex ¢ do both party’s investment ratios agree.

TABLE I
p=1 =0
(y > 478) (v < 48
" Queen’s optimal , 1 ' 1
investment ratio, Ry _
Workers’ optimal 1/3 ) 1 < 873 < 4/3

investment ratio, Ry
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4. 'TuE CONFLICT BETWEEN THE QueeN AND HEer DAUGHTERS

4.1. As Egs. (2.14) and (2.15) show, the conflict of interest between
the queen and the workers centers around the relative proportions of females,
queen males, and worker males the colony will produce. The optimum inclusive
fithesses calculated in Scction 3 assumed that male egg-laying (ie.,
p == M}(M - m)) and brood rearing (i.e., o = (M + m)[F) was totally controlled
by one party or the other. Therefore, while the queen and workers might
“disagree” over the values of p and o, there was no real conflict. In order to
formulate the conflict quantitatively we must be specific as to just how the
changes alluded to in Eq. (2.1} are brought about. That is, we must parameterize
the various strategies available to the queen and workers. We denote by
u =t , Uy ,or ) &V = (01, Vg 5., Up} the strategy parameters of the queen
and workers, respectively. For example, the queen can lay female or male eggs
as she chooses. The workers, on the other hand, in addition to laying male eggs
of their own, can determine which eggs are reared to adulthood since the care
of the brood is entirely in their hands. In this case the following list comprises
the strategy set for the queen and workers:

Qucen strategy  ( lay #; female eggs
u lay #, male eggs
lay v, worker cggs
(4.1)
Worker strategy  ( raise to maturity v, female eggs
v raise to maturity @, queen male eggs
raise to maturity v, worker male eggs

One can imagine many additional strategies: (a) Both parties can kill progeny
before maturation; (b) the queen may exert control over worker egg-laying via
aggressive behavior or by an inhibitory pheromone; (c) conversely, the workers
might control the queen's egg-laying (e.g., honeybees). In Fig. 4 we have
sketched a schematic representation of the various strategy sets we will discuss.

4.2. Next we must determine the relations which govern how the strategy
set (1, v) is translated into the adult reproductive population (¥, M, m). That
is, we must formulate the equations governing the demographic trajectory of
the colony:

(u, v) > (F, M, m) = T{u, v). (4.2)

We call this transformation T (cf. Fig. 4).

It is clearly not feasible to deal with the situation in its full generality, and
so we restrict ourselves to a few simple cases. Unless otherwise stated the
assumptions given in Section 3.1 hold throughout our treatment.
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43. To summarize, the situation as developed so far consists of
three parts:

(1) 'The strategy vectors of the queen and workers (u, v) {considered as
points in the “strategy space’” 2 = R® x R™).

(2) A set of demographic equations relating the strategy vectors {u, v)
to the reproductive population N = (F, M, m} ¢ P:

. x2-—+P
{u, v)i>-N

The budget constraint (3.3) restricts N to the simplex: 4 = {N | 2oV, = 1}
on which either (M, m) or (o, p} may be used as coordinates,

(3) A pair of “inclusive fitnesses” ¥y , V,, defined on the population
space, P:
Vo

PR
V!U

This is illustrated schematically in Fig. 5.

4.4 Remark. 'Throughout our treatment we mostly use the “natural”
coordinates (F, M, m) to locate colony composition points on the ergonomic
constraint simplex in population space. Other coordinates are useful for certain
purposes. The most common are the male ratio, p, and sex ratio, o, (defined in
Egs. (2.2) and (2.3) and the fractional sex ratio X = (M + m)/(F 4 M 4 m) =
{M -+ m)/N == a/(] + o). Setting one of the functions p, o, X, Vi, or V=
constant defines a set of level contours on the ergonomic constraint simplex 4;
any pair of these contour sets can be used as coordinates on 4 to specify the
colony composition. Thus, a point x = (F, M, m) is specified as well by
(N, p,0), (N, p, X), (E, Vi, V), etc.

4.5. Now that the conflict of interest between the queen and her
daughters has been formalized, we must turn to the question of how it can be
resolved. T'hat is, assuming that each party will be selected to adopt strategies
which increase their respective inclusive fitnesses, how will the system evolve?
In fact, we have to ask a more restrictive question. Since we have ignored
dynamic aspects in our formulation, we are only equipped to enquire about
possible equilibrium states of the system. Even with this restriction, however,
it is not immediately apparent how to define an equilibrium in a situation
such as ours where two parties are in conflict. One sensible notion of equilibrium
which applies to our situation can be borrowed from game theory: the “Nash
equilibrium.” Roughly speaking, a strategy (u*, v*) is a Nash point (or com-
petitive equilibrium) if neither party in the conflict can improve his position
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providing his opponent does not change his strategy. Formally, a point
- (u*, v¥) e Z is a Nash point if the fitnesses (“payoffs” in the game) satisfy

Volu, v¥) < Vo(u*, v¥), (4.3a)
Vip(u*, v) < Vip(u*, v¥). T (4.3b)

If the strict inequality holds in (4.3), (u*, v¥) is called a “‘strong Nash™ point.
Aduits LT_l E"T_]
Cn Cm
' v K P | Workars I
Vs

i

Fic. 4. 'The stategy sets of the queen and the workers. Queen stategies: 1, = number
of female eggs laid, 4, = number of male eggs laid, 1, = inhibitory effect on worker
laying. Worker strategies: v; ({ = 1,2, 3) = effort allocated to raising females, queen
males, and worker males, respectively; v, — number of worker eggs laid, v; = control
of queen egg laying. ' :

The Nash point can be illustrated graphically in the special case where each
player has a single strategy (u, v). Then we can plot on X (the u-v strategy
plane) level contours of Up==T o Vg and Uy =T Vy . This is shown in
Fig. 4 for an arbitrary set of functions Uy, Ug . Consider first the Uy, level
contours. If the worker strategy, », is held constant, then by adjusting her
strategy, u, the queen can only improve her fitness up to the U/, contour tangent
to the v = constant line. The locus of such points is shown by the curve Cy

Fic. 5. The demographic-equations T map strategy, pairs (u, v) € £ to population
vectors N ¢ P. On the population simplex, 4, p, and o may be used as coordinates. The
inclusive fitnesses Vg and ¥y are real-valued functions on 4.
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Ug = consl. canteurs

Uy = const. contours

Cu M s

u

Fic. 6. N = (u*, 0%*) is the {strong) Nash competitive equilibrium: Neither party
can improve her fitriess by changing strategy if the other holds her strategy constant.

in Fig. 6. Similarly, the line C) is the locus of points where the ¥y contours
are tarigent to # = constant lines. If the lines 'y and €}, intersect at, say,
(#*, v*)—point N in the figure—that point has the following property:
Neither party can improve her fitness by changing strategies, provided that her
opponent keeps her strategy constant. That is, at N, :

vy
ou

vy
T v

=0 ' (4.4)

L

¥

As we have drawn it in Fig. 6, N is a strong Nash equilibrium since each party
strictly loses by a unilateral strategy change. .

The Nash point is stable to unilateral “cheating,” and thus constitutes a
reasonable candidate for an evolutionary equilibrium. Indeed, Maynard Smith, -
in an entirely different context, has proposed a similar criterion as an “evolu-
tionarily stable strategy” (ESS). We follow historical precedent, however, and
call a strategy set (u*, v*) satisfying Egs. (4.3) (or 4.4) a Nash equilibrium.

4.6. Before taking the above notion of a competitive equilibrium too
seriously, several caveats are in order. First, the Nash point in Fig. 6 is stable
against “‘local” cheating only: Small deviations from IV are punished by fitness
loss. However, a larger strategy shift may well produce a fitness increase if the
fitness contours are not convex, as we have drawn them in Fig. 6. (Large
phenotypic changes can easily be brought about by regulatory gene alterations
(King and Wilson, 1975). Second, it is clear from Fig. 6 that if both parties
can ‘“cooperate’” both can improve their fitnesses. In particular, moving (u, v)
into the shaded cone improves both parties fitness until the line = is reached,
whereupon improvements in one party’s fitness must be at the expense of the
other’s. The locus of such points is called the Pareto set, or “cooperative”
equilibrium. (7 is the locus of points where the fitness contours are tangent:
VU, = k VU, , & < 0.) While it is not clear how drastic a genetic reorganization
would be required to effect such cooperation, the possibility cannot be dis-
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counted. Finally, there is the question of whether the system could have evolved
' to the Nash point in the first place. We must always bear in mind that underlying
the phenotypic-behavioral strategy variables u and v are a complex ensemble
of genes whose evolution is constrained. by the laws of Mendelian inheritance.
It can be demonstrated that the following two possibilities can arise: (a) The
equilibrium point of the equations of motion governing the genetic dynamics
may not- correspond to the Nash equilibrium (Rocklin and Oster, 1976), or
(b) the genetic dynamics may be so complicated that they admit of no stable
equilibrium points. The dynamically stable sets may be periodic or chaotic
orbits (Oster, Ipaktchi, and Rocklin, 1976; Auslander, Guckenheimer, and
Oster, 1976). In either case, the system cannot evolve to the Nash equilibrium.
- Having said this, however, it docs appear that the social insects have evolved
to some sort of behavioral equilibrium. Moreover, our analysis using the Nash
concept of equilibrium does have the attraction of subsuming several evolu-
tionary ‘criteria for social insects. suggested by other authors (Trivers and Hare,
1976; Benford, 1976), and so its propetties are of more than academic interest.

In the next section, we compute the Nash equilibrium’ for a few simple
choices for the demographic dynamics, T. ‘

477. Depending on the choice of strategies available to each party there
may or may not exist a Nash point in the region of conflict. Indeed, if the
demographic equations T arc one-to-one (i.e., det[DT] # 0 anywhere), then
the only Nash equilibria are on the boundary of the conflict triangle. This is
because there is no optimum for either queen or workers in the interior of
the censtraint set, as we have shown earlier. Moreover, any model for investment
allocation during rearing which is 1:1 will yield Nash equilibria along all of
A-B. The fitness optimization theory developed so far cannot distinguish
between these points; the actual equilibrium point on A-B must be determined
by either the relative power of the queen or workers to impose their preference
on the other: This is a question of dominance by one or the other party. In a
sense, therefore, the kin-selection theory of Hamilton and the maternal control
hypothesis of Alexander may not really be in conflict. Rather the former sets
the stage for the latter. :

A second possibility is that colony-level selection may be the final arbiter
between queens and workers. Regarding the colony as the unit of selection is
equivalent to assuming that the fitness is

V, = SalX, + SX,l. @.3)

Thus, when p = 1, the gradient of the queen’s inclusive fitness is colinear
with that of the colony. Therefore, the queen’s sex ratio preference is reinforced
by colony-level selection. When p = 1 this would tend to favor the queen’s 1:1
sex ratio. If workers control investment, the only way they can raise the colony
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fitness to the level it would have if R = 1 and yet retain their R — 4 preference
is to increase their ergonomic efficiency and thus increase the energy constraint,
_E. This suggests that one effect of colony-level selection is to case the way to
the evolution of specialized castes. Such castes greatly enhance the ability of
the colony to exploit its environment and defend the nest (Oster and Wilson,
I978), and thus, provide an advantageous tradeoff in return .for a worker-
biased R. In any event, we see that kin selection alone may be not sufficient to
determine the equilibrium ratio of investment and recourse to other factors
{queen domination, colony-level selection) may be necessary to establish a
unique, stable R¥,

4.8. First, let us assume that the workers can discriminate between all
brood types and can allocate their rearing efforts according to their fitness
preferences. Once again we can take advantage of the facts that (i) the fitness
equilibria must lie on the boundary of the strategy set if T is 1:1, and (ii) the
equilibria lie on the edge M = 0 or m =0, depending on whether y is less
than or greater than 478, respectively. Consider first the case when m = 0.
"The queen will certainly lay male and female eggs in her preferred ratio o == 1 fe
since otherwise she will lose fitness. Denote by ¢ — ¢, -+ ¢,, the total number
of eggs she lays. In Fig. 7a we show the queen’s strategy set {(2ar, er). On it
we superimposed the ergonomic constraint 4 (actually, EoT, where E is
2. Ny = 1), and the optimal fitness contours Vy* o T and Vo*oT. If the
queen lays & = e, |- e’ less than the available energy (i.e., aer' + ey’ < 1),
then the workers in trying to raise females in their preferred ratio of o = 1/3¢
have no choice but to rear young in the proportion along the ray 00 in Fig, 7.

- When the queen lays just the right amount of eggs to exhaust the resources
(e + Bey, == 1), she achieves her maximum fitness at Q. If she lays eggs in
excess of this—presumably at o = 1/c—the workers can gain fitness by rearing
females preferentially (o == 1{30). That is, the sex ratio will move along the
ergonomic frontier QW until the workers’ maximum fitness is achieved at W,
Eggs of either sex in excess of ¢” = e} 4 ¢}, add to neither party’s fitness.
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Figure 7
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Indeed, we sce that the queen generally loses fitness if she lays eggs in excess
of ¢, + ej = ¢". Therefore, we expect that the queen will be selected to. lay
eggs in amounts that just keep pace with the worker’s ergonomic capacities.
Then, if ¥ > 478, the colony investment will be R = 1. In order for workers
to increase their fitness, they must increase their collective ergonomic efficiency
to outstrip the queen’s reproductive capacity. As we mentioned above, this
sugpests at least one selective force favoring the evolution of worker castes
(Oster and Wilson, 197g). If the queen for some reason (e.g., senescence Of
death) fails to lay enough eggs, ¢ < ¢", and providing some workers can lay
eggs themselves, then the adult composition lies near the point E’' shown in
Fig. 7b, corresponding to an average colony investment of

B PBHU =P

o

If y < 478, so that m’s are cheaper to produce than M's, then, as we have
shown, the workers and queen agree on the investment ratio at {Q-W) in
Fig. 7b, providing the queen does not, or cannot, lay eggs. However, if both
lay eggs, then the fitness optimization alone cannot determine the investment
ratio and one must add additional hypotheses concerning the relative power of
the queen and workers to preferentially climinate the other’s male offspring.
Since this may be a complex business, any model of this process would be
dubious. Therefore, we do not pursue this direction further, but rather make
the much simpler assumption that the workers can lay eggs, but cannot dis-
criminate between any of the brood types.

Let us begin with the simplest set of demographic equations for this situation.
We assume that a total of ¢ eggs are laid by the queen and workers and that
the available energy is aportioned uniformly among the larva. Let e,
i == F, M, m be the number of eggs of type 7, and ¢ =Y ¢; be the total number
of eggs. Then out of a total of E available calories, a fraction E - g;fe is rationed
to the 7th type larva. Since an adult of type 7 costs C, calories to raise, the number
of adults of each type is

N, =~ =2, {4.6)

e oe
Thus, the demographic equations T are
€p 8;7! F :
(eM) T (eM*;:) = (M) 4.1
En’ 8,,”{‘)/8 w

The ergonomic constraint E(N) =: 3 a;N; = | on the adult population corre-
sponds to the constraint EoT or S ¢; = ¢ on the maximum number of eggs
reared to adulthood. Therefore, we can eliminate say, ¢, and regard the queen’s
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control parameter as e, and the workers' as e, . A Nash equilibrium in the
interior of the (prelmage of .the) conflict triangle—if it exists—can be found
by solvmg :

o . 8
a—m(VWOT):O, '&‘;(V@OT):O

However, the map T defined above is continuous and 1:1 and so we know
that the competitive equ111br1a are on the boundary

In this case, it is easy to see that the colony investment ratio is always R = I.
If y > 478 so that m = 0, then regardless of how many éggs the queen lays in
excess of the workers’ capacity, they are raised in her preferred ratio of ¢ = /¢
(since the workers attend to each larval type equally). If M = Q, then, as we
have shown, Ry = Ry, = 1, which will be achieved by an equitabie aliocation
of rearing effort between F’s and m's. Only if the queen’s egg-laying falls short
of the constraint will the maIe ratlo 0 <<p << 1 and therefore the 1nvestment
ratio, R, differ from unity.

According to the kin-selection theory developed herein there are only two
mechanisms for obtaining an investment ratio intermediate between 1 and 1:
(a) There is a switch in male production so that 0 << p < 1. The only reason
for this which appears plausible to us is due to the senescence or death of the
queen, or the loss of queen dominance due to increasing colony size. In either
case, the observed R is intermediate between the optima for the queen and
workers. (b) The demographic equations T are not 1:1. This would require
some sort of extreme density dependence on colony growth during one season,
so that increased egg-laying actually decreased the resulting adult population.
~ Without a much more elaborate model for the colony life cycle we can make
no predlctlons in this direction.

5. A Microscoric MoODEL

5.t. The competitive equilibria computed in Sections 3 and 4 were
obtained by applying optimization procedures. Although optimization argu-
ments are common in ecological thinking, they have recently been called into
question in several contexts. It is not difficult to construct models at the gene
frequency, or “microscopic,” level for which it is not possible to define a
“fitness” which is optimized along trajectories (cf. Slatkin, 1976; Auslander,
Guckenheimer, and Oster, 1976). Therefore, it behooves us to see if the
“macroscopic’ arguments we have presented are consistent with the microscopic
laws of genetics. That is, do the constraints of Mendelian inheritance and
haplediploidy permit the realization of the strategic optima inferred from
maximizing the macroscopic quantity “inclusive fitness’ ?
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In order to address this question, we investigate 2 highly simplified model
wherein the trait governing the workers’ brood-reating behavior is controlled
by a single autosomal locus with. two alleles (4, 4). Altérnatively, one could
view this locus as a modifier allele for the behavioral trait which is surely
polygenic. ‘ _

To begin, we examine the composition of colonies at the nuptial flight time,
The population of females is of three types (44, Aa, aa) whose frequencies
in the population are (%, , %, %3). The males, being haploid, come in twe
genotypes: (4, a) with frequencies (3, , ¥2). Thus, after mating, the fertilized
queens found six possible colony types: (4,4; X Ay), 44, k = A or a, as shown
in column 1 of Table II. We assume that mating is random in the community
so that the frequency of each colony type is proportional to #;;, as shown in
column 2 of the table.

TABLE II

A Summary of Colony Types and Offspring Types Produced by Them

Colony Frequency of Offspring produced (units of maximum colony fertility)
type - matings pro-
O xK portional to A4 Aa aa A a
1. AAxA xn Wy 0 0 vy + By 0
a
2. AAXa X 0o w, 0 oy + 3 i Ouyw
oy w, v 384 v, B
.3, dax A x — - 0. =+ — —- 4+ —=
¢ W7 2 2" 2t
“wytwy wytews v tvs Oy vito " 1Hy
4, Aaxa x 0 b—_—  — 3(—— -»‘_)
“ 2¥e 3 4 4 4 Ry T
’ 8 8
5. aax A Xa ¥y, 0 Wy 0 an o -+ hdic
2 2
6, aaXa Xg¥a 0 0 Ws 0 v, + Oty

Fic. 8. Allocation of effort by the worker phenotypes to the three brood types.
(F, M, m).
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Next, we must model how rearing effort is allocated among the three brood
types (F, M, m) in each colony type. To do this, we assume that 4 is dominant
_over a and that the rearing costs (&, 8, y) are in the ratio (I, 1, y), with y == 1.
Thus, there are two worker phenotypes (4, -} and (4, a). Workers of type (4, )
allocate their rearing efforts to (F, M, m) in the proportions (w, , ¥, , fu;) where
& = 1}y < 1, while workers of type (a, @) rear in proportion to (w,, v, fuy),
as shown in Fig. 8.

Figure 9
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Using this scheme we can determine the composition of each colony type
at the time of the next nuptial flight as follows.

© 1. Colonies of type (A4 x A) will produce workers and reproductive
females of type (44) only and males of type A only. The W, workers will
raise type I, females in proportion to the effort @, . The queen -males, M,,
are allocated v, and the worker males, m, , are allocated 4, . This is shown
schematically in Fig. 9a. Thus, at the next nuptial flight the frequency of each
reproductive type will be (Faq, Mg, ma) ~ (w1, 9, fu,). With regard to
mating we can disregard the distinction between M, and ., , so that the
frequency of A-type males in the population at nuptial flight time is propor-
tional to v, + fu, . These frequencies are recorded in the first row of Table II.

2. The reproductive scheme of (44 X a)-type colonies is shown in
Fig. 9b. In such colonies all females are Aa, queen males are A, while half of the
worker males are @ and half are 4. Thus, F, =~ wy, (M + m) 4 ~ v, + (01,/2),
and (M + m), ~ 8uy[2; cf. Table 11, row 2. :

3. Colonies of type (4a x A) will produce reproductives as shown in
Fig. 9c. Half of the females and workers are Aa and half are A4, while half of
the queen males are 4, as are three-fourths of the worker males. The frequencies
of reproductive types is given in row 3 of Table II. Note that we are assuming
that during rearing workers cannot distinguish between the various genotypes
of each sex, and so effort is apportioned equally.

4. 1In colonies of type (da X a) workers of both phenotypes are produced,
as shown in Fig. 9d. We assume that each worker type dispenses half of the
colony effort to each genotype in proportion to its abundance. Thus the frequency
of Fu’s is proportional to 3{(2,/2) + (@4/2)).. There are two hypotheses we
- could make regarding allocation to males. Assuming all males are equivalent
to a worker, the allocation to M s is §((1/2) + (24/2)) and to m s is §(0/2).
Of the allocation to a-type males, 3({vyf2) + (2,/2)) goes to M,'s and
3(0u,/4) + (01,2)] = 36(u; + 1) goes to my's. On the other hand, if laying
workers can discriminate their own progeny, one would have for the frequency
of A-type males

ke gy

and for a-type males

v + T _3E(“1+u2)
4 4 2 ’
In what follows we consider the former case.
The remaining cases follow by identical reasoning, and the entire model is
summarized in Table IL
Finally, we obtain the equations for the genotype composition of the popula-
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tion at the next nuptial flight by 'sﬁmming over all the colony types (columns)

ot B g s+ ) 2+ 52 62
- wl_%, [7;*1 (o1 ) +x3wz] ” | (53)
+(x1 1+“1y2 +3 x2y1+ 7% + 39’1) eul-] (5.4)

gyl ElV [(xayl 4 Fads xz.’l’ﬁ + x3y1) 'z)l -+ (xs + )J’z‘vz + (x1 + _;_g) _%2_ Ouy
+ ( 5+ ) 2t iy + (-7"'3 + )yzeuz] , (5.5)

where o+ w =1, z.:2 + vy + wy = 1 and the normalizing factor W is
given by
= (xl + % -l -"'q)(yl + ¥2)

+(@—1) [“1 (-'”13’1 + %134

%sXs
) +wa (3 + 227)]
) , . (5.6)
~ Or, in vector form, the equations of motion may be summarized

X' — F(X,U,, Uy, (5.7)

where X = (x,, %5, %, %, ¥)r Us = (8, v, 01), Uy = (4,9, ), and
where the map F: R,5-— R, F is given by Eqgs. (5.1)-(5.6). -

5.2. Equations (5.1)-(5.5) are clearly too formidable to solve analytically;
however, we can ask a simpler question. Suppose the population is initially
monomorphic for the a allele, so that from Egs. (5.3) and (5.5), the equations
for this monomorphic equilibrium are

. Wy
Xy = T-0—0) % ° (5.8)

0
o T =1 (59)
Pl =t o)
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We can inquire whether this equilibrium is stable against a mutation corre-
sponding to a change in brood-rearing strategy. Since the A allele will initially
appear at very low frequencies, we need only check the local stability of (%5, ¥a)-

"To do this we first compute the Jacobian of F at (%3, 7,): DF(X). A straight-
forward calculation shows that the eigenvalues of DF(X) coincide with those
of the reduced matrix

gy Oy wy + W, Wy
Y " dw 0y 4 Ouy .
iy 2 1= 2 2 2L 5.11
J2 &' 9 U+ P+ % Oy 11
oxg 9/ - 4wy 2(vy + Buy)

det ¢,

Fie. 10, -Stability region for the matrix J.

Since the entries in J are all positive, the Frobenius theorem (Pease, 1965)

ensures that the eigenvalue of largest modulus is real and positive. The condition

for the eigenvalues of J to lic inside the unit circle is (Marden, 1966); cf. Fig. 10
detJ <1

(5.12)
det] —1 < TraceJ < det] + 1

or, in terms of the system parameters,

20y -+ v + Ouy) < (Bwa — w,)(20; + 200y — Ouy)
= (wy + ws) Oy — ooyl + Owy).  (5.13)
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If we assume that both phenotypes allocate the same fraction of effort to females,
Wy = w, = w, the stability condition reduces to

(26 — D)(sy — uy) < 0. : (5.14)
From this equation we see that if #, > u, , that is, the mutant allocates more
energy to her own sons, then the resident (a) allele is stable providing & < 4.
This corresponds to a value of ¥ > 2, or, recalling that we have normalized
B = 1, the stability condition is

I8 > 2. (5.15)

Thus, we conclude that a mutation @« — 4 favoring an increased allocation of
effort to the workers’ own sons will be selected for at low frequencies only if
/B < 2, which is just the conclusion we reached in Eq. (5.10) on the basis of
inclusive fitness arguments, '

Next, we examine the sex ratio which is stable against mutational perturbation.
From Eq. (5.14) we sce that when ¢ < § (i.c., y/8 > 2), a mutant 4 such that
#; <y is favored, That is, a subpopulation of workers who allocate less effort
to their own sons can be established. The only way the resident @ allele can be
stable against this strategy is to adhere to a strategy of U, = (e, , v, 0) =
(w, | — w, 0). When #, == 0 the stability condition (5.13) reduces to

wi(2 — wy — wy) < (I — wp)(3w, — wy)
or (5.16)
Plwy, wg) = w* + (2w, — 3) -+ 3l — w,) = 0.

The equation P(w, , w,) = 0 divides the unit square 0 < @, , w, < 1 into four
regions as shown in Fig. 11 corresponding to values of resource allocation
ratios w; : wy where one or the other allele is favored at low frequencies. We
see that if the resident allele maintains a allocation of w, = #, then it is immune
from invasion by w,. Any deviation from this strategy, however, admits a
region of w; wherein 4 is favored at low frequencies. Thus, we concludé that
the sex ratio ¢ = M[F == 1/3 is indeed a competitive equilibrium for the a-type
workers and is in agreement with the macroscopic arguments presented earlier.

It is apparent from Fig. 11 that when w, s §, there may only be a restricted
range of values of w, which will allow 4 to invade. This result is unexpected
and is different from the results of genctic models for the evolution of modifiers
of the sex ratio in diploid organisms (Eshel, 1972).

In panmictic diploid organisms, if the population sex ratio deviates from
the stable equilibrium point, there is a selective advantage for any modifier
mutants which change the sex ratio in the opposite direction without limit.
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Fig, 11. The zeros of P(e, , wy) = w? -+ (2w, — 3) + 3wy(l — w,) are plotted on
the (w, , w,) strategy square, The stable root is located at w, = wy, = $, corresponding
toastable sex ratioof ¢ = L when @ < 3,0 =0,v =1 —w,

It is easy to show by an extreme example how the haplodiploid genetic
system modifies the selective advantage of sex-ratio modifiers. If w, > # to a
small extent, then mutant workers with w; = 0 will cause the queen to produce
only males. But the mutant gene will not be transmitted to the next generation,
because these males will have mutant workers which will cause the queen to
produce only males, which will not have the mutant gene, since they develop
from unfertilized eggs.

The same argument can be applied, in a weaker sense, to cases of w, << {
and the advantage of mutants which produce an ekcess of femnales.

It is apparent from Fig. 11 that the restriction on the advantage of mutants
producing an excess of females extends only over the range 6 < a, < 1.

The optimal allocation @ ==}, » == }, u =0 is not always stable against
mutants which change # and @ simultaneously, despite the fact that # = 0 is
stable for any value of w, and w — ¥ is stable when # = 0. '

Inserting the optimal allocation (2, , v, , %) == (}, {, 0) into (5.16), and setting
v =1 — w; — u; gives as the condition for stability

w2 — 0w, — 0] > —2(w, — . (5.17)
In addition, there is always the constraint
g -"‘/¢ i-— W .

Thus, at the point w, = %, 1, == 0, stability against invasion by a mutant which
changes both #, and =, is maintained under the following conditions: )
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A. When the multiplier of u, in (5.17) is positive, i.e., if w, > 96/4(2 — 6),
which holds for e, >> § when @ is at its highest value, § = %, and holds for
“smaller z; when & is smaller,

B. If w, < 90/(4(2 — 9)), then a sufficiently small 2, is always stable.

Instability may arise for large enough %, .
Substituting #; =1 — @, in (5.17) gives

fw® + w30 — 11— 36 + £ > 0. (5.18)

For # = § and for 8 close to } there is a region of instability of u, , @, which
can invade.

The critical value of ¢ which still allows such instability is given by the
solution to the discriminant equation of (5,18}, i.e., the solution to the quadratic
equation

169 ,, . -
16 2 -T70 41 = 0,
the roots of which are _
o8 2
1690 169'

When & < 28/169, no mutant with different %, , w; can invade the optimal
allocation of w, = %, u, =0, v, = }.

With larger ¢, 2 mutant may invade the “optimal” population over a range
of u, and w, . 'The population will, however, return to @ — ¥, == 1, because
. # =0 will always increase its frequency at any w, and when # =0, @ =%
will dominate, : .

Nest let us examine the case where & > £. Selection favors the tendency of
the workers to prefer their own sons over the queen’s sons, With a complete
monopoly of the workers on the production of males (2, v, %) = (2, , 0, 1 — @,)
the condition for stability against invasion by an alternative allocation

(e, 0, 1 — 20;) now becomes
2ay(1 — ) > (Buy, — w))(1 — w, — 2uy), (5.19)
from which we get the quadratic '
w,® -} w, (5w, — 3) + 3w, — 6w,2 < 0. (5.20)
The roots of (24) are

Wy = Wy,

w, = 3 — 6w, .

2, == £ is the stable point at which invasion by w, £ w, is not possible.
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The stable allocation is (e, v, #) = (%, 0, 4) and the stable sex ratio
miF = 40/3. '

As in the case of @ << 4, if w, is slightly different from the stable value of §,
i.e., within the range § < w, <%, there is a selective advantage for mutants
which change the sex ratio in the opposite direction, up to some limit. Qutside
this range, the selective advantage extends to the extreme mutants in the opposite
direction. : .

The optimal allocation (20, v, %} = (%, 0,%) is not always stable against
mutants which change both @ and v at the same time. Substituting the optimal
allocation in (5.16) and setting #; = 1 — v; — w; , we get as the condition for
stability :

N

with the additional constraint o, =X 1 — 2, . :

Inequality (5.21) is always satisfied when the multiplicr of #, is positive, i.e.,
if w, < %((2/8) — 1), which always holds at & > §. When w, > $((2/6) — 1),
the inequality will not hold for large v, , so that there are muiants which can
invade if #, and @, are changed at the same time. But the optimal policy of
(w, v, u) = (%,0,%) will tend to dominate, because = 0 will always invade
at any level of w, and w = 3 will invade when v = 0. By substituting in (5.21),
v, = | — w, , we finally find that a double mutant cannot invade if § > §.

5.3. ‘T'he results of the genctic analysis agree with the optimization model
in predicting the critical level of 0 = 1, i, y/B <2 for a changeover from
production of queen’s males to worker’s males. The sex ratios of M{F =}
when < L are also as predicted by the optimization model when & = g = I,
and with 7., — %, since we had assumed that a worker is rearing her own
80NSs. '

It should be noted, however, that the genetic model is different in some details
from the optimization model and also gives some additienal information. Of
special interest is the finding that when the population deviates from the stable
sex ratio, there is selective advantage for mutants which change the sex ratio
in the opposite direction, up to some limit. ‘This limit is more pronounced
when 8 <} and the queen is producing the males and, in that case, the limit
is much stronger when there is selection for mutants which produce an excess
of males.

Another interesting finding is that the allocation which is stable against
deviations in cach one of the factors separately is not always stable against
mutant genes which change both factors at the same time. Fach such double-
factor mutants will be displaced by other mutants which are closer to the stable
point only in u or v, and when # or v are at the stable value, a gene with e at
the stable value will displace all other genes, so that eventually the stable point’
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will be restored, and these are the values of the variables expected under natural
sefection, '
~ The empirical data available so far do not include cases where the workers
produce all the males,

Some production of males by laying workers is widespread although the
genetic basis for this phenomenon is still unknown. Qur genetic model in its
present form does not allow polymorphism in this locus.

Modifications allowing the possibility of polymarphism are: (1) some degree
of heterozygote advantage; (2) frequency of dependence of 8 such that it
decreases when laying workers become more common in the colony. Both
modifications are probably important. In an extreme case, the frequency
dependence of & will be the result of an excess of workers over the capacity of
the queen to lay eggs. Such an excess capacity was indicated as a possible factor
which may account for the production of queen’s males and workers’ males at
the same time, according to the optimization model.

In a recent papef, Charnov (1976) analyzed the genetics of the sex ratio in
Hymenoptera using a somewhat different approach. He considers the fraction
of resources spent on workers’ males out of the resources spent on ail males
as given. He finds the same stable points as we do, i.e., = } when no worker's
males are produced, and @ = % when only workers’ males are produced (he
assumed & = 1). His model shows, however, that if the population deviates
from the stable point, mutants which deviate in the opposite direction without
any limit are selected for.

His analysis of the model is not presented in sufficient detail to enable us to
find the reasons for this discrepancy with our model.

6. DiscussioN

In cusocial haplodiploids the genetic interests of the mother queen differs
from that of her worker daughters. Therefore, there is “disagreement” over
colony “policy”’ on two points: (1) the laying of male (haploid) eggs, measured
by the male ratio parameter p =~ M/(m + m), and (2) thé proportion of colony
resources invested in rearing (diploid) females measured by the sex ratio
o == (M + m)fF. Trivers and Hare (1976) used this conflict of interest to test
which party controlled the colony’s investment ratio in a number of species,
both social and asocial. Their data for ants suggested a 3:1 investment in favor
of females, indicating that workers do indeed control the colony investment.
Although there is some disagreement concerning their data for other species
(cf. Alexander and Sherman, 1977),2 this has been viewed by many as confirming

3 Alexander and Sherman argue that “local mate competition’”’ (Hamilton, 1967) can
also yield female-biased investment ratios, although no particular ratio is predicted.
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Hamilton’s inclusive fitness theory for the evolution of altruism and eusociality
in social insects. ' '

We have attempted to construct a mathematical model of the worker—queen
conflict situation for the case of an equilibrium community. Our definition of
inclusive fitness given in Section 2 has the form:

[Inclusive ﬁtness]

of agent [
- Expected
. Expected number ' .
all relaitves ' Gonetic relatedness] | HIBEN | reproductive
= [ . of relative
= of relative & to ! success of
of type &

relative &

A central feature of this formula is the expression for reproductive success,
i.e., the expected number of genes in generation ¢ identical to a particular gene
in generation 0. This expression shows how inclusive fitness of cach individual
depends on the sex ratio and male ratio of the community as a whole.

By computing the optimum inclusive fitness of both queen and workers,
subject to the constraint of finite resources, we obtain the ratio of investment
preferred by each party. These are summarized in Table I and correspond in
most cases to those calculated by Trivers and Hare by other means not clear
to us. These calculations assume that either the queen or the workers control
the situation, and so while there is “disagreement,” there is not “conflict.” In
this case a “mixed’’ male brood is never preferred by ecither party (i.e., p =0
or )4

In order to model the true conflict situation wherein each party has some
control over egg-laying and/or investment we viewed the model as 2 continuous
game and sought Nash equilibria (or, in Maynard Smith’s terminology, *'evolu-
tionarily stable strategies’”). The conflict situation is quite complicated and we
investigated only a few of the very simplest cases. However, we trust that the
conceptual framework we developed can be generalized to model conflict
situations in other ecological contexts.

Finally, we attempted to rclate the inclusive fitness optimization arguments

to more conventional population genetic models. We constructed a grossly
. simplified model wherein the workers’ investment policy was controlled by
one locus with two alleles. Even this model proved intractable, but we werc able
to show that the conditions for local stability corresponded to those deduced
from inclusive fitness optimization. This is encouraging, but not convincing,
evidence that inclusive fitness reasoning may be a reliable way of inferring
evolutionary trends.

4 If some randomness were introduced into the model parameters than, as is charac-
‘teristic of stochastic programming models, one could expect intermediate solutions,
0 < p < 1. We shall treat the stochastic problem in a future publication,



84 OSTER, ESHEL, AND COHEN
ACKNOWLEDGMENTS

‘We would like to thank Ed Wilson and Dick Lewontin for the hospitality we found in
their laboratories and their generosity with their time during our stay at Harvard, where
this paper was written. Many other colleagues gave us invaluable suggestions and engaged
us in stimulating and productive conversations which aided the paper immeasureably,
In this connection, we would especially like to thank Russ Lande, John Seger, Frank
Benford, Bob Trivers, Carla Lipow, Sol Rocklin, and Jon Roughgarden.

One of us (G.F.0.) would like to acknowledge the National Science Foundation
{BMS-21240) and the John Simon Guggenheirn Foundation for their financial support
during this period.

REFERENCES

ALEXANDER, R,, aND SHERMAN, P, 1977, Local mate competition and parental investment
patterns in social insects, Science 196, 494-500.

AvsLanper, D., GUCKENHRIMER, J., AND OsTER, (. 1976, Chaotic evolutionarily stable
strategics, Theor. Popul. Biol., to appear.

Benrorp, F. 1976. Fisher's theoty of the sex ratio applied to the social Hymenoptera,
J. Theor. Biol., to appear,

BopomEer, W., anp Epwarps, A. 1960. Natural selection and the sex ratio, Aun. Human
Genet, 24, 239-244,

CAvALLI-SFORZA, L., AND FELDMAN, M, 1976. Evolution of continuous variation: Drect
approach through joint distribution of genotypes and phenotypes, Proc, Nat. Acad. Sei.
US4 13, 1689-1692.

CHarnov, E. L. 1976, Sex ratio selection in eusocial Hymenoptera, to appear.

Cockeruam, C. C. 1971. Higher order probability functions of identity of alleles by
descent, Genetics 69, 235-246.

- Counn, D., aND EsHer, 1. 1976. On the founder effect and the evolution of altruistic
traits, Theor. Popul. Biol. 10, 276-302.

Crozizr, R. 1970, Coefficients of relationship and the identity of genes by descent in the
Hymenoptera, Amer. Natur, 104, 216-217.

Esuer, 1. 1972, On the neighbor effect and the evolution of altruistic traits, Theor. Popul.
Biol, 3, 258-277.

TFisuer, R. A. 1958. “The Genetical Theory of Natural SeEectlon," 2nd revised ed.,
Dover, New York.

HamiLton, W. D. 1964. The genetical theory of social behavior, 1, I, J. Theor. Biol. 1-16,
17-52.

Hamirron, W. D. 1967. Extramdmary sex ratios, Seience, 156, 477-488.

HaniLron, W, D. 1972, Altruism and related phenomena, mainly in the socml insects,
Ann. Rev, Ecol. Syste. 3, 193-232.

Kinve, M. C., anp WiLson, A. 1975, Evolution at two levels in humans and chimpanzees,
Science 188, 107-116.

L.anpg, R. 1976. The maintenance of genetic variability by mutation in a polygenetic
character with linked loci, Genet. Res. 26, 221-235.

Lirow, C. 1977. Reproductive success in Hymenoptera, to appear.

L1, C. C. 1955, “Population Genetics,” Univ. of Chicago Press, Chicago.

Marpen, M. 1966, ““Geometry of Polynomials,” American Math. Soc., Providence, R.1

OsTtER, G., IPaxTcHI, A., AND ROCKLIN, 8. 1976. Phenotype structure and bifurcation
behavior of population models, Theor. Popul. Biol., 10, 365-382.



EVOLUTION OF SOCIAL INSECTS 85

Oster, G., aND Wiison, E. O. 1978, “Caste and the Ecology in the Social Insects,”
Princeton Univ. Press, Princeton, N.]J.. ‘

Peask, M. 1965. “Methods of Matrix Algebra,” Academic Press, New York.

RossLer, O. 1976. Chaotic behavior in simple reaction systems, Z. Naturforsch, 3la,
259-264." ] ’

ROCKLIN, S., AND OsTEr, G. 1976, Competition between phenotypes, J. Math. Biol. 3,
225-761.

ROUGHGARDEN, J. 1976. Resource partitiening among competing species—a coevolutionary
approach, Theor. Popul. Biol. 9, 388-424.

ROUGHGARDEN, J. 1978. “Theory of Population Genetics and Evolutionary Ecolegy,”
Macmillan, New York. :

Secer, J. 1976. Adaptive responses to homozygosity.

SHASHAHANL, S, 1976. A new mathematical framework for the study of linkage and
selection, to appear.

SLaTkinN, M. 1976, On the equilibrium of fitnesses by natural selection, to appear.

SpaTIN, M., anvp Lanpg, R. 1976, Niche width in a fluctuating environment-density
independent model, Awer. Natur. 110, 31-55.

Sererh, P. 1974, Theoretical considerations of unequal sex ratios, Amer. Natur. 108,
837-849. ) ’ .

‘T'rivers, R., anp Hakg, H. 1976. Haplodiploidy and the evolution of the social insccts,
Science 191, 249-263.

‘WiLson, D. 8. 1975, A theory of group selection, Pro¢, Nat, Acad, Sei. US54 72, 143-146.

Wirson; E. 0. 1963. Social modification related to rareness in ant species, Evolntion 17(2),
249-253.

Printed by the St Catherine Press Ltd., Tempelhof 37, Bruges, Belgium.












