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INTRODUCTION

Under the assumption that the costs involved in producing male and
female offspring were equal, Fisher (1930) argued that a sex ratio of one to
one would maximize the number of grand-offspring and would, therefore, be
expected to be achieved under evolution (see also Bodmer and Edwards,
1960), Simple one-locus two-allele “exact” population genetic models of sex
determination by autosomal genes carried either by the individual (Eshel,
1975; Scudo, 1944) or its parents (Nur, 1974; Uyenoyama and Bengtsson,
1979) produce the result that the stable equilibria either determine a sex ratio
which is one to onme, or, under certain well-defined restrictions, a sex ratio
which can be interpreted as being as close as possible to one to one,
depending on the domains of attraction and parameters of the model. These
findings may be interpreted as supporting Fisher’s prediction. It is well
known that the prediction may fail for sex-linked factors affecting sex deter-
mination (Hamilton, 1967; Thomson and Feldman, 1975; Charlesworth,
1977; Uyenoyama and Bengtsson, 1981; Eshel and Feldman, 1982).

The present study considers three situations of sex determination by a
single gene locus with multiple alleles, in all of which diploid genotypes
determine the probabilities that an individual is male or female. The results
of our analysis strongly suggest that no matter how many sex determining
alleles are present in these models at equilibrium, new mutations which affect
the sex ratio will succeed if they bring it closer to one to one and fail if they
cause increasing departure from equality. To support this conclusion only
formal population genetic modeling is used; there is no recourse made to any
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criterion other than the local stability of an equilibrium involving alleles 4,,
Ay A,, which affect the sex ratio, with respect to the initial increase of a
new allele 4, ,.

MoDEL I: DIPLOID INDIVIDUAL SEX DETERMINATION

Consider a single locus with n alleles A, Ay A, Generations are
nonoverlapping. The only function of the gene is to affect the probability that
an individual is male. Thus m,, is the probability that genotype 4,4 ,is male,
Let the proportion of 4,4, in males and females be 2X y and 2¥;, (F #7) with
Xy and Yy, the corresponding proportions for the homozygotes 4,4,. The
proportions of 4,4, and 4,4, in the whole population are 27, and Z,,,
respectively. Random mating between males and females is assumed, Set
Xi=3]_1 Xy, Y, =3, ¥, for the proportions of allele A; in males and
females, respectively. :

Among the newborn offspring of the next generation we have

Zy=X,Y,+X,;Y)/2 (1)

of genotype 4,4 ;- Of these, m;; are ‘males. The male frequency among the
offspring is therefore

M'=ZZZL«mu=ZZXsYJmU' @)
I i i J

The. proportion of male 4;4; in the offspring is therefore

X{y=myZL/M, e
Hence :
Xi=N x;= ]Xlsz.YJ‘PY!EmUXi /ZM- “)
i=1 1 F
and '
Y= ;X,S(l—mu) YJ+Y,S(1—m;j)XJ¥/2(1—M) (5)
i J .
=(X; + Y, — 2MX})/2(1 — M). (6)
At equilibrium, X; = X,, ¥/ =Y, and therefore
(1-2M)X,=(1 -2M) Y, (i=1,2,.,n), )]

so that
M=3 o X;=Y, foralli=1,2,.,n.

We therefore have
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RESULT 1. There are two possible classes of equilibria, (i) symmetric
equilibria at which X,=¥, (z—l 2,.o 1} and (ii) equilibria at which the
proportion of males is M =31, Note that fixation on any single allele is a
symmetric equilibrium. :

Evolutionary Genetic Smbil:‘zy_ in Model 1

The stability of these two classes ‘of equilibria can, -in principle, be
analyzed in the usual way, that is, with respect to the » alleles already
present in the population. An equally interesting evolutionary question,
however, concerns the stability of these equilibria to invasion by an arbitrary
new allele; this is the question of evolutionary genetic stability. First
conmder a symmetrlc equlllbnum with alleles 4,, 4;,.,4, and frequencies
X, =¥, X,=¥,,., X,=V,, and introduce a new mutant 4, ,, with
frequencies X, ., and Y, ,, in males and females small enough that quadratic
terms may be neglected Then from (4) and {5) we have

X:a+l (Xn+1 + 1+l) Z mr:+le/2M+o(Xr!+15 n+1)! (8)
Vi1 =& + Vo) ( jE mn+lj‘2!)/2(1 —M)+o(X, 0, Yyia) (9)
=1 .

Write M, =3/, m, +U-X’ 1» the fraction of males with the mutant allele.
Then, to the same order,

(X:It+l+Yr’!+l):Mn+l I*Mru-l

Xn+l + Yn+1 M 2(1 _'M)

(1 _ZM)(MrHl _M)
2M(1 — M)

=1+ (10)

The right-hand side of (10) is larger than unity if either M <3 and
M, >M or M>j3 and M,,, <M. These are therefore the conditions for
local instability of a symmetric equilibrium to invasion by 4, ,. Numerical
iteration of {4} and (6) suggests that under these conditions the population
will eventually achieve an equilibrium sex ratio involving A4,, Ay A,y
which is closer to 1:1 than at the original n-allele equilibrium,

The other equilibrium, characterized by M = }, may be investigated in the
same way. X, ,, and Y, , have the same interpretation as before, but since
the equilibrium value of M is 1 the linearized versions of (4) and (5) are now

n

X::+1_X v mn+UY + Yu+l Z n+ljij (11)

n+1 ‘_,
J i
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) " L n . .
YJ’r+I:Xu+l (]mzmr!+ljyj)+ylr+l (I_Z mr!+lej)- (12)
i=1 J=1

One cigenvalue of the matrix on the right of (11), (12) is unity and the other
is 3)y iy (P~ X, 7} which is less than or equal to unity in absolute value,
with equality only in degenerate cases. Numerical iteration of (4) and (6)
from the neighborhood of an equilibrium with M =1 suggests that there is
very fast return to an (n + 1)-allele surface characterized by M =1 so that
the even sex-ratio is preserved from such a starting condition. :

MODEL II: DIPLOID ORFSPRING SEX DETERMINED BY
‘MOTHER’S AUTOSOMAL (GENES

As for model 1, X, and 2.X,; are the proportions of 4,4, and 4,4 ; in males
with ¥; and 2Y); the corresponding fractions in females. Also, as before,

X=Xy Y, =37,

J J

Now let m,; be the fraction of males in the progeny of an A;A; mother, and
set

Z, =; m,Y,. (13)

The fraction of males among the offspring produced by this generation is

L H b
M= N mY,=\ Z,. (14)
i=14=1 i=1

Under the assumption of random mating, exactly X,/2 of the offspring of
a mother of genotype 4,4; will be of genotype 4,4, (k= 1, 2,..., n). Hence

H H
A= (Xk ) myYy +XIJS mijk})/ZM
= =1

=
=X, Z;+ X, Z,)/2M. (15)
In the same way
V=X Y+ XY, ~ X, Z,— X, Z,)/2(] — M)
=(XkY,-+X,Yk—2MX:k)/2(I — M), (16)
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Sum (15) and (16) over k to obtain
X =X/2+Z/)2M (17
and
Yi = (Y, + X;— 2MX])/2(1 — M). (18)
Hence at equilibrium
(1-2M) Y, =(1-2M) X,

and as before either M = 1 at equilibrium or X, = Y,. In addition, from (17)
at equilibrium ' '

Z,=MX,
and inserting this into (15) at equilibrium we have
X=X X, (19}
If M+ 4 at equilibrium, so that X, =Y, then (16) becomes
Y =X X, =YY, ’ (20)
at equilibriurﬁ, with M =37 2., my X, X;.

Et)olutiondry Genetic Stability for Model 11

Consider first any equilibrium at which M #1 and assume that a new
allele 4, ,, appears at low frequency. Set ¢, = X,,,, and §,=Y,,,,,, half the
frequency of heterozygotes 4,4, ., in males and females, respectively. Also
set £ =Y'"_, &, and denote equilibrium values for the alleles and genotypes
involving A, Ay 4, by X, ?U, etc. Then from (15) and (16) we have

e =¢/2+ 2 Oy 1/ 2M (2N

i=1

and

51 = o(P,— Zy2(1 — M) + X, jz (U, )20 M) (22)

for i =1, 2,..., n with quadratic terms form 4, , neglected.
At a symmetric equilibrium from (17) to (20) the linear approximation in

(21), {22) may be written
(-G K3
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where 8 = (d, ,,, 1,0 8, ., ;) Written as a column, and

i 1/2 mln+1/2M e mrm+l/2M T
X“v/z Xl(l *mln+l) . Xl(l —mmr+l)
A= | 2(1 — M) 21—M) |- (24)
N X,(1=my,, ) X,(0=m,,. )
X 2 L] 41 M nntl
i o 2(1—M) 2(1 = M)

Now ‘A is a strictly positive matrix and therefore has a unique strictly
positive eigenvector associated with its largest eigenvalue. For such a right
eigenvector to take the form (n, &X,, X PP C)?u) the associated eigenvalue
must solve the 2 X 2 system

’1/2 + Zjﬂdu’+1/2ﬂ4=’ln
nf2+ 801 =M, )/2(1 — M) = i& (25)

The leading eigenvalue of this 2 X 2 system will therefore also be the leading
eigenvalue of A. A necessary and sufficient condition that this leading eigen-
value be greater than unity is that either M < $ and M,,, > M or M > ! and
M, <M, where M, =3, X,m,,,,. These are therefore the conditions
for local instability of a symmetric equilibrium to invasion by 4,,,.
Numerical iteration of (15) and (16) suggests that under these local
instability conditions the population will eventually achieve an {n + 1)-allele
equilibrium at which the sex ratio is closer to 1:1 than at the original »-
allele equilibrium.

Now consider the equilibrium' M = {, and refer again to (21) and (22).
Clearly, to this order of approximation, -

L H
8’+ Z§I=E+ Z 5,‘,
=1 =1

so that there is an eigenvalue of unity for the linear approximation, Further
manipulation of the local stability matrix in this case produces # — 2 zero
cigenvalues while the remaining two are the roots of the quadratic

#
’12 _A(% _MJ|+I) + IZ (Mu+l - miquI)(Ying')'
h 1 o

These last two are less than unity in absolute value. As with model 1,
although we cannot answer the local stability question here, numerical
iteration of (15) and (16) suggests that there is fast return to an {n+1)-
allele surface characterized by M =} from such a starting condition.
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MobeL I XY SYSTEM wiTH MOTHER CONTROLLING SEX DETERMINATION

Here females are XX, males XY, and m,; is the proportion of males (i.e.,
haploids) in the progeny of an A,4; female. Again let 2Y;; and ¥, be the
frequency of 4,4, and 4,4, females (diploids), respectively, and X, the
frequency of 4, males Set Y 2 Y,j and M =73, Z‘J Y, m;. Then

Xi =Y Y, m /M, : - (26)
i ‘
and
R .
1
:m.[xj Y, + X, Y, — MX|X; - MX,X]], (28)
using (26). Then clearly
1
Yf=m[YE+Xi_M(Xr+X¢')]' (29)

At equilibrium X] = X,, Y] =Y, and (29) produces
(1-2M)X;=(1-2M)7Y,.

Thus as in the previous models, at equilibrium either M =3 or X, =Y

Evolutionary Genetic Stability for Model 111

Consider first the symmetric equilibrium with X, =Y, = X| = Y]. Assume
that a new mutant allele 4, ,, arises near this equilibrium wlth frequency &
in males. Replace the small variables Y, by &, for i =1, 2,..., n. From (26)
and (27) de'foe =0, d&'[dd, =y, /M. 081f0e = X2, 86]/06;=
(1 —rmy, H)X,/Z(l -~ M). Hence the local stability matrix for the symmetric
equilibrium C is

[ 0 mf,ll+1/M the mn.r!+]/M
‘JE'I/2 (l—m1,,+1)il/2(1—M) (l—mml+l)-X‘—l/2(1_M)

C= Xz/z (l_mln+1)iz/2(l—M) (1—mnn+1)jz/2(1”M) .

[ %2 (I —m ) R20 =00 o (L= my ) X201 — M) |
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By arguments similar to those of the previous sections the nonzero eigen-
values of C are those of the 2 X 2 matrix D:

; 0 M, /M
D_[% (1~M,,;,,+)/2(1—M)]’ (30)

where M, ,, =31 m, . X,. Now D? is a strictly positive matrix and
hence, by the Frobenius theorem, the largest eigenvaiue of the matrix is
positive. This largest eigenvalue is greater than unity if and only if

(1 —2M)(M — M,) < 0. (31)

Thus, as with models I and II we infer in the standard way that a
symmetric #-allele equilibrium is unstable to invasion by 4,,, if either
M <3 and M,,, <M. Numerical iteration of (26) and (28) suggests that
under these conditions the (# + 1)-allele equilibrium achieved has a more
even sex ratio than M: 1 — M,

At the M =1 equilibrium the local stability to invasion by A, is
governed by an eigenvalue of unity with the other nonzero eigenvalues given
by the roots of a quadratic which are less than unity in absolute value. As
with the other models we expect that there is fast feturn to an {n + 1)-allele
surface M =1 in this case.

DIsSCUSSION

There are three components to the equilibrium structure common to
models I-II1, and these are independent of the number of alleles, 1, involved:

(i) There are two classes of equilibria; a symmetric class with allele
frequencies equal in the sexes and unequal sex ratio, and another class at
which the sex ratio is one to one.

(if) Any n-allele symmetric equilibrium is unstable to allele 4, o if
the marginal sex ratio M, ,, induced by A4,,, satisfies the property that
M, >Mif M <3 orM,,, <Mif M> 1 This condition is satisfied if the
marginal sex ratio is more even than M: 1 — M, but it may also be satisfied
if, for example, M,,, >3 with M,,, —~31>41—M. Even so, numerical
iteration of the various recursions suggests that in all three models, when a
symmetric n-allele equilibrium is unstable the (14 1)-allele equilibrium
ultimately reached has a more even sex ratio than M: 1 — M. It remains a
conjecture that this is generally true in all three models, The proof promises
to be difficult in view of the lack of monotonicity of the population sex ratio
over time.
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(iii) At any n-allele equilibrium with one to one sex ratio the leading
eigenvalue controlling the local stability of the equilibrium to invasion by a
new allele is unity. Thus, local linear analysis is not informative for stability.
There appears, however, from numerical work, to be an (n + 1)- -allele surface
of even sex ratio which is rapidly reached from a starting condition near an
n-allele even sex ratio equilibrium,

These results produce the conjecture that there is a long-term evolutionary
tendency to favor those alleles producing a more even sex ratio,

Suppose, more generally, that in a population with alleles 4,,4,,...,4,
affecting only the sex ratio there is a sex ratio M*:1—M* with the
following two properties:

‘1. Any equilibrium of the population with alleles 4,,4,,...4, and a
sex ratio M: 1 —M other than M*:;1—M* is unstable to allele 4, if
M<M*and M, >M orif M>M* and M,_, > M, where M,,Jrl is the
marginal sex ratio for 4, at the n-allele equilibrium.

II. At any n-allele equilibrium with sex ratio M*: | — M* the leading
eigenvalue controlling the local stability of the equilibrium to invasion by a
‘new allele is unity.

A sex ratio M*: 1 — M* satisfying properties I and II is said to exhibit
evolutionary genetic stability, EGS. In the models considered above the even
sex ratio appears to have EGS. Properties I and II are not sufficient to
guarantee that the population sex ratio should approach M*: 1 —M *: the
latter would require global dynamic analysis of the genotype frequency
recursions. Numerical work on the three models treated above suggests that
there is long-term global evolution toward the even sex ratio.

It should be stressed that EGS invokes only the kinetics (and therefore
only the parameters) of the genetic model. Fisher’s original argument and
many subsequent studies of the sex ratio (and other evolutionary problems)
were made in terms of optimal population strategies, Many have used the
concept of evolutionary stable strategy introduced by Maynard Smith and
Price (1973). We suggest that since properties I and Il involve only the
underlying population genetic recursions, and require the introduction of no
“payment” functions extraneous to the kinetic genotype frequency model,
EGS arguments constitute a more direct population genetic approach, one
which may prove to be useful for population genetic models of the evolution
of other parameters.
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