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On the survival probability of a slightly advantageous
mutant gene in a multitype population:
A multidimensional branching process model

I. Eshel

Department of Statistics, Tel-Aviv University, Ramat-Aviv, Israel

Abstract, The estimated survival probability of a slightly supercritical Galton-
Watson process is generalized to a multitype branching process. The result
is used to estimate the probability of initial success of a mutant gene whose
effect on the individual carrier depends on the carrier’s sex, class, etc. The
probability of initial success is also estimated in a case whete the effect of
the mutation is manifested in terms of the distribution of types within one’s
progeny, e.g. in a case of a change in the sex ratio,
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Introduction

With some “smoothness assumptions” on a family {(Y$)},.o (t=1,2,3) of
one-dimensional branching processes it is known that the extinction probability
of the process (Y$?) t=1,2, ... characterized by a mean 1 +s> [ and a variance
a*>0 of the individual progeny size, can be estimated by the equality

2s
u(s)=1——+o(s) (1.1)
o

where s > 0 is small. (Kolmogorov, 1938; Ewens, 1969. For the exact “smoothness”
condition for (1.1) see also Eshel, 1981.)

The approximation (1.1) is used to estimate the extinction probability of a
slightly advantageous mutant gene in a large population, asexual or, under certain
conditions, sexual. Thus, if mating is at random, if the sex ratio is 1:1 and if the
effect of the mutation on both sexes is the same, the number Y, of #-generation
heterozygote mutant descendants born to a single heterozygote mutant parent is
well approximated by a one-dimensional branching process as t=1,2,3,...
provided the population is large enough as to ignore the probability of random
mating between two mutants. However, if one or more of these conditions does
not hold, the process of initial introduction of a new mutant gene is shown to
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be approximated, in the same way, by a two-dimensional branching process.
Thus, if the population undergoes mixed selfing and random mating, the process
is determined by the pairs (X%, Y{7) of homozygote and heterozygote mutant
descendants, If the mutation affects the sex-ratio or else, if it affects male and
female carriers in a different way, the process is determined by the pair of male
and female heterozygote carriers of the mutation (Ewens, 1968; see also examples
ITI and IV in Section 4).~ ‘ C

A rultidimensional branching process is typical, more generally, of a case in
which the population is divided into a number of types, each of which can
carry the new mutant, possibly with different effect. Such types can be sexes as
well as classes, geographical habitats or, maybe, different genotypes, determined
by another locus (Ewens, 1968).

Analysis of a multitype branching process model generalizes (1.1), provided
the concepts of “viability” and “‘variance of viability’” are appropriately general-
ized into a vectorial form. This follows with a general estimation of the survival
probability of a slightly advantageous mutant gene in a sexual population.

2. The model

- Assumeé an n-type branching process with a generating function ¢ *(u). Let

1w _

i mi|=M*
= i

where M* is an aperiodic matrix with M** >0 for some integer k (i.e. all types
can be represented in the process with positive probability, independently of the
original parental type). Assume that the leading eigenvalue of the matrix is 1 +¢
where £>0 is small (i.e. the process is slightly supercritical) and that the n-
dimensional offspring-distributions have finite second moments of all sorts, Start-
ing with a single parent of type i (i=1,2,..., n) we know that the extinction
probability of the process is given by the smallest positive solution u¥ of the
equation

¥ = ¢pFu®). 2.0
In order to estimate the vector u* we define a family {d(W}o< <. bY
) = *214_14'3 ) 29

Thus, ¢“(u) = d*(u), and for all 0 < s < g, ¢*(u) is obtained from the original
generating function by superimposing an additional .probability (g —s)/(1 +¢)
that a newborn offspring will die, independently of its type. The process deter-
mined by &“(u) is a critical process, hence, if u(s) is the smallest positive solution

of

u(s) = (u(s)), (2.3)

we know thatu(0)=1and u(s) <1 for all s> 0. We are interested in the asymptotic
behavior of u(s) for small but positive s, especially (if £ > 0 is sufficiently small)
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for s =& More specifically let Y; be the number of viable offspring of type j,
born to a parent of type 7 in the critical process determined by ¢‘“(u). Denote
EY;=m;=m¥%/(1+e). We are interested in estimating u(s) as a function of the
matrix M =|my| of expectations of the critical process, the covariances
.cov (Y}, Yy) and the deviation s of the process ¢“'(u) from the critical process.

3. Analysis of the model

Employing the implicit function theorem to differentiate (2.3) with respect to s,
we get

9 L 0 (w)
f=— &) + AR v 4 3.1
W= #PW L (3.1)
From (2.2) we have
b n 1 ad)*(s—s 1+s )
— ¢ ()= — 1 . 1+
ascﬁ! (“) jg“](u'r )l+€ auj 1+£ l+5u
. 3¢t (u)
= =)=
PACEI R
Hence, for i=1,2,...,n
" 3 (s)
whi=Y (u +uj—1)"5'—("). (3.2)
i=1 j

]

But as s +0,.u->1 and

3{" (u(s))
A = My

If we set u;(0) for the right derivative of u;(s) at s =0, we therefore get
u'{0)= Mu'(0). (3.3)

But M =1/(e +1)M™ is an aperiodic matrix with M* >0 for some integer k.
From Frobenius’ theorem it therefore follows that its leading eigenvalue is real
and positive and we already know that this eigenvalue is 1. Thus, (3.3) asserts
that w'(0) is a right eigenvector of M, corresponding to its leading eigenvalue.
We also know from Frobenius’ theorem that there are a unique positive left
eigenvector p and a unique positive right eigenvector » of M (and, indeed of
M*=(1+¢e)M) such that

rpi=1 (3.4)
Lpv=1 (3.5)

Moreover, each left (right) eigenvector of M, corresponding to the eigenvalue
| is proportional to p (resp. v). Hence, it follows from (3.3) that a constant ¢
exists such that

u'(0)= cv. (3.6
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To calculate the value of ¢ we multiply both sides of (3.2) by p; and sum over
i, This yields (for 0 <s<¢g)

{s)
Zp.u _Z(u +u—1p .a¢a W
i
)
=L@ tu-Dp M’; _(") 3.7)
or ,
s) (s),
212 -3 (- p P, 6.9
As 510 we know that
(s)
P57 S =0
u,' - 1 - 0.
Hence, differentiating (3.8) with respect to s at s =0 one gets
3] 0)
-2 (PO -y puio 2L
P £=0 i l
=L pymiu;(0). (3.9)
i

Now differentiating (2.2) with respect to u; and then with respect to s and
setting s =0, one obtains

iﬁcb_?iﬁy))} _ oy L0
(5], g0

du; du; duy,
=yt L W OE(Y,Ya) = 5.,y
where 8 is Kronecker’s delta. Equa.tion (3.9) therefore becomes
2 %‘, pimu; (0) = UZ",( Pt (0)uf (O E(Y; Yi) — 84 V). (3.10)
By inserting (3.6) and then (3.4) and (3.5), (3.10) becomes .
2e= =" Lo op(E(Y,Yi) = 85 Yy) @11

with two possible solutions for ¢, corresponding to the two solutions of (2.3).
The solution ¢=0 indeed corresponds to the constant solution u(s)=1. Since
we are interested in the other, smallest positive solution u(s}<1 we obtain

2
— X 12
T P L 00l BE(Y; Y — 8aYy) ©G-12)
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By a straightforward calculation (employing (3.4) and (3.5)) this becomes
o -2
X, pi Var(Z; vYy)

(3.13)

and from (3.6) we obtain
2us8
LipVar(E, 0,Yy)

(see for comparison Pollak, 1972).
As a special case, if the Y}; are independent Poisson random variables, then

I —u(s)= +o(s) . - (3.14)

Lp Var(z ij,-j) =X pwjmy =¥, pv} + O(5) (3.15)
i J if i)
and (3.14) becomes
2v;
I~ (s) = =" o+ o(s) (3.16)
L Pv;

(see Ewens, 1968).

4, Biological examples and discussion

Note that if the population does not become extinct, then its size tends to infinity
in probability 1 and the vector of relative frequencies tends to the left eigenvector
p (e.g. Harris, 1963).

This is true for the original branching process (with the generating function
&™) as well as for the assigned critical process (with the g.f. ¢). Note that both
share the same right and left eigenvectors p and v.

The expected number of n-generation descendents of a parent of type i in
the critical process (or that value, multiplied by (1+¢)" in the supercritical
process) tends, on the other hand, to the component v; of the right eigenvector
v as n—> 0. This value has therefore been interpreted as the “evolutionary value”
of the type i in an infinite population (e.g. Oster et al., 1977). As it is shown here,
(3.14), the survival probability of a slightly advantageous mutant gene, occurring
in a given type (male, female, high or low class individual etc.), is proportional
to the “evolutionary value” of the type in question. Moreover, denote

Ji=1

This is the total “evolutionary value” of offspring born to an individual of
type i Indeed EY, =Y myv; = v; and equality (3.14) becomes

2sEY; -+ 0(s). (4.2)

The denominator is the average variance of the Y, —s, weighed according to
the limit relative frequencies of a non extinct population.
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Example I. The effect of the mutation on the viability depends on the carrier’s type

Assume that the viability of a mutant heterozygote, if belonging to type i is 1 +¢;
times that of a wild type individual of the same type. &; is cither positive or
negative, but small in absolute value, The mutation has no other effect on the
individual. Assume, for simplicity, two alternative types (classes, sexes, habitats,
ctc.). The matrix of expected number of viable heterozygote mutants of types
J=1,2, born to a heterozygote parent of type i=1,2 is given by

(1+51)m” (1+82)m|2

M =
(8“ 62) (1 +8t)m2] (1 +€2)m22

where M =|m,] is the matrix of (absolute) fitness corresponding to the (infinite)
wild type population and we know |M — I| =0, (i.e. the population size is fixed).

By a direct calculation one can verify that the largest eigenvalue of M (s, &,)
is

(1l —my)e, +(1—m) e,

A=1+ +o(ey, &)
2—my — My
A straightforward calculation also yields
My + 1 —my, 1 —my,
u =_—‘—“—, =
l 2—my, — My P My +1—my,
(4.3)
m2|+1'—m|1 l_m“
) =—’ = .
2 2—m — My . 2 My +1—my,
Hence
A=14pvg; +pavses. 4.4

The process of establishment of the new mutant is, therefore supercritical if
and only if

PLVE; + Patine, > 0, (4.5)

(Note that the left side of (4.5) measures the average increase in expecied
“evolutionary value™ of viable offsprings due to the effect of the mutation).

If (4.5) holds, then, using (4.2) we know that the progeny-survival probability
of a single mutant heterozygote occurring in type i (i=1,2) is

P10 & T pathes
1 - ,‘:2 Ui+0 . 4.6
“ mVar Y, +p,Var Y, (£182) (4.6)

Example 11 (A special case of example I): The effect of the mutation on the viability
of the two sexes is different

Assume an infinite sexual population with a sex-ratio m: 1 —m. Mating is not
necessarily random. If the viabilities of the (heterozygote) mutant male and female
are 1+¢g, and 1 +&; times those of the wild-type male and female respectively,
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then the matrix of expected progeny-sizes will be
(I+e) (A+e)l-m)

2 2m
M(ey, 85)= . 4.
0o =) 4 eym 1+e, @.7)
2(1—m) 2
From (4.3) we get
_ L _
up = Zm’ h=m
__ 1 =(1—m)
“ o =my P27 '
Thus, the process is supercritical if and only if &, -+ e,> 0. In this case
i £, +£, 1 +o )
— U= rTTTTO ]
" m Var Y +(l-m)Var Y, m &1 €2
_ (4.8)
+
1— Uy ST +0(sl: 82)

“mVar Y, +(1—m) Var Y, (1—m)

If the progeny size of a female is a two-dimensional Poisson distribution and
if mating is random (so that the male progeny size is also a two-dimensional
Poisson), then we have:

+
1—u, =S]—2+o(sl, £3)
m
(4.9)
g +te
I- u2=(11_ m2)+0(sls )

However, if few males make miost of the matings, then Var Y, indeed becomes
much larger and the right sides of (4.8) are much smaller.

Exarﬁple III. A mutation affecting the sex ratio

Let the (infinite) wild-type population be the same as in the previous example.
The mutation changes the sex ratio within the progeny of its (either male or
female carrier) to m +£: 1 —m ~ e. The corresponding matrix of expected progeny
sizes is
m+e l-m-—e¢
2m 2m
M(e)= .. 4.10
(€) mte 1-m-—eg ( )
20—-m) 21l—m)

This matrix can be obtained from (4.7) by setting

£ —&
E1=, £ = .
m 1—m
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The process is supercritical if and only if
(l-2m)e <0 ' 4.1

i.e. if the mutation initially renders the sex ratio closer to half. In this case,
assuming a two-dimensional Poisson distribution of offspring, (4.9) becomes

_(1-2m)e
l—u',--——mz(I _m)+o(£)
[—2m)e “12)
l—u2=r(n(Tm—)2+o(s)

~ With sexual selection operating on males, the progeny survival probability of
the new mutants (as it appears from (4.8)) is smaller.

Example TV, A slightly advantageous mutant gene in a mixed selfing and random
mating population

‘Let the viability of a homozygote and a heterozygote mutant in such a population
be 1+8 and | +e respectively (¢ and & are small in absolute values but not
necessarily positive). Assume that the probability of selfing is «, independently
of type 0<a <(1. The expectation matrix of the two-type branching process,
corresponding to the first appearance of the mutantin a large (infinite) population
is :

(1+8)a 2(1+e)(l—a)

M(e, 8)=
’ @ (1+s)(1—§)

with the largest eigenvalue being
(1-a)s +2 5
A=l +——————40(5, &).
12
2

The corresponding eigenvectors are

(e M-
"“(4—3a’ 4—3&)+O(6’8) -

_(ﬂ.“—_h'
“\2-a’'202-a)

) +O(8, £)

(not surprisingly, the “value” v, of a homozygote mutant is twice that of a

heterozygote mutant v,). Hence, with a Poisson distribution of offspring, the

survival probability of a process, starting with a single heterozygote is
l—u=2(A — Do, +0(8, &)

_ (1= a)e H(a/D)8)4~3a)
(2-a)

+o(5, &)
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If the mutant gene is dominant (8 = &) we get

1—u2=(2—2fa)a+o(e).

The survival probability of the mutant gene is, then, decreasing with the rate
of selfing a.
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1. Introduction

In 1973, Maynard Smith and Price introduced game theory to the study of
intraspecific conflicts. The resulting marriage has proved very fruitful of biological
models (see Krebs and Davies (1978) for examples). Even simple, biologically
intuitive games with a small number of strategies yield evolutionary stable
equilibria with an unexpectedly rich mixture of strategy types. Furthermore, in
the dynamics of these evolutionary games mathematicians have discovered inter-
estingly complex behavior (see e.g. Bishop and Cannings, 1976; Taylor and
Jonker, 1978; Zeeman, 1979).

Here we consider the analogous applications of game theory to conflicts
between species (see also Hines (1981)) and examine the dynamics of the resulting
coevolutionary games. Our main result, illustrated in detail for 2 X2 games, is
that no equilibrium of mixed strategies is locally stable. This means that a
“coevolutionarily stable situation” is either a vertex equilibrium where each
species relies on a single pure strategy, or else it consists of a set of mixed
strategies showing no tendency to equilibrium but instead more complicated
recurrence, i.e. some sort of cycling of the strategic mixtures.

We would like to express our thanks to Professors Samuel Karlin and Marcus
Feldman for stimulating discussions.

2, Coevolutionary processes

We regard the members of a population P as having a choice of strategies indexed
by some finite set I. For each choice i € I there is a payoff A; which is not constant
but will usually depend upon the state of the environment. The state of the
population is described by its current distribution of strategies which is a vector
p={p;:icI} with 1=p,;=0 for all i and ¥, p, = 1. If the population is in state p
then the mean, or average, payoff A,=Y, p;A,

For a distribution vector p strategy i is called active if p,>0. The set of active
strategies is the support of p, i.e. supp(p)={ie I: p,>0}. p is called fully mixed
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or interior if all strategies are active. At the other extreme, we identify the pure
strategy i with the vector §; such that 8; =1 and 8; =0 for j # i. So supp(8;)=1{i}.
If the current generation is in state p then we assume that the weight of
strategy i in the next generation will be more or less than p; according to
whether —in the current environment — the payoff A, is more or less than the
mean payoff A,. Formally, we assume that the transition from the current state
to the next state is given by a continuous function (a discrete time dynamical

system) satisfying:
sgn(4p,) =sgn(A,—A,)  (1>p>0), @2.1)

where the sign of a real number r, sgn(r), is +, 0, or —, according to whether r
is positive, zero or negative.

Condition (2.1) is not assumed for extreme values of p. If p,=0 then 4p;
cannot be negative as p; cannot decrease below zero. For behavior on the boundary
there are two alternate assumptions. We call the dynamical system boundary-
preserving if, in addition to (2.1),

Ap;=0 (when p,=0). (2.2B)

This condition means that the pure strategies “breed true”. If i is not active in
the current population then it cannot appear in subsequent generations.
Alternatively, we call the dynamical system inward-pointing if, in addition to

(2.1),
sgn(4p,) = max(0, sgn(A; — A4,)) (when p,=0) (2.21)

which means that p; becomes positive if A;>A, but remains at zero if A;<A,

The latter condition should not be confused with the effect of mutation —
which we are ignoring. Mutation would instead impose a perturbation on a
boundary preserving system (and would override condition (2.1) when p; is small
but positive.

Proposition 1. In order that p™ be an equilibrium relative to the current environment
it is necessary that : -
A;=A,. forall iesupp(p™) (2.3)

or equivalently, that the payoff for all strategies active for p* be the same. If the
system is boundary-preserving this condition is also sufficient.
If the system is inward pointing it is necessary and sufficient for equilibrium that
(2.3) hold and, in addition,
A=Ay foralliel 2.4)

Proof: If A;=C for all i e supp(p*) then C =} pfC =Y pFA;= Ay« because the
sums are the same whether taken over all i or just over i € supp(p™.

Notice that if pf =1 for some i then p*=§, and A, = A,. trivially. Because
of the requirement that 1>p, in (2.1), a separate argument — which we leave to
the reader — is needed for these pure strategy cases.

Otherwise, p¥ <1 for all i and (2.1) says that Ap;, =0 for i e supp(p¥} if and
only if A, = A, (2.2B) says 4p; = 0 for all inactive i while (2.2I) says that 4p,=0
for inactive i if and only if A;<A,.

We need one more game theoretic concept, For i, i, € I we say that i, dominates
i, if A;> A, for all environmental states.



Coevolutionary instability of mixed Nash solutions 125

Lemma 2. Suppose i, dominates i,. If p* is an equilibrium, then i, and i, cannot
both be active for p*, ie. p,=0 or P, =0. If the system is inward pointing then i,
cannot be active, i.e. p, = 0.

Proof ; If p}>0 and Ap,=0 then A, >A, = Ap+ by domination and (2.3). So by
(2.3) again i, £supp(p*). If the system is inward pointing the inequality Ay >Ape
violates (2.4) and so p%>0 contradicts the assumption that p* is a current
equilibrium.

We now apply these preliminaries to two interacting populations P and Q.
The strategy choices of P and Q are indexed by finite sets I and J respectively.
When an i strategist from P meets a j strategist from Q the payofis are constants
Ay and By to the P and Q players, respectively. So if the current state of P and
Q are given by distributions p and ¢ respectively then the average payoff to an
{ strategist in P is A;; =3, A, q; and the average payoff for the population as a
whole is A,, =) 1 PiAA;q, with similar definitions using By for population Q.

We define a coevolutionary process for P and Q to be a discrete time dynamical
system as above where the state of each population determines the environment
of the others. Thus

sgn(4p;) =sgn(A;, - Apg) (1=p;>0)

2.5)
sgn(dq)) =sgn(B, — B,,) (1> g, >0).
The process is boundary-preserving if, in addition,
4p; =0 (pi=0)
(2.6B)
Ag;=0 (g =0).
The process is inward pointing if instead
Sgn(dpi) = rnax(O, Sgn(Aiq - qu)) (Pl = 0)
(2.61)

sgn(4q) =max(0, sgn(B, ~ B,,))  (g;=0).

Domination now becomes a finite condition: for i, e L i dominates i, if
Ay;> A, for all je J and similarly for domination in J. Notice that these condi-
tions are equivalent to the apparently more general: A, > A, for all q.

From Proposition 1 the following is immediate:

Theorem 3. In order that the pair (p*, g*) be an equilibrium for the coevolutionary
process it is necessary that:

Aigv = Aprgr  for all i e supp(p*) e
Bysj = Byxg=  for all j € supp(g*). '

If the process is boundary preserving these conditions are sufficient as well. If
the process is inward pointing it is necessary and sufficient that (2.7) hold and, in
addition

A;q*sAp*q* for all

(2.8)
Bp*jg Bp*qs fOr a”j.
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A pair satisfying (2.7) and (2.8) is called a Nash equilibrium. We will call a
pair satisfying (2.7) alone a weak Nash equilibrium. Notice that any vertex (5, .5;)
is a weak Nash equilibrium but need not be Nash. On the other hand, the two
concepts agree if both p* and g* are fully mixed.

Theorem 3 says that once the payoff matrices and boundary behavior are
specified the equilibria are determined. They do not depend upon the choice of
coevolutionary process.

Nash equilibria always exist. In fact, in our terminology, Nash’s proof of this
result consists of writing down a particular inward pointing process and applylng
the Brouwer fixed point theorem.

To illustrate the behavior of coevolutionary processes we spemahze to the
2 x 2 case, i.e. we assume that each population has available two strategies labelled
0 or 1: I =J={0, I}. The state of P is described by the real number p = p, with
0<p=1 and p,=1-p. Similarly, Q is described by g =g, with go,=1-g. Notice

Alg—Ap=Ay—(pA L H(1—pYAp) = (1= p)(A1g — Aog)
whose sign is that of A,;— Aq, = (A — Ae)g +(Ao— Ago)(1 —q) when 0<p<1.
Thus, (2.5) becomes:
sgn(4p) =sgn(A,; — Agg) =sgn(ag +ao(l—¢))  (0<p<I)
sgn(Aq) =sgn(B, — By) =sgn(Bp +Bo(1—pp  (0<g<l)
where
o =Ap— Ao o= A~ Ao
B1= By — B, Bo= Boi — Bye.

For the moment we restrict attention to boundary preserving processes and
S0 assume
Ap=0 when p=0orl,

(2.10B)
Ag=0 when g=0orl.

Also, we assume for the moment the following nondegeneracy condition:
None of the numbers «q, o, Bq, 1 vanish. (2.11)

Proposition 4. (a) If ay, a;<0 then strategy 0 dominates strategy 1 for P and for
any 0<p<l, Ap<Q. So p decreases monotonically over subsequent generations
approaching 0 in the limit,
Ifay, a0, >0 then 1 dominates Q for Pand | is the limit for all interior inifial values.
() If ao<<0<c, then Ap =0 when q = g* where ¢* =|ao/ ay|/(1 +| e/ a,|) and
more generally

sgn(Ap) =sgn(g — g%) for 0<p<L.
If ay>>0>a, then sgn(4dp)=—sgn(q —q*).

Proof: Consider the linear function of ¢: @, = a;a +ag(1 —g). If @ and «, have
like signs then a, shares this share for all 0=sg=1 and so 4p has this sign for all
values of g (0<<p<1). Thus the successive values of p form a monotone sequence.
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The limiting value must be the p coordinate of an equilibrium and so equals 0
or L.

On the other hand, if a, and «, have opposite signs then a, vanishes at g = ¢*
and for g>g* (g<q*) the sign of o, is that of a, (resp. of ay). -

Corollary 5. Assuming (2.11), a nonvertex equilibrium exists if and only if both
ag, @, and B, B, have unlike signs. There is then a unique, nonvertex equilibrium
(P*, q*) which is fully mixed : '

P*=|Bo/Bil/(1 +|Bo/Bi]) -
q*= [ao/a1|/(l +‘a0/a1|).

The behavior of such a 2 X2 system falls into one of four categories illustrated
by the phase portraits of Figs. 1-4. In Fig. 1 both populations show domination
while in Fig. 2 only one does (domination for P is illustrated). In these cases the
only equilibria are the vertices. One vertex is a sink attracting every initial position
in the interior of the square. The remaining vertices are locally unstable (1 source
and 2 saddle points). :

Figure 3, which we call the hyperbolic case, occurs when there is a fully mixed
equilibrium and a,— a,, 8, — B, have like signs. Two vertices are sinks, each
atracting initial values from roughly triangular regions separated by an excep-
tional set of initial points which tend to the saddie point (p*, g*). The remaining
two vertices are sources.

Figure 4, which we call the elliptic case, occurs when there is a fully mixed
equilibrium and a, — ao, 8, — B, have unlike signs. No vertex is locally stable as
they are all saddles. The interior points orbit around (p*, ¢%). However, as we
will see below this interior equilibrium is a source so that nearby orbits spiral
outwards. Thus, there are no locally stable equilibria in this case.

Fig. 1. Double domination

ap, <0
Bo, By=<<0 )
Fig. 2. Single domination '7
g, oy <0 . ~
Bo=<0< 8,
. : “\\: -
Fig. 3. Hyperbolic case RN
oo <0<ax, £ 1 \\\\
j
By<0<8, T
. L . L~
Fig. 4. Elliptic case IR
ay<0<a, ~ Trs

B<0<B,
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These four robust types are separated by degenerate cases where hypothesis
(2.11) does not hold. If @y = a, =0 then the strategies 0 and 1 are behaviorally
indistinguishable for P and 4p = 0 for all points. On the other hand if only one
of g, o, vanish then P exhibits a weak form of domination. For example, if
a,<ao=0then Ap<0 when ¢>0 but the entire segment defined by g = 0 consists
of equilibria.

Finally, if we replace boundary-preserving behavior by the inward pointing
assumption the only vertices which are equilibria are the sinks (assuming (2.11})
because only these satisfy the Nash condition (2.8). Thus, for an inward-pointing
version of the elliptic case no vertex is an equilibrium and the source (p*, %) is
the only equilibrium of the system. '

That ( p*, g*) is a source in the elliptic case is a special case of our main result:

Theorem 6. A nondegenerate mixed equilibrium is never locally stable with respect
to a smooth coevolutionary process. '

By a smooth coevolutionary process we intend a slight sharpening of condition
(2.9). So in the 2 x2 case we assume that the dynamic is defined by a function

(p, 9)~>{f(p, 9), 8(p, q)) with
f(pa Q) = GP(Ps AOqs Alq)
g(P, q) = d’(q: BpOa Bpl)

where ¢ and i are continuously differentiable functions of three real variables
satisfying

(2.12)

e(pab)y=p

Wq a by~ g when a=b ’ (2.13)

and
<0, ¢3<0 (0<p<1)
Y, <0, h3<<0 (0<<g=<1)

(2.14)

where ¢,, @, are the partial derivatives with respect to the second and third
variables.

Equation (2.13) means that f(p, g)=p when Ag, = Ay, (2.14) then implies
that f(p, g)=p (or <p) if Ayy,<<A,, (resp. Ag,>A,,). This is condition (2.9) and
so explains why we regard (2.13) and (2.14) as the smooth version of (2.9).

Example: Assume that P and Q are randomly mating diploid populations with
strategy choices determined by the genotype at one locus with two alleles. Suppose
the two alleles for P are P, and P, and that an individual of genotype P.P; uses
strategy 0 with probability h.s (a, B = 1,2). Similarly, an individual of type Q.Qp
uses strategy 0 with probability k,s (o, B =1,2). We assume k= h,= hyy with
at least one inequality sharp and analogous ordering for the ks probabilities in
population Q.

If x is the frequency of allele Py, the gene frequency, then the strategy frequency
p is given by

P= h(x)E x2h|| +2x(1 _x)h|2 +(} _x)zhzz. (2.15)
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The strategy ¢ frequency, g, in Q is the analogous function k(y) of the gene
frequency, y, of Q. Notice that the inequalities assumed about the hap's and
k.g's make h(x) and k(y) increasing functions with image the interval [h,,, h,,)
and [k,,, ky], respectively. '

Given frequency ¢ in population Q the viability of P, P, is:

Wap(q) = Bag Agg + (1~ heg) Ay, (2.16)

Hence the frequency x' of P, after one round of selection is given by the
usual formula: :

' xwu{g)x +wi(q)(1 —x)]
x'=— 5 . (2.17)
X wii(g) +2x(1 = x)wia(q) +(1 — x)*wyy(q)

Notice that by (2.16) the denominator, the mean viability of the population,
w(x, g) is just the mean payoff A,, = A,, +p(A,, —Ay,). Substituting (2.16) into
(2.17) we define a function x’ = $(x, Agg, Avy). The function ¢ of (2.12) is obtained
by conjugating with the monotone function A, i.e. p'=h(x") and p=h(x) or
x=h""(p).

(P(Ps AOq; Alq) = h[(ﬁ(h“l(p)’ A()q) Alq)]'
lfl(q’ Bp(]: Bpl) = k[‘ﬁ(k—l(q): Bp(); Bpl)]

where §(y, By, By)) is defined via the analogues of (2.16) and (2.17).
Conditions (2.13) and (2.14) are easily verified directly and so (2.18) defines

a smooth coevolutionary process. (2.19) alone follows from Fisher’s Fundamental

Theorem which says, in this case, that for fixed ¢, w(x’, q)= w(x, g) (with equality

only at equilibrium), i.e. p'(Aq, ~ A,,) = p(A,, —Ay,). (See for comparison Eshel

1982).

Proof of Theorem 6 : Now suppose there is a fully-mixed Nash equilibrium (p*, qa%).

To discuss local stability we linearize at the equilibrium. Our result follows from
the discovery that at least one eigenvalue has absolute value greater than 1.

(2.18)

The key fact is that Ay,e= A« and so f(p, g*)=p for all p- Consequently,
fo=0f/ap=1 at (p*, ¢*). Similarly, g,=dg/dg=1 there. The matrix of the
linearization is thus:

(s %)
& 1

CA=1xVfg,.

If f,2,>0: The eigenvalues are real and A,>>1. Because the map preserves
orientation of the square the determinant A, A_>0 and so 0<A_<1. So one
eigenvalue is larger than 1.

If f,8,<0: The eigenvalues are complex conjugates and [A=|r.[2=
1+{fg,]>1.

With a bit more analysis we will see that these two possibilities correspond
to the hyperbolic and elliptic cases respectively. Furthermore we will see that
fp8q =0 corresponds to the degenerate cases where (2.11) fails to hold.

with eigenvalues
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Notice that when a=b, —@,= @:>>0. To see this differentiate the equation
o(p, a, a)=p with respect to a to get ¢, +¢; =0 and apply (2.14).

Sy = @2(Ao1 — Ago) +@3(A1— Ayo)
=— @y( A1 — Aop) T @3(A 11— Aro) = @a{ @ — ).

Similarly, g, = $5(8, — Bo) with ¢;>>0 and so the sign of f,g, is that of (a; — aq)
(81— Bo). In particular, f,g, =0 is equivalent to a; = g or ;= B,. If oy =g #0
there is doemination for P and so no fully-mixed equilibrinm. If the common
value is zeto then as described above sirategies 0 and 1 are indistinguishable for
P and p does not move. Even in this case it is easy to check by looking at phase
portraits with 8, 8, having unlike nonzero signs that there is no local stability
unless B, = Bo=0 also. So in the 2x2 case there is local stability only in the
trivial case where (p, g) never moves,

The general result— which we will just sketch — differs only in various
technicalities from the 2 X2 case. Now p, g are vectors and f(p, q), g(p, q) are
vector functions of vector variables. We assume

f(ps q) = (P(Ps {Alq})
g(p, 4) = ¥(q,{By})
with '

p=e¢(p{a}) (when all a/’s arc equal) 2.19
g=w(q{b) (when all b’s are equal). '

The conditions analogous to (2.14) only arise in connection with degeneracy
questions as we will see below.

Again, if (p*, g%*) is a fully mixed equilibriym then differentiating f(p, ) with
respect to the p;’s at (p*, g¥) yields the identity matrix and similarly for differen-
tiating g(p, g) with respect to the g;’s. Thus the matrix of the linearization at

(p s 4 ) is of the block form
0 1_; V 0]]

where 1,, 1, are the I x I and J xJ identity matrices, 0, and 0; are square matrices
of zeros. U is the matrix of partials (3f;/9g;) and V is the matrix of partials (3g;/4p:).

Because the left term is the identity, the eigenvalues of the linearization consist
of {A =1+ u} where {u} is the set of eigenvalues of the off diagonal matrix

0 U
M = .
( |4 0)
Claim: The nonzero eigenvalues of M are exactly the square roots of the nonzero

eigenvalues of UV or equivalently the square roots of the nonzero eigenvalues
of VUL
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- To see why this is so, notice first that the square of any eigenvalue of M is
an eigenvalue (with the same eigenvector) of

uv o
M*= :
(0 VU)

Because this matrix is block diagonal its eigenvalues are those of UV and VU,
(These two matrices actually have the same set of nonzero eigenvalues but we
won’t need that result.)
On the other hand, suppose UVz=wz (v #0) and p?=w. It is easy to check
directly that the vector
(v
Vz/u

is an eigenvector of M with eigenvalue w.
Now suppose UV or VU has some nonzero eigenvalue w.

Case [: If w is real and positive then u =Jo is an eigenvalue of M and so
A=1+Jw is an eigenvalue of the linearization, with A>1,

Case 2: If w is real and negative then p, =+ iv|w| is a conjugate pair of pure
imaginary eigenvaluesandso A, =1+ ix/m is a conjugate pair for the linearization
with |A,]>1.

Case 3: If w, is a conjugate pair of complex eigenvalues then the four resulting
square T00ts +vw, are symmetrically distributed about the origin and contain
one conjugate pair, which we label u,, with positive real part. Then A, =144,
is a conjugate pair for the linearization with |A,[>1.

. So the only possibility remaining is that all eigenvalues of UV and VU are
zero and so all of the eigenvalues of the linearization are exactly 1. This case is
degenerate in the sense that given conditions analogous to (2.13) a perturbation
of the payoff matrices should eliminate it as a possibility just as weak domination
represented the boundary between the four robust types in the 2 X2 case.

Corollary 7. A nondegenerate, locally stable equilibrium for a smooth coevolutionary
process can occur only at a vertex. i.e. pure strategies for P and Q. In particular,
only a vertex can be a nondegenerate sink.

Proof:: Suppose (p*, %) is an equilibrium and the supports p* and g* are LI
and Jo= J respectively. If I, and J, both contain at least two strategies then by
restricting to the I, X J; subgame and applying the previous theorem we see that
(p*, g*) cannot be locally stable even with respect to perturbations having the
same support. If J, contains only one strategy, say J,={j,} so that g* =8, then
p* is an equilibrium only if all the Ay,’s are equal. This case is degenerate if I,
contains more than one strategy. So we are left with the vertex case.

3. Summary and discussion

For an inter population game we have shown, first, that the equilibria depend
only upon the payoff matrices of the game and the boundary behavior assumptions
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but are independent of the cheice of coevolutionary process modelling the
dynamics. Secondly, we have scen that — barring degenerate cases — only a Nash
equilibrium of pure strategies can be an attracting equilibrium and so only these
positions represent biologically observable stationary states. These results overlap
with those of Hines (1981). Hines’ models are more general in considering the
use of mixed strategies by individuals. On the other hand, he restricts attention
to a particular dynamical system.

Underlying the mathematlcs of the failure of stability for mixed equ111br1a is
a simple idea. Suppose (p*, g*) is a fully-mixed equilibrium. ¢* determines the
environment of population P and because p* is a fully-mixed equilibrium every
strategy i for P yields the same payoff. Thus, as long as Q remains at g* there
is no selection pressure tending to hold P at p* and it is free to drift away.
Dynamically, this is the neutral stability of a cone lying on its side as opposed
to balanced on its point or resting on its base. Of course, once both P and Q
have drifted away from equilibrium the strategies are no longer equivalent and
selection pressures begin to move both populations about. But a priori there is
no reason that the dynamic behavior should tend to damp out the perturbations
and return the system to (p*, ¢*). In fact, our analysis shows the opposite. Small
perturbations are intensified and the populations move away from the original
equilibrium,

Where then does the system go? In three of the four 2 X2 cases the population
comes to rest at a pure strategy Nash equilibrium. In the elliptic case there is no
such equilibrium. The orbits spiral away from the center but their limiting behavior
is uncertain. Do they approach the boundary or soine compact set of nonequili-
brium strategies in the interior (periodic points or limit cycles)? Unlike the
equilibrium behavior, the answers to these questions do depend on the choice
of coevolutionary process. For example, in Fig. 4 any map of the square consistent
with the directions given by the arrows is a coevolutionary process and any of
these outcomes can occur.

In comparing our discrete time results with a continuous time model, Maynard
Smith has mentioned that mixed strategy equilibria can be locally stable in the
latter case. While true we regard this result as misleading. Consider the differential
equation model which generalizes the Taylor—Jonker equations:

dp,
= p(Aa = An)
3.1)

dy;
at = (B, — Byy)

At a fully mixed equilibrium the matrix of linearization is of the form

0, U
=5 o)
vV 0
and the proof of Theorem 6 shows that if no eigenvalues with positive real part
occur then all the eigenvalues must be zero or pure imaginary. If they are not

all zero then the introduction of any lag into the system at all renders the
equilibrium unstable (cf. Chapter 2 of May (1973)).
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More generally, using the machinery of differential forms it is possible to
write down a volume form {2 on the interior (={p: p,>0 and ¥, p; = 1} x{g: >0
and ¥, ¢;=1}) such that the flow of (3.1) preserves the associated volume or
equivalently the vectorfield has zero divergence with respect to (2. This means
that the motion is like that of an incompressible fluid. Stable equilibria can occur
but they are never asymptotically stable, i.e. there are no sinks. Perturbations are
not intensified but neither are they damped out. In fact there can be no compact
set contained in the interior which attracts all nearby orbits. For if A were such
an attractor it would have a compact neighborhood U which is mapped to a
smaller neighborhood in U by the flow. This is impossible because U has finite
volume and this volume is preserved by the flow. Attractors can occur in the
boundary — e.g. vertices which are Nash equilibria — because the volume form
blows up at the boundary and so neighborhoods of vertices have infinite volume.
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