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INTRODUCTION

Sex determination by ploidy, either of the entire genome {in haplodiploid
populations) or of special chromosomes (XY or X0 systems) is a common
occurrence. It is commonly held that observed sex ratios are an evolutionary -
consequence of the sex-determination system; for example, that the XY
system helps produce and/or maintain sex ratios to 1:1 (Edwards, 1961;
williams, 1975). It should be noted, however, that factors such as
segregation distortipn in the sex chromosomes (see e.g. Curtsinger and
Feldman, 1980, and references therein), sex-dependent fitness components
(see e.g. Thomson ' and Feldman 1975, Charlesworth, 1977) -as well as
hermaphroditism, parthogenesis, and sex conversion (see e.g. Williams, 1975,
Chapter 10) are all expected to affect the sex ratio in those XY systems for
which they are relevant. On the other hand, sex ratios in- species with.other
sex-determining systems may also be close to 1:1 (Scudo, 1964; Spieth,
1974; Charlesworth, 1977). Thus the cytogenetic pattern can be regarded as
neither a necessary nor a sufficient factor for the explanation of observed sex
ratios. Nevertheless, the connection between sex determination and the sex
ratio remains compelling to evolutionary theorists. N :

The evolution of a sex ratio close to 1:1 (or rather the evolution of sex
determination which should determine such a ratio) was first explained by
Fisher (1930) as a consequence of maximization of the number of grand-
offspring through optimal allocation of parental investment in male and
female offspring (see also Bodmer and Edwards, 1960). A crucial
evolutionary assumption in Fisher’s argument is that each sex must supply
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half the genetical material of all subsequent generations. This is valid for
autosomal genes in diploid populations.

Nur (1974) and Uyenoyama and Bengtsson (1979) have studied models in
which the sex ratio among offspring is determined by their parents’
genotypes at an autosomal locus with two alleles. Eshel (1975) considered
the case where the probability that an individual is male is governed by its
own genotype at an autosomal -locus with two alleles. Eshel and
Feldman (1982) generalized these treatments to an arbitrary number of
alleles, Using the criterion of invasibility by a new sex-ratio-controlling allele
they suggested that Fisher’s proposition is valid in the long-term
evolutionary sense even though for a given fixed set of alleles, the stable sex
ratio in all of these exact genetical treatments may not be 1:1,

The situation is different when we consider sex-linked genes (or a
haplodiploid species). Theoretical difficulties in the application of Fisher’s
argument to sex-linked genes have been pointed out by Shaw (1958),
Hamilton (1967), and Bengtsson (1977). Although Fisher’s argument can be
extended to cover the XY situation (see e.g. Shaw and Mohler, 1953; Hartl
and Brown, 1970, and below) the predictions depend on whether the
considered genes affect the individual’s sex, its offspring’s sex, or it sibs’ sex,
For example, Hamilton (1967) suggests that any mutation which increases
the probability of males in the offspring will, if it occurs on the Y
chromosome, become established in the population. Selection of X-linked
genes which determine the sex of offspring produces a stable sex ratio of 1:1
(Hartl and Brown, 1970, Charlesworth, 1977; Uyenoyama and Bengtsson,
1979, 1981). For X-linked genes in systems where the sister determines the
sex ratio, Trivers and Hare (1976), Oster et al. (1977), Charnov (1978),
MacNair (1978), and Benford {1978) prédict a 1:3 sex ratio, although
Uyenoyama and Bengtsson (1981) point out that this prediction is subject to
some analytical complications. For al! of these predictions it is assumed that
haploid (or XY) individuals are necessarily male and diploids (or XX) are
necessarily female. (The opposite would be assumed in considering birds of
Lepidoptera.) Examples of departure from this assumption of complete deter-
mination by ploidy, although rare (see e.g. Kalela and Oksala, 1966) raise
questions concerning the evolution of genes which affect the sex of their
haploid (XY) or diploid (XX) carriers in a haplodiploid (sex-linked)
population. Of particular interest is the evolution of the sex ratio in of a
system in which sex is determined by ploidy.

In this study we analyze a one-locus n-allele system of individual sex
determination in a haplodiploid population, We suggest that there is a sex
ratio which is an evolutionary “optimum” in the sense that new sex-ratio
alleles enter the population only if their long-term evolutionary consequence
is to bring the population sex ratio closer to this optimum, If the sex ratio is
at this optimum value then as in Eshel and Feldman (1982), we expect any
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sex-ratio alleles that enter the population to rapidly reestablish the optimum
sex ratio. This value is different, in general, from 1:1 and depends on the
fraction of haploids in the population. With haploid males the system of sex
determination by ploidy is shown to be stable to perturbation in the diploids
only if additional features are imposed on the model.

Model

The diploid genotypes in the population are 4,4; and the haploids 4,
(1, j =1, 2., n). The frequencies of the genotypes A,4;, 4,4, and A4, are,
respectively, X;, 2X;;, and Y,. The fraction a =3 {_, ¥; of haploids in the
population is assumed to be fixed by a mechanism extrinsic to the 4 locus
(e.g., by material or sister behavior). Finally, the probabilities that genotypes
A;A; and A, are male are m,; and /;, respectively. Thus, in organisms such as
mammals or Drosophila we would have m; =0, [;=1 for all i, j, in which
case the male to female sex ratio would be a: 1 —a. One objective of the
present study is to determine the stability of this sex ratio within a more
general framework of sex determination in a haplodiploid population. With
the above definitions the frequency of males in the population is

M=ZZmUXij+Zlin" n
i J i

It is assumed that diploid offspring are produced by matings between
males and females of each ploidy, for example, between male diploids and
female haploids and between male and female haploids. Haploids, on the
other hand, can be produced only from unfertilized females of either ploidy.
From these assumptions we have the recursions for diploids and haploids in
the next generation in terms of those in the present:

' (1 #a) % %‘ _ B
X.fj" 2M(1_M) |:k_=|l mllek"’l,Y':ll:r‘;l (1 mjr)XJ,.-I—(l [!)yj
" n
+ [Sl my, Xpp + IJYJ][’(EI (1 =) Xy +. (1= 1) Y;] ‘ 2)
r= -
o H
Yi= Y S (1 —mp) Xy + (1 =) Y. (3)

k=1 =«

These recursions specify the evolution of the genotype frequencies for
Lj=1, 2., n

Remark. In the above model it is assumed that a haploid individual
always receives all of its genes from a parent of one sex which we call
female. This would be the case for true haplodiploid populations as well as
for X-linked genes in an XY system. In XO systetns, however, a haploid
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(XO) offspring receives its genes from its male parent. The above model
becomes applicable to such systems by changing the labels of males and
females.

Analysis of the Model
Let

pI=ZXIk+YI (4)
X

and
Fy= (Z'mrkaJr !, Yf)/M (5)-
k

be the frequencies of 4, in the population and among males, respectively,
Then using (2) and (3) in (4) and (5) we have for i=1,2,.., n,

=) Xi+Y]
k=1

= {a(py—Mr)) + (1 - @)(p; +r; — 2Mr))/2}/(1 — M) (6)
1 l,
i ="A‘F IQT}W‘(Pr—MI‘f)
1- | :
¥ -za%m; Pty + piri = 2Mriry) I

At equilibrium, pi=p,nri=rn and (6) is easily reduced to

(l—ae—2M)p,=(1 —a—2M)r,. )
Hence, at equilibrium, either
M=(1-—-a)2=M*, (9}
say, or
| Bi=7,. (10)

In the latter case, (7) reduces at equilibrium to

[ —al,— (l—a)ZmUij =0 (11

{({=1,2,.., n). Solutions of (11) include fixation equilibria with X,=¥,= 1
for some / and X;=Y,=0 for J# 1. The solutions of (11} will be termed
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symmetric equilibria (see also Eshel, 1975; Uyenoyama and Bengtsson, 1979,
1981).

Stability of Symmetric Equilibria

Assume that a population with alleles 4,,4,,...,4, has reached a stable
symmetric equilibrium, (11). A new aliele 4,,, appears in low frequency
and we ask when will 4,,, invade the population. This will occur if the
original equilibrium is unstable in the higher-dimensional space of
Ay, Ay d,, . We seek the conditions determining Jocal stability of this
original equilibrium. To this end assume that p, ., and r,,, are sufficiently
small that quadratic terms of (6) and {7) are negligible. Then the local linear
transformation in p, and r; can be written

p:'“):S (pn+1) 12)
(r:l+ 1 rn+ 1 ’ (
where the local stability matrix S, determined from (6) and (7), is
S=[ (1 + a)/2(1 — M)
[za[nJrl + (1 - a)Mn+lJ/2M(l - M)

(1 — o — 2M)/2(1 — M)

(1= @) f, (1 — 2M) — 20, , M/2M(1 ] 0¥

and M,_, =3 m, .y, B;=2 M, F;. The stability of (12) is determined
by the eigenvalue of S. It is a matter of algebra to show that a necessary and
sufficient condition for the largest eigenvalue of S to be greater than unity is

(1 —a—2M){M —al,_, — (1 —a) M, ,)/M(1 —M) <0.  (14)

Thus (14) is sufficient in the usual sense for the instability of this
equilibrium. It is informative to examine (14) closer; (14) is satisfied if either

M<(l—a)2=M* (15a)
and
al (1 —a)M,  >M (15b)
or .
M>(1—-a)2=M* (16a)
and
a1 —a)M,,, < MI. (16b)

Now al,,, + (1—-a) M,,, is the frequency of males in the new mutant
carrying genotypes. Thus we may restate the above as:
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ResuLT 1. (i) Any equilibrium at which the proportion of males M is.
less than (1 — a)/2 is unstable to new mutations whose marginal frequency of
males in the population is larger than M and is stable to mutations whose
marginal frequenicy of males is less than M, where the marginal Srequency
involves the resident alleles.

(ii) The opposite results hold if M is greater than (1 — a)/2.

These results follow from (15a), (15b), and (16a), (16b) and the fact that
if M+ M* then the equilibrium for Ay, A4y, A, must be symmetric in the
sense that ;= F; (i =1, 2,..., n). It appears that in the long run the success of
A, satisfying (15) or (16) results in an (# 4 1)-allele equilibrium with the
sex ratio closer to (I + a): (I + a) than to M: 1 — M.

Properties of an Asymmetric Equilibrium, M = (1 — a)/2

Again suppose that the alleles 4,,4,,..., 4, are present at an equilibrium
of the form M = (1 —a)/2. We investigate the local stability of such an
equilibrium to the initial increase of a new allele 4, ,. As before, assume
Puyr and r, . are sufficiently small that quadratic terms of (6) and (7) can
be neglected. Then, since M = (1 — a)/2 we have

p;’l+l=pn+l+0(.pn+l!rn+l) (17)
"

4aln+1/(l - a2) + 2 2 mn+1jfj/(] + a)
J=1

' -
rn+1 ‘Pn+l

a2 8 melg - —a)f;l~2al,,+,{/(l Fa). (18)

j=

The ecigenvalues are therefore A, = 1 and

ly=2

> tay By = (1)l —ady, Jara. a9

Since m,, ;<1 and /,,, <1 with g, and #, intrinsically non-negative, it is
obvious that 1 > 1,. In addition,

H n
ltaz2al,,,+2 3 m,, ; } > mijjk+lj},j$'
i=

Hence A, > —1. Thus the larger eigenvalue of the loca! linear transformation
(17), (18) is unity and we cannot infer the local stability from this linear
analysis. In the same way, however, as in the companion paper (Eshel and
Feldman, 1982), there appears to be a curve of sex ratio 1 — « : 1 + a which
appears to rapidly attract new alleles in this case.
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The Special Case When Haploids Are Male

If all haploids are necessarily male, then for any / (including i=n + 1),
I;=1. Suppose that all diploids of genotype A,4; with i, j=1,2,..,n are
female, i.e.,, m;=0 for these i, . We ask is this state stable to the initial
increase of an allele 4,,, , which is such that for at least some #, m,, ., > 0.
In other words, is the state at which all diploids are female stable to invasion
by an allele which converts some diploids to male? This is a special case of
the analysis of the previous sections. The assumptions entail that

n R i H
M= Zm,-jXH-fZl,-Y,-:Z Y, =a. (20)
=1

r=1j=1 i=1

Now since M = a, (16b) is impossible and (15b} must hold, the condition for
the stability of symmetric equilibria is

M=a> (1 —-a)2=M*

‘which is equivalent to a > 4. A special case of this model occurs when the
offspring sex ratio (determined by the mother, say) is 1:1. As shown above a
new allele converting diploids into males will be initially advantageous if
a < 3. In particular, this holds if M =a =1, which has been predicted by
Trivers and Hare (1976) to be the “optimum® sex ratio selected via sister
control of the sex ratic in haplodiploids (see also Oster e al., 1977,
Uyenoyama and Bengtsson, 1981).

Interpretation of Above Results as an Extension of Fisher’s Argument

The properties of the spmmetric and asymmetric equilibria described above
produce the conjecture that the value (1 —a)/2 is an “optimal” fraction of
males in the sense that there should be evolution toward this value. A
rigorous proof of this conjecture appears to be quite difficult due to the lack
of monotonicity in the sex-ratio trajectories over time.

The male fraction (1 —a)/2 is the probability that an allele taken at
random from a sexual cell of an individual {either haploid or diploid} of the
present generation was transmitted by a male parent in the previous
generation. Indeed, e is the probability that the allele is taken from a haploid
parent, in which case, according to the model, it could not have been
transmitted by a male. And 1 — a is the probability that the allele is taken
from a diploid individual in which case the conditional probability that it
came from a male (given the individual’s diploid state) is 1, In a diploid
population we have ¢ =0 and M* =4 and the result agrees with Fisher’s
argument for the evolution of a sex ratio of 1:1 in diploid populations.

The following is an extension of Fisher’s argument to include sex deter-
mination by the carrier in a haploid population. If a is the fraction (deter-
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mined by parents) of haploid offspring and M is the fraction of {(haploid or
diploid) mailes, then a fraction M of all individuals in the population (either
haploid or diploid) contribute M*(a)= (1 —a)/2 (ie. 3 in Fisher’s
argument) of all the alleles to the next generation. A proportion 1 — M of the
population (females) contributes the rest, i.e., 1 — M*(a) of the alleles, The
ratio between the average male contribution and the average of females is
therefore '

M*(a) 1—M*(a)
M ) 1-M

This ratio is larger or smaller than unity if M < M*(a) or M > M*(a),
respectively, Following Fisher’s reasoning, male advantage is expected if
M < M*(a) and male disadvantage is expected if M > M*(a). Heuristically,
it is expected that natural selection should act to shift the sex ratio closer to
M*(a): 1 —M*(a). Our model lends some analytic credence to this
argument.

Di1sCussION

Possible examples of the type of model studied here include systems of sex
determination in the platyfish Xiphophorus maculatus (Kallman, 1965) and a
number of other fish species, while specific environmental stimuli are known
to affect sex differentiation in a number of amphibia. The evolutionary
consequences of the possibility that a given genotype may be of either sex
must be distinguished from those resulting from situations in which the
haploid fraction is determined maternally or by worker sisters. We have
pursued the former question in a haplodiploid context in which, in every
generation the fraction of haploid offspring is the constant a. We suggest
that alleles which render the male fraction to (1 —a)/2 will eventually be
favored and those causing further departure from (1 —a)/2 will eventually
be lost. In this sense, M* = (1 —a)/2 is an optimal sex ratio and extends
Fisher’s argument for the optimality of the 1:1 sex ratio in diploids to the
haplodiploid situation. According to the definition of Eshel and Feldman
(1982), 1 —a:1 4 a has the property of evolutionary genetic stability, EGS.

A corollary to our result refers to the case in which the only ambiguity in
sex determination occurs in diploids (this is probably the most usual case of
such ambiguity in nature). Here an equilibrium in which ploidy completely
determines sex (i.e., all diploid or XX individuals are females) is stable as
long as the fraction of haploids a is larger than 1. This is likely to be the
case in XY and XO vertebrates and insects as well as non-social
Hymenoptera (Uyenoyama and Bengtsson, 1981). The situation, however,
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may be different if, as in eusocial Hymenoptera, the sex ratio is determined
by sister workers (see e.g., Trivers and Hare, 1976; Oster et al, 1977;
Uyenoyama and Bengtsson, 1981). In this case the male fraction may be
close to 1, which according to the previous remark would permit alleles
causing diploid males to enter the population. Diploid males have been
detected in Hymenoptera although they are, at least in the case of Apis
mellifera, usually eaten as larvae by workers (Adams ef al., 1977).

We suggest that the evolution of sex determination and the sex-ratio in XY
systems may be influenced by any or all of the following seven factors.

(i) Autosomal mutations affecting the sex ratio among offspring of
their carriers.

(ii) Autosomal mutations affecting the sex determination of their
carriers.

(iii) Sex-linked mutations affecting the sex ratio among offspring born
to the carrier mother.

{(iv) Mutations on the X chromosome which affect the sex ratio of
offspring born to a carrier (XY) father.

(v) Y-linked mutations which affect the sex ratio among offspring of
carriers.

(vi) Sex-linked mutations which affect the carrier’s sex determination.

(vii) Mutations which affect the sex ratio may be pleiotiopic with
effects on mortality, viability, mate choice, etc. in such a way that these
influence the sex ratio.

Fisher’s argument is expressed in terms of the passage of genes to the next
generation through males and females. Factors (i) and (ii) are relevant here,
and Fishers argument has evaluated in exact genetical terms (for one locus,
two allele models in terms of genefrequency changes) by Uyenoyama and
Bengtsson (1979) and Eshel (1975) for (i) and (ii), respectively. The 1:1 sex
ratio in these cases occurs irrespective of whether the genes affect the sex
determination of an individual of the sex ratio among its offspring. Oster ef
al. (1977) and Uyenoyama and Bengtsson (1981) have shown that factors of
class (iii} also produce a 1:1 sex ratio. Factor (v), however, may cause
substantial deviations from the 1:1 sex ratio (Hamilton, 1967; Thomson and
Feldman, 1975) and the same can be said of factor (iv) which might be
exemplified by the XY females in the wood lemming (Bengtsson, 1977;
Uyenoyoma and Bengtsson, 1981).
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INTRODUCTION

Under the assumption that the costs involved in producing male and
female offspring were equal, Fisher (1930) argued that a sex ratio of one to
one would maximize the number of grand-offspring and would, therefore, be
expected to be achieved under evolution (see also Bodmer and Edwards,
1960). Simple one-locus two-allele “exact” population genetic models of sex
determination by autosomal genes carried either by the individual (Eshel,
1975; Scudo, 1944) or its parents (Nur, 1974; Uyenoyama and Bengtsson,
1979) produce the result that the stable equilibria either determine a sex ratio
which is one to one, or, under certain well-defined restrictions, a sex ratio
which can be interpreted as being as close -as possible to one to one,
depending on the domains of attraction and parameters of the model. These
findings may be interpreted as supporting Fisher’s prediction, It is well
known that the prediction may fail for sex-linked factors affecting sex deter-
mination (Hamilton, 1967; Thomson and Feldman, 1975; Charlesworth,
1977; Uyenoyama and Bengtsson, 1981; Eshel and Feldman, 1982).

The present study considers three situations of sex determination by a
single gene locus with multiple alleles, in all of which diploid genotypes
determine the probabilities that an individual is male or female. The results
of our analysis strongly suggest that no matter how many sex determining
alleles are present in these models at equilibrium, new mutations which affect
the sex ratio will succeed if they bring it closer to one to one and fail if they
cause increasing departure from equality. To support this conclusion only
formal population genetic modeling is used; there is no recourse made to any

* Research supported in part by National Institutes of Health grants GM 10452 and
GM 28106, ’ . ) .
t permanent Address: Department of Statistics, Tel Aviv University, Tel Aviv, [srael. -

430
A040. 52009 /27 /0104 30— 1 0802.00/0 ‘



EVOLUTIONARY GENETIC STABILITY OF SEX RATIO 431

criterion other than the local stability of an equilibrium involving alleles 4,,
Ay sy A,, which affect the sex ratio, with respect to the initial increase of a
new allele 4, , .

MOoDEL I: DIPLOID INDIVIDUAL SEX DETERMINATION

Consider a single locus with # alleles 4,,4,,..,4,. Generations are
nonoverlapping. The only function of the gene is to affect the probability that
an individual is male. Thus my; is the probability that genotype A,4; is male.
Let the proportion of 4,4, in males and females be 2.X y and 2Y,, (i # j) with
Xy, and Y, the corresponding proportions for the homozygotes 4,4,. The
proportions of 4,4, and 4,4, in the whole population are 27, and Z,,,
respectively. Random mating between males and females is assumed. Set
Xi=)j1 Xy, Y=Y}, ¥, for the proportions of allele A, in males and
females, respectively.

Among the newborn offspring of the next generation we have

Zy=X Y, + X,Y))/2 (1)

of genotype A,4 - Of these, m, are- males. The male frequency among file
offspring is therefore

M=4T_-zzirmrf‘_“ZZXijmu- 2
5 LI

The proportion of male 4,4 ; in the offspring is therefore

Hence
Xi=3 xy= )X,Smqu+Y,-2mUXj£/2M, 4)
J=1 : J i
and
Yi= JXJS(I_mij)YJ+Y!E(l_mU)XJ'E/2(1_M) )
4 J
=X+ Y, - 2MX])/2(1 — M), (6)

At equilibrium, X; = X,, ¥} =¥, and theréfore
(I-2M)X,=(1-2M) Y, (i=12,.,n), (7)
80 that
M=3 or X,=7, foralli=1,2,.,n

We therefore have
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ResuLt 1. There are two possible classes of equilibria, (i) symmetric
equilibria at which X, = ¥, (i=1,2,.,n) and (i) equilibria at which the
proportion of males is M =1, Note that fixation on any single allele is a
symmetric equilibrium. : :

Evolutionary Genetic Stability in Model 1

The stability of these two classes of equilibria can, in principle, be
analyzed in the usual way, that is, with respect to the n alleles already
present in the population, An equally interesting evolutionary question,
however, concerns the stability of these equilibria to invasion by an arbitrary
new allele; this is the question of evolutionary genetic stability. First
consider a symmetric equilibrium with alleles 4, 4;,..., 4, and frequencies
X, =7, X= ¥y X,=7,, and introduce a new mutant 4,,,, with
frequencies X, ,, and Y, , in males and females small enough that quadratic
terms may be neglected. Then from (4) and (5) we have

[
X:H-l = (Xn+1 + Yn+l) Z mn+lej/2M+ O(X"+1, Yn+1)’ (8)

i=1

Y=yt Yars) (1 . m,m,-zfy)/z(l M)+ 0 Yagr) )
it pX

Write M,,,=2/-1M, HJX' ;» the fraction of males with the mutant allele.
Then, to the same order,

(X'+1+Y:|+l)_Mn+l l_M!l-!-l

i

Xn+l+Yn+l M 2(1"M) .

(1 —ZM)(MM+1 —M)
2M(1 — M) '

=1+ (10)

The right-hand side of (10) is larger than unity if either M <3 and
M,,, >Mor M>j-and M, ,, <M. These are therefore the conditions for
local instability of a symmetric equilibrium to invasion by 4, . Numerical
iteration of (4) and (6) suggests that under these conditions the population
will eventually achieve an equilibrium sex ratio involving A Ay dyy
which is closer to 1:1 than at the original n-allele equilibrium.

The other equilibrium, characterized by M = 1, may be investigated in the
same way. X, ,, and Y, , have the same interpretation as before, but since
the equilibrium value of M is 3 the linearized versions of (4) and (5) are now

n

n
::+1=Xn+ljz mn+lej+Yn+l Zmrz+lej (11)
=1 Jj=1
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" ) n .
Y:H-l =Xn'+1 (1 - Ekmn+lej) + Yn+1 (1 - Z mn+lej) E (12)
J=1 i=1

One eigenvalue of the matrix on the right of (11), (12) is unity and the other
is 371 m, 41 (¥, — X)) which is less than or equal to unity in absolute value,
with equality only in degenerate cases. Numerical iteration of (4) and (6)
from the neighborhood of an equilibrium with A/ = 3 suggests that there is
very fast return to an (n + 1)-allele surface characterized by M =4 so that
the even sex-ratio is preserved from such a starting condition,

MopEeL II: DipLoID OFFSPRING SEX DETERMINED BY
MOTHER’s AUTOSOMAL GENES

As for model 1, X, and 2X,, are the proportions of A4, and 4,4, in males
with ¥, and 2Y, the corresponding fractions in females. Also, as before,

X=)x, v=Ny,
i J
Now let m;; be the fraction of males in the progeny of an 4,4, mother, and
set

Z=N"m,¥,. : (13)
J

The fraction of males among the offspring produced by this generation is

n n

M:EV

N
myYy=\ Z,. (14)
i=1j=t i=1

Under the assumption of random mating, exactly X, /2 of the offspring of
a mother of genotype 4,4, will be of genotype 4,4, (k= 1,2,.., n). Hence

Xiy= (Xk > om Y XN mHYU)/ZM
J=1 J=1
= (X, Z,+ X,Z,)/2M. | (15)

In t'he same way
Y= (XY, + XY, ~ X, Z,— X, Z,)/2(1 — M)
= (X, Y+ X, Y, — 2MX})/2(1 — M), (16)
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Sum (15) and. (16) over k to obtain
X1 =X/2+ Z,/2M (17D
and
Y= (Y, + X, — 2MX])/2(1 — M). ' (18)
Hence at equilibrium
(1-2M)Y,=(1-2M) X,

and as before either M = 1 at equilibrium or X; = Y;. In addition, from (17)
at equilibrium :

é, = MX,,
and inserting this into (15) at equilibrium we have
X = XXy (19)
If M+ 1 at equilibrium, so that X, =Y, then (16) becomes
Yp=XX, =YY, (20)
at equilibrium, with M =37, 227, myXi X,

Evolutionary Genetic Stability for Model 11

Consider first any equilibriuvm at which M + 1 and assume that a new
allele A4, , appears at low frequency. Set &, = X, 4, and 6, =Y,,,,, half the
frequency of heterozygotes 4,4, in males and females, respectively. Also
set £="_, g, and denote equilibrium values for the alleles and genotypes
involving 4,4 ;... 4, by XU, 17,1, etc. Then from (15) and (16) we have

n
' =¢e/2+ 3 6my . /2M (21)
i=1

and

= olf,— 2)/21 = M)+ 2 3 (1m0 ) 5/20 = M) @D

for i =1, 2,..., #n with quadratic terms form 4, , neglected.
At a symmetric equilibrium from (17) to (20) the linear approximation in

(21), (22) may be written |
G-26)
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where 8= (3, ,,,,... 8, ,, ) written as a column, and
i 1/2 mlrr+1/2M mtm+l/2M }
X'/Z Xl(l — M) )FI(I ~ My i)
A=|"™ 2(1—M) 21 —-M) . (24)
. X(1—m,,. ) X,(1—m,,, )
X 2 " H+ e ] i+ 1
i o 2(1 —-M) , 2(1 — M)

Now A is a strictly positive matrix and therefore has a unique strictly
positive eigenvector associated with its largest eigenvalue. For such a right
cigenvector to take the form (i, £X, &X,,..., &%) the associated eigenvalue
must solve the 2 X 2 system

N2+ &M, f2M =)y -
M2+ M, )21~ M) = AL (25)

The leading eigenvalue of this 2 X 2 system will therefore also be the leading
eigenvalue of A. A necessary and sufficient condition that this leading eigen-
value be greater than unity is that either M < 1 and M, ,>MorM>4%and
M, <M, where M, =3, X,m,, . These are therefore the conditions
for local instability of a symmetric equilibrium to invasion by A,
Numerical iteration of (15) and (16) suggests that under these local
instability conditions the population will eventually achieve an (# + 1)-allele
equilibrium at which the sex ratio is closer to 1:1 than at the original #-
allele equilibrium. : :

Now consider the equilibrium M =4, and refer again to (21) and (22).
Clearly, to this order of approximation, :

n n o

6J+ Z 5J=6+ Z 5:9
i=1 i=1

so that there is an eigenvalue of unity for the linear approximation. Further

manipulation of the local stability matrix in this case produces n — 2 zero

eigenvalues while the remaining two are the roots of the quadratic

':{2 _A(% —"Mu+l) + Z (MnJrl - m:‘ri+1)(f}i_zﬂr')'
I=1 .

These last two are less than unity in absolute value., As with model I,
although we cannot answer the local stability question here, numerical
iteration of (I15) and (16) suggests that there is fast return to an (n+ 1)
aliele surface characterized by M =1 from such a starting condition.,
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Here females are XX, males XY, and m,; is the proportion of males (ie.,
haploids) in the progeny of an 4,4, female. Again let 2Y, and Y, be the
frequency of A4, and 4,4, females (diploids), respectively, and X, the
frequency of A; males. Set ¥; =Y, Y, and M =3, 3", Y,m;. Then

Xi =23 Yymy/M, (26)
i
and
1
Y= 2(1 — M) ; [ —my) Yy X, +(1— M) ijX,-] (27)
1 ' .
=m[X;Y,-+Xin—MXIXj-—MX1X;], (28)
using (26). Then clearly
. .
Yf"mlyﬁ'X:—M(XﬂrXa)]- (29)

At equilibrium X! = X;, ¥{ =Y, and (29) produces
(1-2M)X,=(1-2M)Y,.

Thus as in the previous models, at equilibrium either M =1or X;=Y;.

Evolutionary Genetic Stability for Model 111

Consider first the symmetric equilibrium with X, = ¥; = X} = Y;. Assume
that a new mutant allele 4, ,, arises near this equilibrium with frequency €
in males. Replace the small variables Y, ,, by é, for i = 1, 2,..., n. From (26)
and (27) de'/oe=0, 0e'/80;= My /M. 06ljoe=X/2, 086]/d8;=
(1 — 1) X,/2(1 — M). Hence the local stability matrix for the symmetric
equilibrium C is -

0 mi.n+l/M My us I/M
1?1/2 (lfmanrl))?l/z(l_M) (l—m""_‘_l),f]/Z(l—"M)

C= X2/2 (l#mlqul)XYZ/z(l_M) ot (l_mmr+l)X2/2(l_M)

_Xn/z | (1_mln+l)/‘}n/2(l_M) (lummwl))zn/z(l_M)_
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By arguments similar to those of the previous sections the nonzero eigen-
values of C are those of the 2 X 2 matrix D:

— 0 Mn-l—l/M . -
D‘[;u—Mﬂmxum@} -G

where M, =" m, X, Now D? is a strictly positive matrix and
hence, by the Frobenius theorem, the largest eigenvalue of the matrix is
positive, This largest eigenvalue is greater than unity if and only if

(1—2M)(M — M,) < 0. 31)

Thus, as with models 1 and II we infer in the standard way that a
symmetric #-allele equilibrium is unstable to invasion by A4,,, if either
M <3 and M,,, <M. Numerical iteration of (26) and (28) suggests that
under these conditions the {# + 1)-allele equilibrium achieved has a more
even sex ratio than M: 1 — M.

At the M =3 equilibrium the local stability to invasion by 4,,, is
governed by an eigenvalue of unity with the other nonzero eigenvalues given
by the roots of a quadratic which are less than unity in absolute value. As
with the other models we expect that there is fast return to an (n + 1)-allele
surface M = 1 in this case.

Discussion

There are three components to the equilibrium structure common to
models I-1I1, and these are independent of the number of alleles, #, involved:

(i) There are two classes of equilibria; a symmetric class with allele
frequencies equal in the sexes and unequal sex ratio, and another class at
which the sex ratio is one to one,

- (i) Any n-allele symmetric equilibrium is unstable to allele 4, , if
the marginal sex ratio M,,, induced by A4,,, satisfies the property that
M, >MitM<{orM,, <M if M>1 This condition is satisfied if the
marginal sex ratio is more even than M: 1 — M, but it may also be satisfied
if, for example, M, , >4 with M,,, —1>31—M. Even so, numerical
iteration of the various recursions suggests that in all three models, when a
symmetric #-allele equilibrium is unstable the (n+ 1)-allele equilibrium
ultimately reached has a more even sex ratio than M: 1 — M. It remains a
conjecture that this is generally true in all three models. The proof promises
to be difficult in view of the lack of monotonicity of the population sex ratio
over time. _ .
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(iii) At any n-allele equilibrium with one to one sex ratio the leading
cigenvalue controlling the local stability of the equilibrium to invasion by a
new allele is unity. Thus, local linear analysis is not informative for stability.
There appears, however, from numerical work, to be an (n + 1}-allele surface
of even sex ratio which is rapidly reached from a starting condition near an
n-allele even sex ratio equilibrium.

These results produce the conjecture that there is a long-term evolutionary
tendency to favor those alleles producing a more even sex ratio.

Suppose, more generally, that in a population with alleles 4,,4,,...4,
affecting only the sex ratio there is a sex ratio M #:1 — M* with the
following two properties:

I. Any equilibrium of the population with alleles A Ay, d, and a
sex ratio M:1— M other than M*:1—M* is unstable to allele 4,,, if
M<M*and M,,,>M or if M>M* and M,_, > M, where M, is the
marginal sex ratio for 4, at the n-allele equilibrium.

II. At any n-aliele equilibrium with sex ratio M*: 1 —M * the leading
eigenvalue controlling the local stability of the equilibrium to invasion by a
new allele is unity.

A sex ratio M*: 1 M* satisfying properties [ and II is said to exhibit
evolutionary genetic stability, EGS. In the models considered above the even
sex ratio appears to have EGS. Properties I and II are not sufficient to
guarantee that the population sex ratio should approach M ®: 1 — M*; the
latter would require global dynamic analysis of the genotype frequency
recursions. Numerical work on the three models treated above suggests that
there is long-term global evolution toward the even sex ratio.

1t should be stressed that EGS invokes only the kinetics (and therefore
only the parameters) of the genetic model. Fisher’s original argument and
many subsequent studies of the sex ratio (and other evolutionary problems)
were made in terms of optimal population strategies. Many have used the
concept of evolutionary stable strategy introduced by Maynard Smith and
Price (1973). We suggest that since properties I and II involve only the
underlying population genetic recursions, and require the introduction of no
“payment” functions extraneous to the kinetic genotype frequency model,
EGS arguments constitute a more direct population genetic approach, one
which may prove to be useful for population genetic models of the evolution
of other parameters,
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For various genetical structures, including haploid and diploid, one-locus n-
alleles, and n-locus additive viability random mating models, natural selection
resulting from intrapopuiation conflicts between random individuals leads to
exactly those genetical equilibria which determine a mixture of strategies
evolutionarily stable according to the game theory definition of Maynard Smith and
Price (1973).

1. INTRODUCTION

The concept of evolutionarily stable strategy (ESS) has been introduced
by Maynard Smith and Price (1973} to characterize a strategy with the
property that when adopted by a large enough majority in the population
becomes the choice for each individual in that population, in the sense that it
then maximizes the expected fitness or survival of its chooser. Once such a
strategy has been established, it seems likely to be stable in a
parthenogenetical population (Maynard Smith, 1974, 1976). A crucial
question to be settled is whether natural selection, operating within the
framework of known genetical structures does lead to the establishment and
stabilization of ESSs, or strategies close to them (Lloyd, 1977; Maynard
Smith, 1981). Concentrating on the simplest ESS problem of two alternative
strategies in a population, this study is. conducted under a wider assumption
on the possible genetical basis for the choice of a strategy by a given
individual. Indeed, a strategy in this sense may not necessarily be a
behavioral pattern. It may be any phenotypic trait which affects the outcome
of a conflict between individuals in the population.

For a class of genetical structures, namely locally adaptive ones, it is
shown that all stable equilibria maintained by the system determine either
fixation or mixture of strategies which are ESSs. The class of locally
adaptive systems, for which this result holds, is shown to include all one-

* Present address: Departments of Mathematics and Biological Science, Stanford
University, Stanford, Calif, 94305.

204
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locus r-alleles, random mating viability models of a diploid population, but
also other structures of genetic transmission of strategies. With some
_restriction on the intensity of the selection forces within this class of genetic
structures it is shown further that any ESS corresponds to some stable
equilibriim,

2. EVOLUTIONARY STABILITY AND CONVERGENCE OF
GENOTYPE FREQUENCIES

Consider a large population in which any individual can choose one out of
n strategies, say S,,..,S,. Let x,>0 be the proportion of individuals
choosing the strategy S, before selection (/= 1,..., n}; and assume that the
resuit of a given encounter confers an incremental or decremental fitness
(say, viability) of v, to an individual following the strategy .S;, whose
opponent practises the strategy S,(i,j=1,2,.., #). Thus, ¥=|lv;| can be
construed as a population game matrix, Assuming random encounter
between individuals in the population (for different assumptions see Cavalli-
Sforza and Eshel, 1982), the expected change in fitness of an individual with
the strategy S; due to a random encounter is 3 .x;V;;. The expected fitness
of an individual, choosing the strategy S;, is, therefore, proportional to

w(X)=14+0> V,x;=> ayx;=(Ax);, (2.1)
7 7

where & > 0 is up to a scale factor of the expected number of encounters for
individuals per generation and we use the abbreviation a; =14 6V,

If an individual employs a mixed strategy ¥ = (¥, ..., ¥, )» where p; is the
probability of him choosing the strategy S; while population strategy is x his
expected fitness is  ~

Vix,y)= Z yiux) = Z Yi@Xx;= yA'X- : (2.2)
7 o

Within this framework, the formal definition of ESS suggested by
Maynard Smith (1974) and further refined by Bishop and Cannings (1976}

is as follows:
A sirategy y is an ESS if for any strategy x #y,

Viv,y)2 Vix,y) (2.3)
and if (2.3) holds as an equality, then
iy, x) > V(x, x). (2.4)

Condition (2.3) guarantees that the strategy x will not be advantageous
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when adopted by a single deviant individual. Condition (2.4) guarantees that
if the strategy x is not disadvantageous at that stage, it will become disad-
vantageous when slightly accumulated. A version of the Nash theorem for
symmetric games guarantees the existence of a strategy x satisfying (2.3)
(namely, a symmetric Nask solution of the population game), There is no
guarantee that an ESS exists for a given population game. In this work we
see, however, that an ESS always exists in a 2 X 2 population game.

We now assume that the choice of a given strategy by an individual in a
population depends, at least in a probabilistic way, on the genotype of the
individual. We concentrate on the simplest situation where k& = 2, i.e., . each
individual has exactly two possible strategies, §, and §,, but there are m
genotypes, B, B,..., B, . Let p, be the frequcncy of the genotype B; among
juveniles at a given generatlon and let &, be the probability that an individual
of genotype B, will choose the strategy S

~ The frequency of individuals choosing the strategy S, in the population
will then be ,,
x=x(p)= Z pih;. (2.5)

i=1

For convenience we speak of population strategy 0 < x < 1 when we mean
that fraction x of the population adopts strategy §, and the remaining
fraction 1 — x uses strategy .S,.

The average fitness u,{x) of an individual choosing strategy S, where a
proportion x in the population adopts strategy $, in this population is given
by (2.1} and the fitness of the genotype B, in this situation, is

W= W) = by () + (1 — ) s (0. (2.6)

Assuming mating according to some given rule, appropriate segregation
(depending on the structure of genotypes B,,.., B,) and natural selection
with the frequency-dependent coefficient {2.6), one can calculate the fre-
quencies pj,..., p, of the relevant genotypes in the next generation.

For example, in a one-locus random mating diploid modet with # alleles, if
hy; is the probability that an individual of genotype 4;4; will choose the
strategy S,, Py .. P, are the allelic frequencies at a given generatlon, then by
the Hardy—Weinberg law, :

x=>"pp;h;. (2.7

i

{Note that both the p;’s and x are measured before selection.) After selection
and random mating we, therefore, have

P2yl wi(x) . (2.8)

pi=
f ijPk by Wk;(x) ’
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where, following (2.6), the w,(x) are given by wy(x)=Ah,u(x)+
(1 — hy) uy(x). ‘At this point, a traditional population geneticist would focus
on the stable fixed points p of transformation. (2.8). An animal-conflict-

oriented population biologist would emphasize the population strategy
2=2(p)= Z hi p; (2.9)
- i=1

coresponding to cach stable equilibrium. Sometimes, information about the
population strategy £ = x(#) is much easier to obtain than direct information
about ‘5. Moreover, the population strategies £(5), corresponding to the
stable genetical equilibria, do not depend on the specific genetical system
except for the obvious restriction on the range of possible strategies allowed
by the system, riamely,

A<ty O<Acugl) (2.10)

where
A= ll)‘gﬂZp,hupJ (2.11)
H= Eé%’ﬁzplhu p] (212)

and A" is the space of probability n-vectors.

A relevant ESS value should therefore, be defined in terms of the game
matrix || ¥ and restriction (2.10) on the choice of strategies.
" Following Bishop and Cannings, we have

DEFINITION, A strategy A< x<u is an ESS of the population game
| ¥,;|| with the restriction 4 <y < ¢ on the choice of a strategy y (namely, an
ESS of the restricted game) if for any y # x with that resfriction, conditions
(2.3}-(2.4) hold.

...Our objective now is to determine a structure under which the population
strategles (2.9), determined by the stable genetical equilibria will be the ESSs
of the restricted population game.

3, LOCALLY ADAPTIVE SYSTEMS

In order to e'mphasize the main concepts and methods it is convenient to
describe the dynamics of the two-strategy population game in a general
setting which includes the examples of (2.8)..
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Consider:a 2 x 2: populatlon game | V,]l. To avmd degeneracies, we
assume :

V11_V12“‘V21+V22¢0-. . ‘.(3-1)

Generally, consider that the proportion x of individuals in the population
choosing the strategy S, may depend on a number of parameters p,,..., p,,,
with the vector p=(p,...,p,) belonging to some compact set (c. g, p are
probability vectors belonging to the simplex). '

In a formal way

x = ¢(p). (3.2)

For technical convenience, we assume that ¢ has all continuous derivatives
and that these derivatives are not all identically zero on any open set of g.

Finally, it is assumed that the parameters P; (i=1...,n) change over
successive generations to the new values p; determined by the parameters p
of the first generation and the values z,(x) and u,(x), the game matrix
"corresponding to the population strategy x{p) (cf. (2.1)): Formally,

pi =.ﬁ(p» Uy Uy) =ff'(D, u|(¢(p))5 u2(¢(p))]
=F,(p), say (i=1,2,.,#1). (3.3)

The frequency of individuals choosing the strategy S, in the next
generation is, therefore,

x"=g(p’). (3.4)

We are interested in a structure for which iteration of {3.3) converges to a
stable vector P, the induced population strategy ¢( ) of which is always an
ESS of the restricted game. We show that this structure includes the one-
locus #-allele random mating diploid system as a special case.

DEeFINITION.  The system (3.2)-(3.3) associated with the game matrix
||a,,j|| and possibly with the restriction 1 < x < ¢ on the choice of strategies is
called a locally adaptive system with respect to the (restricted) game if for
all p € I' ie,, p is a strictly positive frequency vector with 4 < x = g(p) < 4,

x> x ir w,(x) > uy(x)
1(X) >y (3.5)
x'<x if u(x) < u,{x)
or equivalently

sign {$(p’) — ¢{p)} = sign {u, ($(p)) — u(¢(P))} - (3.6)
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In this case, the transformation (3.3) is also said to be locally adaptive. This
means that at any step the change p — p’ in the population parameters results
in an increase in the frequency of individuals practising the strategy that was
advantageous at the time of the change. Note, however, that in the context of
frequency-dependent selection, imposed by the viability game fla,| on a
given genetical structure, the condition (3.5) for local adaptivity of the
system does not imply an increase in the average fitness xu (x)+
(1 — x) u,(x} of the population, since u,(x) and u,(x) also change with x.

From arguments of continuity, it follows that for any adaptive system,
inequality (3.5) holds, at least in a weak sense, at the boundaries x =4 or
x =g, and also

x' =x it u,(x) = u,(x). (3.7)

EXAMPLE 1, A one-locus haploid model. p;...., p, are the frequencies of
the types A\ ,A in the population. &, is the probability that an individual
of type A; (i=1,2,., n) will choose the strategy 5,. This is the only
difference between types, thus we assume #, +# h;for all i # /. In this example,
for any probability vector p € §* '

x=4)= 3. pihi (8)

which is obviously differentiable and, with the h, being dlfferent from one
another, nonconstant on an open set. We further set

A= _min Ry, p= max R, (3.9)
and

Ly Uy, U = P 3.10
R ) (3.10)

where
w; = wy(x) = hyu, () + (1 — A1) uy(x). (3.11)

From (3.8) and. (3.10) we obtain
ywy

x' :¢(p)=u. (3.12)

Hence, employing (3.8),

Ywihip— 2w p 2R D

X' = x = ¢(p) ~ () — S,
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With (3.11), we have _ . ‘
. —1 - 2 oL
x'—x= (Z,pfwl) (uy —uy) [2p,h2 - (Ep.-h,-) J, (3.13)
i i
But 3 p;hr > (3 p;h,)* unless the h, —s are identical, and condition (3.5)
for local adaptiveness of the haploid system with respect to any game of
individual survival is satisfied. ' '
EXAMPLE 2. A one-locus, random mating diploid model. (p;;.., p,) € S*
are the frequencies of alleles in the population. As shown in the previous
section ' '

x=¢(p)= Z,Pi Pihy;. (3. 14)

A and g are given by (2.11) and (2.12), respectively,

[ Popwx) L G1s)
b Xk Py Py Widx)
where
wu=h,-ju1+(l—/l,-j)uz=u2+(u1*u2) hU' (3.16)

But for any given symmetric matrix [[w;| of positive values and p;
(i=1,2,...,r) as determined in {3.15) we know (Kingman, 1961) that

Zpi’p}wfjéz,pfpjwlj - (3.17)
i

if

with equality only if p’ =p.
~ Inserting (3.16) into (3.17), one obtains

Uy + (4, — uz)zpf' Pfhu 2ty + (U —U,) Zpi J L
i i,
or

{(u, —w)x' —x) 20 (3.18)

with equality only at equilibrium. This proves condition (3.5) for local adap-
tivity in respect to games of individual viability.

ExampLE 3. A multilocus, multiallele nonepistatic additive viability
model of a randomly mated diploid population. B,..., B, are the various
genotypes allowed by the model; p,...., p,, are their relative frequencies in a
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given generation. k,,., s, are the probabilities of their choosing the first
strategy. x = 3 p,h; is, therefore, the population strategy and

W= wilx} =, + () —uz) By

is the viability of the genotype B,. If the probability #, is a sum of
probabilistic effects, each being determined at a different locus, then the
viability w{x), determined by #; and the population strategy, is, at any given
generation, additive as well. In this case, we know (Ewens 1969) that with
recombination, ransom mating, and selection, the new frequencies p; will
satisfy the inequality

2piw =2 mw

with equality only at equilibrium {the w;s are those of the previous
generation). Again, this inequality is equivalent to

(u,wuz)(zp;h,-—zp,-h.-)=(u1—uz)(x'—x)>0. (3.19)

" Hence, the multilocus, nonepistatic additive model is shown to be locally
adaptive with respect to any give of individual survival.

4. STABLE FIXED POINTS OF AN ADAPTIVE SYSTEM AND ESS

Tugorem 1. If p&lnt I' (e, if p,>0, i=1,2,.,n) is a stable
polymorphic equilibrium of the locally adaptive transformation (3.3), then
y=¢{(p) is an ESS of the game.

In order to prove this theorem we need the following lemmas about ESS.
‘LEMMA 1. A strategy y satisfy A <y <p (Le, a mixture (p, 1 —y)) is an

ESS of the population game if for all x +y (within the restrictions Agxgu
of the game)

(r — ), (p) — ()] > 0 | (@4.1)

and .in the case of equality in (4.1)
(y — x)|u,{x) — u,00)] > 0. - (42)
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Lemma 2. (i) If the edge strategy y= A4 is an ESS, then at least for
some € >0 and for all A < x <1 +s,

w1 (x) < uy{x). (4.3)

(ii) If the edge strategy is not an ESS, then for all ¢ > 0 there exist at
least one A < x <A +e. :

1, (x) > uy(x). | (4.4)

"LemmMma 3. (i) If A<y<u is an ESS, then u,(y)=u,(y) and (4.2)
holds.
(ii) IfA <y <uis not an ESS, then either u,(y) # uz(y) or u, (1) = u,( )
-and

(¥ — e, (x) — uy()] < 0- forall x#y. (4.5)

LEmMA 4. For any ALy < () If w, () =u,(p) and if for all 0 <
|x—y|<e (e> 0 small enough), (x— y)[u,(x) —u,(x)| <0, then y is an
ESS.

(i) ff vy is an ESS, then (x—u,(x)—u(x)] <0 for all
0<|x—y|<e. :

The proofs of these lemmas are given in the Appendix.

Pmof of Theorem 1, That p is a stable equnhbnum of the transformation
F, means that for some vicinity S of p, p™ =F*(p'" V> p for all p’ € S.
From the continuity of ¢, x, = ¢(p") - y = ¢(p). But from the assumption
that ¢ is not constant on any open set we know that for some p'¥ € §,
xo=p(p") # ». For any & > 0, there is, therefore, n such that |x,,, —y| <
lx,—y| <& If x, >y, then x,,, <x, and, from (3.5), we therefore know
that u,(x,) < #,(x,). If x, <y, then x,,, > x, and therefore u,(x,) > u,(x,).
In both cases, (x,—y)[u,(x,) —ux,)] <0. Moreover, since y=¢(p)=
¢(F(p})), it follows from (3.5) that u,(y)=u,(y). Hence, it follows from
Lemma 4 that y is an ESS, n

Next is the opposite question: Are all ESSs of the population game stable
with respect to the transformation determined by the genetical structure?

DEerFINITION. A population strategy x (A < x < u) is said to be stably
maintained by the transformation (3.3) if, when the initial population state ¢
determines a population strategy ¢(P) close to x, then the iteration of (3.3)
results with convergence of the population strategy to x. In a formal way:
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A population strategy A < x <y is said to be stably maintained by the
transformation (3.3) if for small enough & > 0 and for all p € I for which

l9(p) — x| <e
|#(F (p}) — x| - 0. (4.6)

DeriNiTION. The transformation F is said to maintain a protected
mixture of strategies if neither of the edge strategies is stably maintained by
it.

THEOREM 2. (i) If an edge strategy of a restricted game is an ESS,
then it is stably maintained by all Iocally adaptive transformations
corresponding to the game.

(i) If a substantially mixed ESS A <y <u exists, then a protected
mixture of strategies is maintained by any locally adaptive transformation F
corresponding to the population game. Moreover, in this case F either stably
maintains the mixed strategy y or it allows for initfally increasing fluc-
tuations around it.

Proof. (i) Let y=2 be an ESS. From Lemma2 we know that for
A< x <A+e u(x) <u,(x). Hence, if ¢(p) =x, (3.5) implies that

x'=¢(p") = $(F(p)) <. ' 7(4-7')

Convergence of the sequence ¢(F'"’(p)) to 4 is immediately implied by (4 7
and the continuity of ¢ and F.

(ii) Suppose 1 < y <u is an ESS. From Lemma 3 it follows that -
(= A)uyA) — uy(A)} > 0.

Hence, u,(A) > u,(A) and for x close enough to 1, say O <|x—4|<¢,
uy(x) > uy(x).

From this and from the local adaptivity property (3.3} of F it follows that
for any p € I" with 0 < |§(p) — 4] < &, $(F(p)) > $(p); thus |$(F(®))— 4| >
|¢(p) — 4| and the edge strategy A is not stably maintained. In the same way,
y=yu is also not stably maintained by F; thus, F maintains a protected
polymorphism. '

Moreover, Lemma 3 and (3.5) also implies that if A <p <z is an ESS,
then for any pE 1,

sign(y — x) = sign(x’ — x). (4.8)

This means that x' is either closer to y than x or, in the case of very
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strong selection forces, it is further apart on the other side of p. Thus, the
locally adaptive system either stably maintains the ESS value y or it allows
fluctuations around it. [ '

5. DISCUSSION

The Darwinian theory of evolution concerns long-run changes in pheno-
types in- a popuilation due to natural selection. However, long lasting
. phenotypic changes may reflect changes in the distribution of genotypes in a
population. ‘And quite generally, it is impossible to understand and predict
the effect of natural selection on a given trait without a knowledge of the
mechanism, genetical or other, by which this trait is transmitted from
generation to generation. This partly explains the fact that changes in
genotypic. frequencies became the focus of modern studies in population
biology. Another reason, quite attractive to quantitatively oriented scientists,
is the possibility of drawing rigorous results about the changes in genotype
frequencies once the selection forces operating on a given genetical structure
are known, :

Unfortunately, the genetical basis for evolutionary changes in phenotypic
traits which are of a direct interest to students of natural history is rarely, if
-ever, known. Even less so are the exact selection forces operating on them
(e.g., Lewontin, 1974).

An alternative approach to the study of this sort of trait attempts to avoid
complications stemming from the specific nature of one genetical structure or
another. Instead, intuitively understood criteria of phenotype optimization
are suggested, with the basic asumption that despite technical counterex-
amples, accumulated through years of population genetic research, the basic
Darwinian relation between adaptation and natural selection must lead to
some sort of local optimization, at least as a workable approximation. Thus,
instead of dealing with many technical, unmeasurable, and presumably
insignificant details, it is preferable to ignore them in order to obtain simple
qualitative results which are at least easy to interpret. The crucial question is
under what circumstances the technical details being ignored are, indeed,
insignificant. a

This can be settled only by a comparison between results, obtained by the
intuitive model with those achieved under a sufficiently general family of
rigorous models. It should be kept in mind, though, that the very concept of
a “sufficiently general” family of rigorous models cannot, in itself, be deter-
mined in a rigorous way; and no family of models is general enough as to
provide us with more than a sample information about the validity of a given
criteriona in the much wider context of the theory of evolution,

One of the two perhaps most important examples involves the concept of
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evolutionarily stable strategies (ESS), suggested by Maynard Smith and
Price (1973). The question here is, what is the relevance of results drawn by
methods of game theory to the actual laws of natural selection in population
genetics theory. At least in one case, namely, that of selection for optimal
spread of seeds, interesting resutts drawn by pure methods of ESS (Hamilton
and May, 1977) were fully verified by a rigorous analysis of both haploid
and diploid populations (Motro, 1982a, b). In other cases, such as parent
offspring conflict (Trivers, 1974) the result of a rigorous analysis of genetical
models seems less in agreement with the ESS model of local optimality (e.g.,
Feldman and Eshel, 1982).

The present work is an attempt to develop a theoretical basis for
comparison between ESSs of a given population game and the strategies
which are determined by exact genetical structures.

The selective value of a strategy (or phenotype) affecting the outcome of
intrapopulation conflicts is, by definition, frequency dependent. When
conflicts occur with random encounters between individvals in the
population (though not necessarily -only then), the selective value of a
strategy is additively frequency dependent. In this study we concentrate on

.the case of two alternative strategies (phenotypes), the choice (or
manifestation) of each depending, at least statistically, on the individual’s
genotype, or maybe on some other inherited character of it.

For those genetical structures which obey Fisher’s fundamental law of
natural selection (including all one locus random mating viability models) it
is shown that natural selection due to intrapopulation - conflicts between
random individuals stabilizes only those genetical equilibria which determine
evolutionarily stable mixtures of strategies according to the game theory
definition of Maynard -Smith and Price. Moreover, with some further
assumption, precluding fluctuations, any ESS of the appropriate population
game is stably mainained by the genetical structure.

It is now well established, however, that Fisher’s fundamental law,
connecting adaptation and natural selection in the intuitively Darwinian way
is mathematically false for almost all multilocus genetical systems (e.g.,
Karlin, 1975). These cast serious limitations on our ability to predict any
precise adaptive pattern, at all (cf. Maynard Smith, 1978; Lewontin 1974. It
is, therefore, not the intention of this study to claim that exact ESS values
are, indeed, predicted to be found in natural populations. Instead it is shown
that the game theory argument of ESS is mathematically equivalent in result
to rigorous analysis of the specific models studied here and, thus, can
legitimately replace them.
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APPENDIX

Proof of Lemma 1. Y 'is an ESS if and only if for all x =y, V(»,») >
V(x, y) and if in the case of equality F(p, x) > ¥(x, x).
In the case of two competiting strategies, condition {4.1) is written as
yui()+ (1= (1) > (1) + (1= x) ()

and (4.2) becomes

Y} + (1= p) uy(x) 2 xu(x) + (1 — x) uy(x).
Thus, (4.1) and (4.2) immediately follow.

Proof of Lemma 2. (i} Suppose y=1 is. an ESé‘.. Condition (4.1) can
then ‘be written as

u(d) —u,(A) <0

If u,(1) — u,() < 0, it follows from the continuity of u, and u, that (4.3)
holds for at least A < x < A + ¢. If, on the other hand, #,(1) — u,{(A) =0, (4 2y -
means that #,(x) —u,(x) <O for all A <x < p

(i) Suppose y =2 is not an ESS. In this case, either (4.1) is not true, or
it holds as an equality and (4.4} results from the continuity of u, and u,, If
(4.1} holds as an equality, (4.2) means that for all A <x<y,
#,(x) — u,(x) > 0. But in this case,

U} — uy(x)y = u,(2) — uy(A) + (@, — @y, — a3 + apdx — 4)
=0V —Via—Vy—Vulx—24)20

and from (3.1) it follows that ¥, — V|, — V,, + F,, > 0 (it can be neither
zero nor negative); hence (4.4) must hold for all x > A.

Progfof Lemma 3. (i) is immediate from (4.1) and (4.2). Also, if yp is
not an ESS and u,(y) = u,( ), (4.6) holds at least as a weak inequality. As
in the proof of Lemma 1, the sharp version of (4.6) is implied from (3.1}

ACKNOWLEDGMENTS

I thank Professor Samuel Karlin, Professor Marcus Feldman, and Dr. Sabin Lessard for
helpful remarks on the manuscript. ‘

This work was pariially supported by National Institutes of Health Grants GM14052-18
and GM28016, and Grant MCS879-24310.



EVOLUTIONARILY STABLE STRATEGIES AND VIABILITY SELECTION 217

REFERENCES

BisHop, D, T,, AND CANNINGS, C. 1976. Models of animal conflict Advan. Appl. Prob, 8,
616-621,

CAVALLI-SFORZA, L. L., AND EsHEL, I, 1982, Assortment of cncounters and evolution of
cooperativeness, Proe. Nat. Acad. Sci. USA 79, 1331-1335.

Dawkins, R. 1980. Goof dytzyrgy or evolutionarily stable strategy? In ‘‘Sociobiology:
Beyond Nature/Nuture?” (G. W. Barlow and I, Silvergerg, Eds.) (AAS Selected Symp.
Ser.). Westview Press, Boulder, Colo.

EsHEL, 1. 1981a. A remark on evolutionary stability in respect to more than one minority
strategy. Manuscript.

EsnEL, L 1981b. Evolutionary stability and continuous stability. Manuseript.

EsueL, I 1981c. On a coevolutionary instability of a fully mixed Nash solution of a 2 X 2
two player games. Manuscript,

EwWENS, W. J, 1969, With additive fitnesses, the mean fitness increases, Nature {(London) 221
1076..

FELDMAN, M. W., AND EsHEL, 1. 1982, On the thcory of parent off‘sprmg conflict—A. two
locus genetical model, Amer. Natur. 119, 285-292,

HamiLton, W. D. 1964. The genetical evolution of social behavior, 1, II, J. Theor. Biol. 7,
1-521.

HAMIITON, W.D. 1980, Selfish and spiteful behavior in an evolutionary model, Nature
‘(London) 228, 1218-1220. '

HamiLtoN, W. D., AND May, R. 1977, Dispersai in stable habltats, Nature (London) 269,
578-581.

KARLIN, 8. 1975, General two locus selection models: Some objectives, reSults, and inter-
pretations, Theor. Pop. Biol, 7, 364-398.

.KINGMAN, J, E. C. 1961, A mathematical problem in populatio genetics, Proc. Cambridge
Phil. Soc. 57, 574-582.

LewonTiv, R. C. 1974, “The Genetic Basis for Evolutlonary Cliange,” Columbia Univ. Press,
New York/London.

Lroyp, D. G. 1977, Genetic and phenotypic models of natural selection, J. Theor. Biol. 69,
543-360.

MAYNARD SaiTH, J. 1972, Game theory and the evolution of fighting, in “On Evolution” (J.
Maynard Smith, Ed.), pp. 8-20, Edinburgh Univ. Press, Edinburgh.

MAYNARD SmiTH, J. 1974, The theory of games and the cvolution of animal conflict, J. Theor.
Biol. 41, 209-221. .

MAYNARD SMrTl, J. 1976. Evolution and the thcory of games, Amer. Sci 64, 41-45,

MAYNARD SmiTH, J. 1978. Optlmlzatlon theory in evolution, An. Rev. Eqol. Systemnai. 9,
31-56.

MAYNARD Smrrd, J. 1980, Models of the evolution of altruism, Theor. Pop. Biol. 18,
151-159.

MAYNARD SmiTe. J. 1981, Will sexual population evolve to an ESS? Amer. Natur. 117,
10151018,

MoTro, U. 1982a. Optimal rates of dispersion and migration in biological populations. L
Haploid models, Theor. Pop. Biol. 21,

Motro, U. 1982b. Optimal rates of dispersion and migrations in biclogical populations. il
Dipioid models, Theor, Pop. Bicl. 21,

TRIVERS, R. L. 1974, Parent offspring conflict, Amer. Zool, 14, 249-264.

Printed by the St. Catherine Press Ltd., Tempelhof 41, Bruges, Belgium









Relprinted from THEORETICAL POPULATION BioLogy Vol. 19, No, 3 June 1981
All Rights Reserved by Academic Press, New York and London Printed in Belgiym

Kin Selection and Strong Evolutionary Stability
of Mutual Help*

ILan Esuer’ anp Uz Morro!

Department of Statistics, Tel Aviv University, Tel Aviv, fsrael

Received August 1980

1, INTRODUCTION

‘The theory of kin selection, as developed by Hamilton (e.g., 1964, 1970)
stems from the fact that in a sexually reproducing -population, the genotype
of a progeny of an individual is not necessarily identical to the genotype of
either parent. Thus natural selection cannot operate through the preservation
of the most fit type. Instead, it can only be expressed in terms of changes in
gene frequencies. Such changes, as suggested by Hamilton, are likely to be in
favor of those genes which, by their effect on their carriers, act to increase
the expected number of their copies in the population of the next generation.
Thus, in Hamilton’s terminology, natural selection is expected to favor genes
which increase their carrier’s inclusive fitness (e.g., Hamilton, 1964).

More specifically, it has been maintained by Hamilton that if, in order to
save a kin of relatedness r (see Wright, 1922), a risk of 0 < x <1 is needed,
then, by taking this risk, an individual will add a value of r—x to its
inclusive fitness. Taking such a risk will, therefore, be selected for if and only
if x < r, and the value r is expected to be the maximal risk accepted by an
individual in a population in order to save a relative of relatedness r.

This prediction is, however, not always in a satisfactory agreement with
empirical observations, a discrepancy. that provoked some attacks on the
very theory of kin selection (e.g., Zahavi, 1981). For example, parents’ help
to their offspring is almost always more generous than offspring’s help to
their parents or to their sibs, even though the relatedness in both cases is the
same. Morcover, even on a theoretical level, the prediction mentioned above
cannot possibly be true, for example, on an isolated island, overpopulated by
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a highly inbred population, where only those individuals which manage to
exterminate their neighbors, even though of close relatedness, will leave their
genes to the next generation. (See Harpending, 1979, for a more detailed
treatment.)

More detailed study of kin selection, thus, concentrates on two parallel
lines. On one hand, a rigorous model-study of various sorts of sib-to-sib
altruism (e.g., Cavalli-Sforza and Feldman, 1978, Uyenoyama and Feldman,
1980, Boorman and Levitt, 1980 and references therein) reveals some of the
difficulties concerning selection of such complicated traits as altruism under
the restriction of a genetical structure, even in the simplest cases. For
example, negative correlation is shown to be created between alleles carried
by the same individual when alleles are measured by their effect on the
altruistic action (Feldman and Eshel, unpublished). Such negative correlation
is shown to be favorable for the non-altruist, even though its effect is
negligible near fixation.

On the other hand, deviations from the classic prediction of kin selection
are likely to occur in nature due to inevitable complications of the altruistic
act itself which can differ from one situation to another (e.g., Cohen and
Eshel, 1976). In a previous study (Eshel and Cohen, 1976) an attempt has
been made to incorporate three crucial factors into the classic model of kin
selection:

(i) Differences in potential fertility makes it advantageous to take a
Higher risk in order to save potentially fertile (e.g., younger) kin.

(ii} Competition among kins is likely to reduce, eliminate or even
negate a loss in inclusive fitness due to death of a relative,

(iii) As long as mutual help of some level is established among kins, a
death of one individual results in a loss of its potential help to other
members of its family and thereby to a further reduction in their inclusive
fitness.

The purpose of this work is to quantitatively study the combined effect of
relatedness, competition and mutual dependence on the relations between two
relatives having the same potential fitness. Most results are drawn from a
model of a two-player game with the inclusive fitness as the evolutionary
relevant payoff function, We consider the maximal risk (MR) accepted by
one individual in order .to save a relative of a given relatedness r and,
adopting the definition of Maynard Smith and Price (1973), we calculate the -
value of the MR which is an evolutionarily stable strategy (ESS) in the
population. In some cases there exist more than one positive value of
maximal risk that can be established in the population as an ESS, and there
might be also some negative values, corresponding to evolutionarily stable
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strategies of spitefulness towards kin. (See also Hamilton 1970, Eshel and
Cohen, 1976.)

It is shown, however, that the dynamic process of natural selection, if
operating to increase the inclusive fitness, can lead to the establishment of
some, but not other, so-called evolutionarily stable strategies. A stronger,
and for this purpose more natural, definition of evolutionary stability is,
therefore; suggested in Section 4, and the stability of the various ESS values
of maximal risk are checked according to this definition.

In a special case of mutual help between sibs, the results achieved by the
game theory model are validated (see Section 5) by a dlrect Fisherian
analysis of changes in gene frequencies.

2. THE GAME THEORY MODEL

Let A4 and B be two individuals with a symmetric degree of relationship r,
0g<rg L.

Let 4 be ready to help B up to the maximal risk (MR) x. By this we mean
that if the help of 4 can increase the survival probability of B by p, then 4
will donate this help to B unless by doing so it would decrease its own
survival probability by more than px. It is convenient to extend this notion of
maximal risk (MR) to include also negative values. Thus, by saying that the
MR of 4 to B is x <0, we mean that if 4 can inflict damage on B, he will
do so unless the risk he takes is greater than the proportion —x of the
damage inflicted on B, damage and risk bemg measured in terms of survival
probability. We assume, likewise, that B is ready to help 4 up to the MR y
(—w <y <o)

We concentrate on a time-continuous model in which each individual has
an infinitesimal probability of dying during any infinitesimal time interval Jt.
We naturally assume that this probability depends both on the individual’s
willingness to take a risk in order to help its relative (or harm him) (i.e., its
MR value x) and on the willingness of its relative to take risk in order to
help {(or harm) him (ie., the relative’s MR value ), provided both
individuals are alive at the beginning of the time interval in question. Denote
this probability by A(x, y) dt. The probability of B dying during the same
time interval is, indeed, 4(y, x) dr. The death probability of each of them in
the absence of the other is A(0, 0) dt = A d, say. From the definition of y as
the MR of B we sce that A(x, y) is a decreasing function of y.

It follows that the length of time during which both individuals are alive is
distributed exponentially with a parameter A(x, y) + A(», x) and an expec-
tation 1/(A(x, y) + A(y, x)).

The distribution of the remaining life span of each individual, after the
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death of its relative, is exponential with a parameter A and expectation 1/A.
The probability that 4 is the first one to die is A(x, y)}/(A(x, ¥) + A(p, x)).

We finally assume that the number of offspring produced by each
individual. is proportional to the length of time it lives in the.presence of its
relative (and, perhaps, competitor} plus 1 + ¢ times the length of time it lives
after -the death of this relative (provided it outlives it). o is the degree of
competition between the two relatives and it is natural (though not necessary)
to assume 0 o< 1, : .

With these assumptions, the fitness of individual 4 is

L Mpx)  l+a
Az ) +A(nx) A )+ Ay x) A

Obviously, the Fisherian fitness of B is w(y, x).

Hence, the inclusive fitness of 4, defined as the expected number of copies
of its genes to be represented in the next generation (Eshel and Cohen, 1976)
turns out to be

w(x, y) = (2.1)

00 y)= lcu(x, »+ rw__(yl,_x) +e. o (22)

(The same equality, though with a different ¢, we get with Hamilton’s
definition of inclusive fitness as “own’ offspring + r times the additional
offspring B has because of A’s help.”) .

Our first objective is to calculate the optimal MR readiness of A4 to help B
when B’s MR readiness to help 4 is given, Optimality is to be understood in
terms of maximization of the inclusive fitnéss. Then we shall calculaic
evolutionarily stable strategies for mutual maximum risk,

3. ANALYSIS OF THE MODEL AND  EVOLUTIONARILY STABLE STRATEGIES

We first prove the following useful proposition, resulting from the
definition of a maximal risk strategy.

ProrosiTiON 1. For each x and y the following relation exists:
@ d :
— My, x)=—=—2i(x, ). 3.1
X e MO x)=—2A06 ) .'( )

Progf.  A(x, y)dt and A(p, x)dr are the death probabilitics of 4 and B,
respectively, during a time interval of length d¢ at the beginning of which
both are alive. Increasing the maximal risk x of 4 by dx results in decreasing
the death probability of B by A(y, x) df —A(y, x + dx) dt. But for x >0 this
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is due to help, given by 4 at a relative cost fo himself no greater than x + dx
and no smaller than x (immediate from the definition of maximal risk), cost
being measured in terms of death probability. Hence, the increase in the
.death probability of A4, resulting from his readiness to take high risks, cannot
be either larger than x + dx times the decrease in the death probability of B
or smaller than x times that decrease. Thus '

A(y, x)dt — A(p, x + dx)dt
= M+ dx, ) dt — Ax, y) dt

<X +dx

(for dx < 0 the inequality signs are reversed). By letting. dx tend to zero, we
get the required result.
By similar arguments we show the validity of (3.1) also for x <0. N

Note that the infinitesimal term (8/0x)A(y, x) dt dx measures the
probability that within a time interval of length df, one individual will have
an opportunity to save {or harm) the other with a relative risk between x ‘and
x + dx to himself. Obviously the derivative (8/8x)A(y, x) (and, therefore,
(8/8y) A(p, x)) will be higher in populations wherein some intrinsic social
structure increases the probability of one individual helping or harming
another. Thus, except for a constant A = A(0, 0), the function A(x, ¥) is deter-
mined by the structure of the ecological interaction between individuals in
the population and will be referred to as the inferaction function.

From the definition of A{(x, y) we have (6/8x) A(y, x} <0 for all values of
x and from Proposition 1 it follows that

é
al(x, »=0 for x>0,

a—xl(x,y)<0 for ‘x\(\O.

Indeed, it is the absolute value |x| that determines the maximal risk taken in
order to help {(if x > 0} or harm a relative.

We now return to Eq. (2.2) and find, for each y, a strategy x* =x*(y)
that will maximize the inclusive fitness of 4,

By differentiating (2.2) with respect to x and by applying (3.1), we have

0%, ) _ —(3/0x) Ay, x) )
ox _"1[1(3_% y)+,1(y,x)]2r{(1 +r)(1—x)4

— (1 +0)(1 = r)[4(x: ») + xA(3, X)]}. (3.2)
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We shall denote the expression in braces by B (x). Because

—(8/0x) Ay, x)
A, ) + A )P T

for every x and y, the sign of 80(x, y)/éx is identical to the sign of B (x).
PROPOSITION 2. For every y between —1 and 1, the equation B (x) =0
has a unique solution x*(y) with —1 < x*(y) < 1.

Progf. By applying Proposition 1 we have

B (4 Pit o)1) |05 4 200+ xgz(y;x)]

=1+t —-1+a)1—-rApy,x)<0 : - (3.3)

and the equation B, (x)=0 has at most one solution. But, applying
Proposition 1 again, we also have '

d ' d
b AL ) A -] =01+ y)d—yl(—l, » <0,

therefore
B,(—=1)=2(1 + i = (1 +0)(1 = r}A(-1, ) = (y, —1)]
>2(1 4 M)A~ (1 +0)(1 = DIA=1,~1) = A(~1, ~1)]
=2(14+ri>0,
whereas
B(1)= (1 + o)1 —n)[A(1, p) + (3, 1)] <O

and the equation B (x}=:0 has exactly one solution at (—1, 1].

PROPOSITION 3. For every y, $2(x, ¥} has a'unigue global maximum in x
at the point x = x*(y), and this maximum Is sirict.

Progf.  For x < x*, B,(x)>0 and so (8/0x) £2(x, y) > 0, i.e., 2(x, p) is
increasing in x for x < x* In the same way we show that 2(x, y) is
decreasing in x for x > x*. |

Next we shall find the evolutionarily stable strategies (ESS) of mutual help
or harm (and, indeed, show their existence). Using the definition of Maynard
Smith and Price {1973), a strategy is an ESS if a population of individuals
adopting that strategy cannot be “invaded” by an initially rare mutant
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adopting an alternate strategy. (See also Maynard Smith, 1974 and 1976;
Maynard Smith and Parker, 1976; Bishop and Cannings, 1976.)
Eguivalently, £ is an ESS if £2(£, £) > 2(x, £) for x # £, or if there exists a
strategy such that 2(#, £) = 2{x, X), then (£, x) > 2{x, x).

PROPOSITION 4. * For all 0<r< 1, x*(p) is a non-decreasing function of
¥ on the interval [—1, 1] (it is a constant 1 for r = 1), i.e., the higher the MR
readiness y of B to help A, the higher is the optimal MR readiness of A to
help B.

Proof. Employing again Proposition 1 we get:
J d )
5B =)l =) [ £ 400 ) +x 2 A )|

== 5 M )1 + ) (=) >0

for all —1 < x< 1. From (3.3) we also know that (&/dx)B,(x)<0. But
x*(y) is the unique solution of B (x) =0, thus Proposition 4 follows from
the implicit function theorem. |1

EiG. 1. The function x*(y), —1 £ y < 1. The intersection points of x*(y} with the line
x =y represent BSSs. The points P and R are CS8Ss, whereas Q is an ESS which is not
continuously stable. For each y, £2(x, ) (the inclusive fitness of 4) is a decreasing function of
x for x > x*(y) and an increasing function of x for x < x*(y). ‘
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PROPOSITION 5. The curve x = x*(y) infersects the main diagonal x =y
Jrom above at least once on the interval —1 < y< 1. :

(See Fig. 1.)

Proof. B_(—1)=2(1+r)A>0 and therefore x*(—1)>—1. B,(1)=
—2(1 +0)(1 =} A(1, 1} <0, with a strict inequality for r <1, therefore
x*(1)< 1, with a strict inequality if r < 1. 1l

As we see (Appendix), there might be more than one intersection of the
curve x = x*(y) and the main diagonal.

PROPOSITION 6. The intersections of the curve x = x*( j;) and the main
diagonal are the ESSs for the maximal risk.

Proof. Let (£, %) be such an intersection point. Then £=x*(¥) and
Proposition 3 states that for all x # £, (£, £} > Q(x, #). Thus £ is an ESS.

On the other hand, let £ be an ESS. Then 2(#, £) > 2(x, £) and it follows
again from Proposition 3 that £=x*(%).

CoroLLARY. The ESSs of the model are the solution of the equation
B.(x)=0, ie., '

g)=014+r1—-x)A -0 +a)d—rY{1 +x)A0x,x)=0. (34)

4, WEAK AND STRONG ESS

The ESSs of the model, being the intersections of the curve x = x*(y) and
the main diagonal, can be divided into two kinds:

(i) points where x*(p) intersects x = y from above;
(ii} points where x*(y) intersects x = y from below or is tangential to

We see that the ESSs of the first kind represent a stronger stability than
the stability represented by the ESSs of the second kind.

DeriniTIoN,  An ESS will be called a continuously stable strategy (CSS)
if, whenever the entire population has a strategy which is close enough to it,
there will be a selective advantage to some individual strategies which are
closer to the CSS.

This definition i is, indeed, meaningful only if there is a continuum of pure
strategies.
Continuously stable strategies are the only class that represents a posmble
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dynamic selection process which eventually leads to the establishment of a
CS88 in the popuiation. Note, however, that if for some historical reason a
consensus onh an ESS is established in a population, this ESS, even if not
CSS, will be immune to invading mutant strategies.

Prorosition 7. The CSSs of the model ave only those ESSs in which
the curve x = x*(y) intersects x = y from above.

Proof. Immediately follows from. Proposition 4. For if x*(y) intersects
x =y from above at x = £, then for ¢ > 0 sufficiently small and for # —¢ <
P<E y<xHy) <x¥@) =KL For £+&e>p> 5 y>x*(p) > x*(#)=4L In
both cases there is a selective advantage to x*(y) over p, and x*(p) is closer
to £ than y. o

If, on the other hand, x*(y) intersects x = y from below, then for any
strategy y in the vicinity of the ESS ¥ there is a preferable strategy x*(y)
which is further from #£ than y. If x*(») is tangential to x =y, then the latter
statement holds for one side of the ESS.

Notes and Remarks

(1) In the case studied liere of two equal relatives, there always exists an
ESS which is continuously stable (an immediate result froth Proposition 5).

(2) ¢(0)=[2r—a(l —r)]A. Thus, if & < 2r/(1 —r) then ¢(0) > 0. This
implies that the indifferent behavior x =0 is in the domain of attraction of
some altruistic CSS X > 0. If ¢ > 2r/(1 — r) then x =0 is in the domain of
attraction of a spitefulness CSS £ < 0. (If o=2r/(1 —r) then x =0 is an
ESS.)

(3) The simplest case of competition occurs when the resources of the
population are limited and equally shared by the offspring of all surviving
individuals. In this case, o = 1/(n — 1), where n is the population size at a
given time, and the sufficient condition for the existence of a CSS of
altruistic behavior toward a relative of relatedness r turns out to be

(2n—Dr>1.

(4) If there is no competition (¢ =0), then (provided r > 0) there is a
CSS which is greater than zero. In this case, for x=r we have ¢(r) =
(1 =)A= A(r, 1)]. But A(x, x) is a decreasing function of x, since (using

(3.1)
d A ={1 Ax 0 4.1
T (x,x)-—-( x) ay ( sy) . < O ( . )

=y

Thus A = A(0,0) is greater than A(r, #} and so ¢(x =r) > 0. This implies the
existence of a CSS which is greater than r.
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(5} If r=0 (but ¢ > 0), ie., the two individuals are not related at all,
then ¢(0) < 0. Hence there is a CSS which has a negative value.

(6) ¢ is a decreasing function of g, implying a decrease in the values of
the continuously stable strategies with the increase in the degree of
competition. Also, ¢ is an increasing function of r, thus the values of the
CSSs increase with the increase of the degree of -relatedness. These
statements, which are also intuitively logical, are not valid for the ESSs of
the second kind. On the contrary, the values of such strategies (whenever
they exist) increase with the increase in the degree of competition and
decrease with increasing relatedness, in contradiction to common sense.

(7) If both individuals have the same strategy, the inclusive fitness .of
each is

L+r 1 140 :
2(x, x) = ) '(A(x,x):_'- T ) . (4.;2)

Since A{x, x} is a decreasing function of x, it follows that £2(x, x) is maximal
if x=1. But, unless r=1, this point is unstable—for values of x close
enough to 1, 2(x, 1) > (1, 1). Subsequently the population fixes on a CSS
which has a value smaller than 1. Thus we see that the possibility of
exploitation by the relative leads to the establishment of a CSS for which the
inclusive fitness does not attain its maximal value.

{(8) An example showing the possible existence of several stable
strategies is presented in the Appendix.

5. AN INDIVIDUAL SELECTION EXAMPLE

In the following example we shall see that direct Fisherian selection will
ultimately bring the population to the same degree of mutual help as
predicted by the game theory model of the previous sections. (For
comparison, se¢ Eshel, 1981.)

We assume that the maximal risk is genetically determined by a single
locus with two alleles: the dominant allele A implies a MR of the amount x,
and y is the amount implied by the recessive allele . The allele A is rare,
and the relative frequency in the population of the heterozygote type is ¢.
Assuming random mating, it is easy to see that the relative frequency of 44
is o(g). For simplicity, we shall further assume that in each brood there are
always two offspring. (There can be more than one brood for an individual,
but only brothers of the same brood can recognize each other.) We shall
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assume as before (Section 2) that the Fisherian fitness of an individual whose
MR is x and that of its brother is y, is

L+ (1 oY A )
B T B T

Progeny
Mating type - Frequency Both 4g  One Aq, oncag Both ag
Aa X aa 28 + o() i 3 3
aa X-aa 1—2¢ + o(8) — — 1

other than above o(g)

Hence, the relative frequency of Aa in the next generation is

' glw(x, x) + w(x, ¥)|
2w(y, y)

+ o)

and natural selection will favor the rare allele 4 if and only if

h(x, ) = w(x, x) + w(x, ) — 2w(p, y) > 0

We concentrate on small changes in the MR, i.e., on values of x which are
close enough to y. For x = y, h(y, y) =0 while:

Oh(x, ¥) _ dw(x, x)  dw(x, y)

ox |y, O x|,

and by substituting

L (4 oY DA x)
O D)= =003 + 20 %)

we thain
oh(x, y) — (9A(y, x)/0x) _ \
5 oy~ 2B |y, BT A0 4 2)AG ))
1 SA(y, x)

T 2%y, »A ox

- Gr1y2(¥)s

x
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where ¢( y) ¢.(») is defined in (3.4) above But 8A( ¥ x)/éx <0 and we
have

oh(x, 3)

sign
& Ox

= sign{g, ()}

X=y

Hence, if ¢,,(y) >0, then there exists an interval around y in which
h(x, y} increases as a function of x. Thus, selection will act, at least at the
outset, in favor of an allele which increases, in a limited amount, the
tendency of its possessor to help its brother and against an aliele which
decreases such a tendency, and vice versa if ¢,..,,,(») <0.

Hénce, natural selection, by means of small changes in MR, tends to
establish in the population a degree of mutual help (in this case between
brothers) which is equal to the value at which ¢(x) intersects the x axis from
above, i.e., individual selection, in our example, will establish a degree of
mutual help which is one of the CSSs obtained earlier by considerations of
maximization of the inclusive fitness. S

6. Discussion

In this paper we have considered the problem of risk taking by an
individual in order to save its relative. The combined effect of relatedness,
competition and mutual dependence between individuals in the same
population has been incorporated in a two- -player garme model with the
inclusive fitness as the payoff function.

We have found that for each strategy of maximal risk (MR) adopted by
one of the players, a single MR strategy exists for the other player which
maximizes the latter’s inclusive fitness. Also, some of the admissible
strategies are evolutionarily stable, i.e., if' a sufficiently large proportion of
the population adopts it, there is no “mutant” strategy that would yield a
larger inclusive fitness.

Moreover, in regard to stability, the ESSs in our model can be classified
into two categories—some of the ESSs (the ESSs of the first kind) possess a
stronger form of stability than is exhibited by the formal definition of an
ESS. Thus, by introducing the notion of continuous stability of strategies,
(i.e., an ESS is continuously stable (CSS) if, whenever the entire population
has a strategy which is not an ESS, there are strategies closer to the CSS§
which endow any individual adopting them with a selective advantage over
the entire population), we have shown that the stable strategies of the first
kind (and only those) are CSSs.

Except for singular cases (in which the curve ¢(x) is tangent to the x axis),
all the ESSs of our model exhibit the principle of small perturbations (Karlin
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and McGregor, 1972), i.e., sufficiently small displacements in the parameters
involved will not eliminate the ESS, but rather slightly change its position.
However, only the CSSs are-stable according to Samuelson’s correspondence
principle (see Samuelson, 1947). That is to say, if the population had main-
tained an ESS and if, in the course of time, the values of the parameters have
been slightly changed (thus causing a small displacement of the ESS),
evolution will tend to restore the ESS only in the case of a CSS. If the
population had maintained.an ESS of the.second kind (a stable strategy
which is not contmuous), the population will subsequently ‘be in the
convérgence tegion of another, continuous, stable strategy (and not’ of the
near, new located ESS).

APPENDIX: AN EXAMPLE SHOWING THE POSSIBLE EX[STENCE
OF ESSs WuicH ARe Nort CSS

. Let us assume
’ A’ L ~kx —k
A(x,y):?[l—(l—.l—kx)e + ke™™].

It is easy to see that this function fulfills the requirements for A(x, v). Let us
further assume o > 2r/(1 — r). Thus, $(0) < 0 and there exists a CSS which
is smaller than zero.

For any x, O0<x<l, limy,, A(xx)=0. Hence llm,HDO B(x) =
(I + )1 —x)A> 0. Thus, for a large enough value of k, there exist two
more solutions to the equation ¢(x} =0 (which are both pos1t1ve) The larger
of these solutions is continuously stable, while the smaller is an ESS which is
not continuous.

Remark. 'The possible existence of more than one Nash solution to an
inclusive fitness game with mutual help has already been noticed by Eshel
and Cohen (1976). However, the problem of stability was not studied there.
For the case of mutual help between relatives with unequal fertility, the
reader is referred to Motro, 1981.
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