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For various genetical structures, including haptoid and diploid, one-locus n-
alleles, and n-locus additive viability random mating models, natural selection
resulting from intrapopulation conflicts between random individuals leads to
exactly those genefical equilibria which determine a mixture of strategies
evolutionarily stable according to the game theory definition of Maynard $mith and
Price (1973).

1. INTRODUCTION

The concept of evolutionarily stable strategy (ESS) has been introduced
by Maynard Smith and Price (1973) to characterize a strategy with the
property that when adopted by a large enough majority in the population
becomes the choice for each individual in that population, in the sense that it
then maximizes the expected fitness or survival of its chooser. Once such a
strategy has been established, it seems likely to be stable in a
parthenogenctical population (Maynard Smith, 1974, 1976). A crucial
question te be settled is whether natural selection, operating within the
framework of known genetical structures does lead to the establishment and
stabilization of ESSs, or strategies close to them (Lloyd, 1977; Maynard
Smith, 1981). Concentrating on the simplest ESS problem of two alternative
strategies in a population, this study is conducted under a wider assumption
on the possible genetical basis for the choice of a strategy by a given
individual. Indeed, a strategy in this sense may not necessarily be a
behavioral pattern. It may be any phenotypic trait which affects the outcome
of a conflict between individuals in the population.

For a class of genetical structures, namely locally adaptive ones, it is
shown that all stable equilibria maintained by the system determine either
fixation or mixture of strategies which are ESSs. The class of locally
adaptive systems, for which this result holds, is shown to include all one-
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locus n-alleles, random mating viability models of a diploid population, but
also other structures of genetic transmission of strategies. With some
restriction on the intensity of the selection forces within this class of genetic
structures it is shown further-that any ESS corresponds to some stable
equilibrium. : c

2. EVOLUTIONARY STABILITY AND CONVERGENCE OF
GENOTYPE FREQUENCIES

Consider a large population in which any individual can choose one out of
n strategies, say §,,..,5,. Let x;>0 be the proportion of individuals
choosing the strategy S, before selection (= I,..., #); and assume that the
result of a given encounter confers an incremental or decremental fitness
(say, viability) of v, to an individual following the strategy S;, whose
opponent practises the strategy S,(i,j= 1, 2,.., n). Thus, ¥ =|v,[ can be
construed as a population game matrix. Assuming random encounter
between individuals in the population (for different assumptions see Cavalli-
Sforza and Eshel, 1982), the expected change in fitness of an individual with
the strategy S; due to a random encounter is > ;x;V;;. The expected fitness
of an individual, choosing the strategy S, is, therefore, proportional to

wx)= 1403 Viyx;=3 ayx;= (Ax);, (2.1
7 7

where £ > 0 is up to a scale factor of the expected number of encounters for
individuals per generation and we use the abbreviation a;; =1 + 6V;.

If an individual employs a mixed strategy y = (..., 7,)» Where p, is the
probability of him choosing the strategy §; while population strategy is x his
expected fitness is

Vix, Y)=Zy:u:(X)=Zy,-auxj:yAX- (2.2)
i [T

Within this framework, the formal definition of ESS suggested by
Maynard Smith (1974) and further refined by Bishop and Cannings (1976)
is as follows:

A strategy y-is an ESS if for any strategy x £y,

Wy, y) 2 Vix,y) (2.3)
and if (2.3) holds as an equality, then
V(y, x) > V(x, x). (2.4)

Condition (2.3) guarantees that the strategy x will not be advantageous
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when adopted by a single deviant individual. Condition (2.4) guarantees that
if the strategy x is not disadvantageous at that stage, it will become disad-
vantageous when slightly accumulated. A version of the Nash theorem for
symmetric games guarantees the existence of a strategy x satisfying (2.3)
(namely, a symmetric Nash solution of the population game). There is no
guarantee that an ESS exists for a given population game. In this work we
see, however, that an ESS always exists in a 2 X 2 population game.
. We now assume that the choice of a given strategy by an individual in a
population depends, at least in a probabilistic way, on the genotype of the
individual. We concentrate on the simplest situation where & = 2, i.e., each
individual has exactly two possible strategies, S, and S,, but there are m
genotypes, B,, B, ..., B,,. Let p, be the frequency of the genotype B, among
juveniles at a given generation and let /, be the probability that an individual
of genotype B, will choose the strategy 5.

The frequency of individuals choosing the strategy S, in the population
will then be

x=x)= 3 pih. (2.5)

For convenience we speak of population strategy 0 < x < | when we mean
that fraction x of the population adopts strategy S, and the remaining
fraction 1 — x uses strategy S,. '

The average fitness #,(x) of an individual choosing strategy S, where a
proportion x in the population adopts strategy S, in this population is given
by (2.1) and the fitness of the genotype B, in this situation is .

wy=wilx) = hu(x)+ (1= h)uy(x). -(2.6)

Assuming mating according to some given rule, appropriate segregation
{depending on the structure of genotypes B,,.., B,) and natural selection
with the frequency-dependent coefficient (2.6), one can calculate the fre-
quencies pl,.., p!, of the relevant genotypes in the next generation,

For example, in a one-locus random mating diploid model with # alleles, if
hy; is the probability that an individual of genotype 4,4, will choose the
strategy 5, p,,... P, are the allelic frequencies at a given generation, then by
the Hardy—Weinberg law,

X :ZPijhu" (2.7)
i

{Note that both the p/’s and x are measured before selection.) After selection
and random mating we, therefore, have

o Py pwyx)
pi= S P ) (2.8)
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where, [following (2.6), the w;(x} are given by w;(x)=~h,u,(x)+
(1 — Ay} uy(x). At this point, a traditional population- geneticist-would focus

on the stable fixed points p of transformation (2.8). An animal-conflict-
oriented population biologist would emphasize the population strategy

£=2p)= 3 by, e

coresponding to each stable equilibrium. Sometimes, information about the
population strategy £ = x{ ) is much easier to obtain than direct information
about A. Moreover, the population strategies £(p), corresponding to the
stable genetical equilibria, do not depend on the specific genetical system
except for the obvious restriction on the range of possible strategies allowed
by the system, namely,

ARy 0<A<ug) S (210)

where
lzg;idr},;p.-hupj (2.11)
4= Igé%’ﬁrszr'hijpj (2.12)

and A" is the space of probability n-vectors.

A relevant ESS value should therefore, be defined in terms of the game
matrix || ;]| and restriction (2.10) on the choice of strategies.

Following Bishop and Cannings, we have

DEFINITION, A strategy 1 <{x < u is an ESS of the population game
| ¥;;|| with the restriction 1 < y < ¢ on the choice of a strategy y (namely, an
ESS of the restricted game) if for any p # x with that restriction, conditions
{2.3}-(2.4) hold.

-Our objective now is to determine a structure under which the population
strategies (2.9), determined by the stable genetical equilibria will be the ESSs
of the restricted population game.

3. LoCcALLY ADAPTIVE SYSTEMS

In order to émphasize the main concepts and methods it is convenient to
describe the dynamics of the two-strategy population game in a general
setting which includes the examples of (2.8).,
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“Consider a 2 X2 population game || VU“ To -avoid degenerac1es we
assume S :

Vi~ Vig— Vo + Vi #0. @D

Generally, consider that the proportlon x of individuals in the populatmn
choosing the strategy §, may depend on a number of parameters p, ,..., .
with the vector p={(p,,..p,) belonging to some compact set {c.g.. p are
probability vectors belonging to the simplex).

In a formal way '

x=6(p). | (3.2)

For technical convenience, we assume that ¢ has all continuous derivatives
and that these derivatives are not all identically zero on any open set of ¢.

Finally, it is assumed that the parameters P, (= I..., n) change over
successive generations to the new values p; determined by the parameters p
of the first generation and the values u,(x) and u,(x), the game matrix
“corresponding to the population strategy x(p) (cf. (2.1)): Formally, '

pi =Sip, s 1) =fip, u,($(p)), u,{¢(p))]
=F{p), say (i=1,2,.,n) (3.3)

The frequency of individuals choosing the strategy S, in the next
generation is, therefore,

x"=¢(p’). (34)

We are interested in a structure for which iteration of (3.3) converges to a
stable vector p, the induced population strategy ¢(f) of which is always an
ESS of the restricted game. We show that this structure includes the one-
locus #-allele random mating diploid system as a special case.

DerFiNiTION. The system {3.2)-(3.3) associated with the game matrix
[la;ll and possibly with the restriction 4 < x < & on the choice of strategies is
called a locally adaptive system with respect to the (restricted) game if for
all p € I' ie., p is a strictly positive frequency vector with 1 < x = ¢(p) < &,

x'>x if  w(x) > wu(x
1) > 1y(x) (3.5)
X <x it w,(x) < uy(x)
or equivalently

sign {4(p’) — $(p)} = sign {u,($(p)) - u,($(P))}. {3.6)
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In-this case, the transformation (3.3) is also said to be locally adaptive: This
means that at any step the change p — p’ in the population parameters results
in an increase in the frequency of individuals practising the strategy that was
advantageous at the time of the change. Note, however, that in the context of
frequency dependent selection, imposed by the viability game |la;,| on a
given genetical structure, the condition (3.5) for local adaptivity of the
system does not imply an increase in the averagé fitness xu,(x)+
(1 — x) uy(x) of the population, since u,(x) and u,(x} also change with x.

From arguments of continuity, it follows that for any adaptive system,
inequality (3.5) holds, at least in a weak sense, at the boundaries x =1 or
x =g, and also

x'=x if .ul(x) = u,(x). 3.7

EXAMPLE 1. A one-locus haploid model. p;,..,p, are the frequencies of
the types Al, .» 4, in the population. 4, is the probability that ‘an individual
of type 4; (i=1,2,.,n) will choose the strategy S,. This is the only
difference between types, thus we assume #, # k, for all { # j. In this example,
for any probability vector p € Sf'

x = §(p) = Z piti (3.8)

which is obviously differentiable and, with the k, being different from one
another, nonconstant on an open-set. We further set

A= min #;, #= max_ A, 3.9

and

Jilp, uy, uy) = P,-H.’; ) (3.10)

where
w; = wix) = h;u,(x) + (1 — k) uy(x). (3.11)
From (3.8} and. (3.10) we obtain

20w py

X' =dp)="— 3.12)
90) Wi p; (
Hence, employing (3.8},

2wk oy — 3w p 2Ry b
WD

x' —x=¢(p')—¢p)=
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With (3.11), wg have
x'—x= (Zpi,w,-)_l (u, —‘u,,)[gp,-hz — (Zi‘p,-ﬁ,-)zJ, (3.13)

But 3 p k> (3 pyh;) unless the h;, — s are identical, and condition (3.5)
for local adaptiveness of the haplmd system with respect to any game of
individual survival is satisfied.”

EXAMPLE 2. A4 one-locus, random mating diploid model, {p;,..,p,) € 8"
are the frequencies of alleles in the population. As shown in the prev1ous
section

x=¢(p) =2 p; p;hy;. o (G.14)

A and y are given by (2.11) and (2.12), respectively,

pEemel Gy
U 2k Py vwpdX)
where
w,j=hiju1+(1—h;j)u2:u2+(u|—u2) hU. (3.16)

But for any given symmetric matrix ||wyl| of positive values and p;
(i=1,2,.., n) as determined in {3.15) we know (Kingman, 1961} that

Spipiwy = pipiwy (3.17)
If i

with equality only if p’ = p.
Inserting (3.16) into (3.17), one obtains

Uy + (1, — uz)Zp: pi by uy + (U — “2)21’; Pihy
7] if,

or

(i) —u))(x" —x) 20 (3.18)

with equality only at equilibrium. This proves condition (3.5) for local adap-
tivity in respect to games of individual viability.

EXAMPLE 3. A multilocus, multiallele nonepistatic additive viability
model of a randomly mated diploid population. B,,.., B, are the various
genotypes allowed by the model; p,,..., p,, are their relative frequencies in a
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given generation. A,,..., h, are the probabilities of their choosing the first
strategy. x = Z pihy is, therefore, the population strategy and

wy = wy(x) =, + (- uy) by

is the viability of the genotype B,. If the. probability A, is a sum of
probabilistic effects, each being determined at a different locus, then the
viability w;(x), determined by #, and the population strategy, is, at any given
generation, additive as well, In this case, we know (Ewens 1969) that with
recombination, ransom mating, and selection, the new frequencies p{ will
satisfy the inequality

2Piw 2 2w

with equality only at equilibrium (the w/'s are those of the previous
generation). Again, this inequality is equivalent to

(u.—uz)(zp;h.-—zp,-h,-)=(u1fu2)(x'—x)>0. (3.19)

Hence, the multilocus, nonepistatic additive model is shown to be locally
adaptive with respect to any give of individual survival,

4. STABLE FIXED POINTS OF AN ADAPTIVE SYSTEM aND ESS

TuroreM 1. If p€nt I (e, if p,>0, i=1,2,.,n) is a stable
polymorphic equilibrium of the locally adaptive transformation (3.3), then
v=¢(p) is an ESS of the game.

In order to prove this theorem we need the following lemmas about ESS.
LeMmMmA 1. A strategy y satisfy L <y <u (Le, a mixtuwre (p, 1 —y)) is an

ESS of the population game if for all x + y (within the restrictions A < x <y
of the game)

(¥ — D)l (¥) — (3] 2 0 @)

and in the case of equality in (4.1)

O =Dl — )] 0. )
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Lemma 2. (i) If the edge strategy y =21 is an ESS, then at !east for
some >0 and for all L <x < A+e, :

4,(x) < t,(x). (4.3)

(ii) 1If the edge strategy is not an ESS, then for all € > O there exist at
least onel<x<2+s

() > uy(x). (4.4)

LEMmA 3. (i) If A<y <u is an ESS, then u,(y)=u,(y) and (4.2)
holds. T :

(if) IfiA <y <uisnot an ESS, then either u,(y)# u,( ) or w, () =u,(y)
and .

(y —x)[u.(x) —i,(x)| <0 forall x +J. ' (4.5)

LimMA 4. For any l<y€p () If u(y)=u,(y) and if for all 0 <
[x—y| <& (6> 0 small enough), (x — ¥)|u, (x)—uz(x)] <0, then y is an
ESS.

(i) If y is an ESS, then (x—y)u,(x)—uy(x)] <0 for all
0<|x—y|<e :

The proofs of these lemmas are given in the Appendix.

Proof of Theorem 1. That p is a stable equilibrium of the transformation
F, means that for some vicinity § of p, p*@ =F(p'®) - p for all p* € S.
From the continuity of ¢, x, = ¢(p*”)->y = ¢(p). But from the assumption
that ¢ is not constant on any open set we know that for some p® € S,

= ¢(p°) # y. For any ¢ > 0, there is, therefore, n such that |x,,,—y| <
|x,—y| <& If x, >y, then x,,, <x, and, from (3.5), we therefore know
that u,(x,) < u,(x,). If x, <p, then x,,, > x, and therefore u,(x,) > u,(x,).
In both cases, (x,—py)[u,(x,)—u,{x,)] <0. Moreover, since y=¢(p)=
$(F( D)), it follows from (3.5) that u,(y)=u,(y). Hence, it follows from
Lemma 4 that y is an ESS. 1 ,

Next is the opposite question: Are all ESSs of the population game stable
with respect to the transformation determined by the genetical structure?

DEeFINITION, A population strategy x (1 < x < u) is. said to be stably
maintained by the transformation (3.3} if, when the initial population state ¢
determines a population strategy ¢(P) close to x, then the iteration of (3.3)
results with convergence of the population strategy to x. In a formal way:
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-~ A population strategy -4 < x < ¢ is said to. be stably maintained by the
transformation (3.3) if for small enough ¢ > 0 and for all p € I’ for which

I¢(p) — x| <e
|6E (D)) — x| >0, (4.6)

DEerFiNITION. The transformation F is said to maintain a protected
mixture of strategies if neither of the edge strategies is stably maintained by
it.

TueOREM 2. (1) If an edge strategy of a restricted game is an ESS,
then it is stably maintained by all locally adaptive transformations
.corresponding to the game.

(i) If a substantially mixed ESS A <y <y exists, then a protected
mixture of strategies is maintained by any locally adaptive transformation F
corresponding to the population game. Moreover, in this case F either stably
maintains the mixed strategy y or it allows for initially increasing fluc-
tuattons amund it

~ Proof. (i) Let p=A be an ESS. From Lemma2 we know that for
A <x <A+ e u(x) <u,(x). Hence, if ¢{p}=x, (3.5} implies that

x'=¢(p") = p(F(p)) < x. @

Convergence of the sequence ¢{F"(p)} to A is immediately implied by (4 7)
and the continuity of ¢ and F.

(ii) * Suppose A < y < is an ESS. From Lemma 3 it follows that
(¥ = D, () —u,(2)] > 0.

Hence, u,(A)} > u,(1) and for x close enough to A, say 0 <lx—2A|<e,
u (x} > uy(x).

From this and from the local adaptivity property (3.3) of F it follows that
for any p € 1" with 0 <|g(p) — 4| < &, $(E(p)) > $(p); thus [$(E(p)) — | >
|#(p) — A| and the edge strategy A4 is not stably maintained. In the same way,
p=u is also not stably maintained by F; thus, F_maintains a protected
polymorphism. '

Moreover, Lemma 3 and (3.5) also implies that if 1 < p <g is an ESS,
then for any p€ I,

sign(y — x} =sign{x’ — x). (4.8)

This means that x’ is either closer to y than x or, in the case of very
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strong selection forces, it is further apart on the other side of y. Thus, the
locally adaptive system either stably maintains the ESS value y or it allows
fluctuations around it. [ :

5. DISCUSSION

. The Darwinian theory of evolution concerns long-run changes in pheno-
types in a population due to natural selection. FHowever, long lasting
phenotypic changes may reflect changes in the distribution of genotypes ina
population. And quite generally, it is impossible to understand and predict
the effect of natural selection on a given trait without a knowledge of the
mechanism, genetical or other, by which this trait is transmitted from
generation to generation. This partly explains the fact that changes in
genotypic frequencies became the focus of modern studies in population
biology. Another reason, quite attractive to guantitatively oriented scientists,
is the possibility of drawing rigorous results about the changes in genotype
frequencies once the selection forces operating on a given genetical structure
are known.

Unfortunately, the genetical basis for evolutionary changes in phenotypic
traits which are of a direct interest to students of natural history is rarely, if
ever, known. Even less so are the exact selection forces operating on them
(e.g., Lewontin, 1974).

An alternative approach to the study of this sort of trait attempts to avoid
complications stemming from the specific nature of one genetical structure or
another. Instead, intuitively understood criteria of phenotype optimization
are suggested, with the basic asumption that despite technical counterex-
amples, accumulated through years of population genetic research, the basic
Darwinian relation between adaptation and natural selection must lead to
some sort of local optimization, at least as a workable approximation. Thus,
instead of dealing with many technical, unmeasurable, and presumably
insignificant details, it is preferable to ignore them in order to obtain simple
qualitative results which are at least casy to interpret. The crucial question is
under what circumstances the technical details being ignored are, indeed,
insignificant.

This can be setfled only by a comparison between results, obtained by the
intuitive model with those achieved under a sufficiently general family of
rigorous models. It should be kept in mind, though, that the very concept of
a “sufficiently general” family of rigerous models cannot, in itself, be deter-
mined in a rigorous way; and no family of models is general enough as to
provide us with more than a sample information about the validity of a given
criteriona in the much wider context of the theory of evolution.

One of the two perhaps most important examples involves the concept of
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evolutionarily stable strategies (ESS), suggested by Maynard Smith and
Price (1973). The question here is, what is the relevance of results drawn by
methods of game theory to the actual laws of natural selection in population
genetics theory. At least in one case, namely, that of selection for optimal
spread of seeds, interesting results drawn by pure methods of ESS (Hamilton
and May, 1977) were fully verified by a rigorous analysis of both haploid
and diploid populations (Motro, 1982a, b). In other cases, such as parent
offspring conflict (Trivers, 1974) the result of a.rigorous analysis of genetical
models seems less in agreement with the ESS model of local optimality (e.g.,
Feldman and Eshel, 1982},

The present work is an attempt to develop a theoretical basis for
comparison between ESSs of a given population game and the strategles
which are determined by exact genetical structures.

The selective value of a strategy (or phenotype) affecting the outcome of
intrapopulation conflicts is, by definition, frequency dependent. When
conflicts occur with random encounters between individuals in the
population' (though not necessarily .only then), the selective value of a
strategy ‘is additively frequency dependent. In this study we concentrate on

-the case of two alternative strategies (phenotypes), the choice (or
manifestation) of each depending, at least statistically, on the individual’s
genotype, or maybe on seme other inherited character of it. ‘

For those genetical structures which obey Fisher’s fundamental law of
natural selection (including all one locus random mating viability models) it
is shown that natural selection due to intrapopulation conflicts between
random individuals stabilizes only those genetical equilibria which determine
evolutionarily stable mixtures of strategies according to the game theory
definition of Maynard Smith and Price. Moreover, with some further
assumption, precluding fluctuations, any ESS of the appropriate population
game is stably mainained by the genetical structure,

It is now well established, however, thdt Fisher’s fundamental law,
connecting adaptation and natural selection in the intuitively Darwinian way
is mathematically false for almost all multilocus genetical systems (e.g.,
Karlin, 1975). These cast serious limitations on our ability to predict any
precise adaptive pattern, at all (cf. Maynard Smith, 1978; Lewontin 1974. It
is, therefore, not the intention of this study to claim that exact ESS values
are, indeed, predicted to be found in natural populations. Instead it is shown
that the game theory argument of ESS is mathematically equivalent in result
to rigorous analysis of the specific models studied here and, thus, can
legitimately replace them.
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APPENDIX

" Proof of Lemma 1. 'Y is an ESS il and only if for all x#y, V(»,y)>
V(x,y).and if in the case of equality V(y, x) > V{x, x).
In the case of two competiting strategies, condition (4.1) is written as

P9} + (1= 9) () > 52, (9) + (1= %) 1)
and (4.2) becomes |
o yug () (1= p) () 2 xuy () + (1= x) ().
Thus, (4.1) and (4.2) lmmedlately follow.

Proof of Lemma 2, (1) Suppose y=24 is an ESS Condmon {4.1) can
then be written as

u,(A) —u,(4) <0

If u,(1) —u,y(1) <0, it follows from the continuity of u, and u, that (4.3)
holds for at least A < x < A + &. If, on the other hand, #,(1) — #,(1) = 0, (4.2)
means that u,(x) — u,(x) < 0 for all A <x <.

(ii) Suppose y=2 is not an ESS. In this case, either (4.1} is not true, or
it holds as an equality and (4.4) results from the continuity of #, and u,, If
(4.1) holds as an equality, (4.2) means that for all A<x<u,
#,(x) — u#,(x) > 0. But in this case,

u (x) — uy(x) =, (A) — uy(A) + (@ — @, — a5, + ay)(x —4)
=6V, —Vi—Vu—Vu)x—4)20

and from.(3.1) it follows that ¥, — ¥V, — ¥y, + V5, > 0 (it can be neither
zero nor negative); hence (4.4) must hold for ail x > 4.

Proof of Lemma 3. (i) is immediate from (4.1) and (4.2). Also, if p is
not an ESS and u,(y) = u,(»), (4.6) holds at least as a weak inequality. As
in the proof of Lemma 1, the sharp version of (4.6) is implied from (3.1).
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