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Cyeclical selection that does not result in gene fixation may maintain a
parent—offspring (P-0) correlation in fitness that is, most of the time, not
far below one-half. This tends to happen when the following conditions
are fulfilled: (i) slow cycling in allele frequencies oceurs at many loci
independently; (i) most alleles make only small differences to fitness; (iii)
dominance in allelic fitness contribution is rare and overdominance rarer
still. In contrast, drastic cyclical selection (dependent on large fitness
differences without overdominance), because direction reverses so fre-
quently, may give P-O correlations in fitness that are near zero or even
negative. Also, if much fitness variance is maintained by heterozygote
advantage, or is caused environmentally, the correlation is reduced in
proportion to the ratio of relevant standard deviations.

P-0 correlation in fitness that is almost permanently positive may help
to explain mate choice in sexually promiscuous species. The most likely
source of the multiple independent cyclical systems of selection required
is host—parasite relations. To cause evolution of mate choice, and the
subsequent manifestations of sexual selection, intermediate rather than
extremely long cycles are most effective. A chooser’s achievement for the
offspring depends on the fitness variance in the sex chosen; in extremely
long cyecles this variance is on average close to zero.

1. INTRODUCTION

A crucial, almost paradoxical, problem haunting Darwinism from its vory beginning
is the source and maintenance of heritable variance of fitness. Natural selection,
by definition, operates to destroy the unfit. In spite of this, plenty of non-
environmental variation exists, and some of it certainly affects fitness. Knowledge
of genes and the genetic structure of populations has provided a fairly satisfactory
answer to a part of the seeming paradox. It has obviated Darwin’s worry about
blending inheritance, and it has helped to explain the maintenance of variability
of fitness in natural populations at equilibrium. Populations at equilibrium are,
of course, not going anywhere under natural selection — but, does this matter?
Perhaps they only move once in a while when a beneficial mutation occurs.
Unfortunately, even if this is acceptable it leaves a major unresolved puzzle about
heritable variation in fitness and about sexual selection. Traditional genetic models
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of population at equilibrium prediet either no heritability of fitness or (with
epistasis, recombination and mutation brought in) a very small one (for example,
Taylor & Williams 1982; for alfernative possibilities, see Mayr 19%76; Lande
1975). Thus theory suggests that careful mate choice can achieve little, if anything
at all, towards improving the fitness of offspring. A pessimism towards a strictly
Darwinian view of sexual selection naturally arizes from this point and seems
reflected in many current writings: selecting females are assumed to be pursuing
resources controlled by males rather than qualities of the males themselves (for
example, Emlem & Oring 19%77; Halliday 1978).

Assume, for example, a diploid one-locus n-allele model of viability selection with
random mating. Letw,, be the viability of an individual of type 4, 4, (,5 = 1,...,n).
One can readily show that, in equilibrium, the frequencies $,, .. .,$, of the alleles
4,,...,4,, satisfy the set of equations:

i Ti7 -
Ebowg=W (=L...n), (1.1)

where W is the average fitness in the entire population. Hence, a random female
associating her genes with a specific gene 4,, has a chance p, to pass the allele 4,
to her offspring (¢ = 1,...,n) and thus to provide it with viability w,,. The average
viability of such an offspring will be

n
2 _p‘i wij:
f=1

which at equilibrium (p, = #,) is equal, as we see, to W, independently of j. Thus
‘choice’ of any particular A;-bearing male gains her nothing.

In other words, despite differences in fitness among individuals, there are no
‘good genes’ and ‘bad genes’ at equilibrium. The most fit will have offspring which
are not move fit, on the average, than those of other individuals, Hence, a female
cannot increase the fitness of her offspring by choosing an appropriate mate.

The theoretical finding is not surprising if we consider the meaning of equilibrium.
Indeed, if offspring carrying a specific gene were better off on the average than
others, then the frequency of this gene would increase instead of staying constant.
Yet theory to the effect that females ought not to care about intrinsic quality in
their mates is in disagreement with the apparent strong sexual preference oberved
in many natural populations and with the total of energy put at one stage or
another into the adornment and performances of sexual selection (Taylor &
Williams 1982).

Actually any theory of sexual selection that at all resembles Darwin’s original
has, whether explicitly expressed or not, a necessity for the assumption of a
positive heritability of fitness. KExceptions to this would be the theories of
immediate advantage where the preference focuses qualities or attributes that are
of significance for brood rearing. For example, selection for health in a mate
purely so as to increase the chance that a mate survives through brood rearing
and can participate fully in the parental care, would be excepted. So also would
be selection of a mate purely for the good territory it holds, promising abundant
food for the young. But these exceptions are neither Darwinian (Arnold 1g83) nor
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are they general enough to account for all cases of sexual selection. Theories
resembling Darwin’s emphasize genetic endowment to offspring, and it is from this
that a requirement of positive heritability follows. In some versions the endowment
sought is imagined to be a general above-average fitness (Zahavi 1975) : fitness, that
is, in its everyday sense. In other versions a sexual selection episode starts with
an advantage like this or else with some special utilitarian character that is under
rapid promotion by natural selection. Later, through the polygyny which the
preference has created, extra advantages to the preferred character are added
(Fisher 1930; O’Donald 1080; Lande 1981). All such models, which typically
assume a constant environment (for example, Maynard Smith 1¢78; Davis &
O’Donald 1976), have in common the difficulty that the variance on which they
depend either dies away completely or at least exhausts its heritable component
as the population approaches equilibrium. The basis of effectiveness of mate choice
is thus eroded and whatever choice persists when it is gone (or reaches the low level
that persistent mutation can justify) achieves, if anything at all, only a lowering
of overall fitness (O’Donald 1980, p. 32; Kirkpatrick 1982). These results, already
seemingly so unsatisfactory for the welfare of the species as & whole, are likely to
be exacerbated by yet another cost that lies in the maintenance of the choosiness
itself. A terminal state of generally lowered fitness along with a residual variation
that has very low heritability seems to us inevitable in any genetic model that
confines attention to sexual selection in a constant environment. Following such
models species in which strong sexual selection had developed for any reason should
show signs of having diminished their abundance. Perhaps many have; we do not
discount the likelihood or the dysgenic power of the processes that are intrinsic
in these models (for example, O’Donald 1980, p. 32). However, the ubiquity of
observations indicating strong sexual selection in stable abundant populations,
and the fact that some animal groups have undergone considerable speciation with
& mating system involving high sexual selection apparently intact throughout (for
example, bower birds), convinces us that a mistake must lie in the basic
assumptions of the models. Changing this assumption, although it changes the
model, by no means invalidates the previously important ideas (the ‘runaway
process’ of Fisher; Zahavi's ‘handicap principle’; how sexual selection may still
operate under monogamy ; and so on), but it does offer what seems to us a generally
deeper and more plausible view.

While it is now widely accepted that environmental change of some sort is
necessary to the evolution of sex (for example, Williams 1975; Maynard Smith
1978), we believe that it is also a crucial factor in the evolution of sexual
preference. More specifically, redirecting old hints from papers by Haldane (1949)
and later writers towards still older problems, Hamilton (1980, see also 1982 and
references therein for parallel work) suggested that fluctuations in selection forces
owing to host—parasite cycling may be the major basis of the evolution and
maintenance of sex. Under the assumptions that lead to this view, a situation may
arise where many simultaneous host—parasite cycles affect many gene loei more
or less independently. In this study we will show that when such simultaneous
cycles occur and are mostly rather slow they can provide a permanent source of
heritable variance of fitness in the population. Thus the cycles, via the heritability
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they establish, can serve as a basis for the evolution of sexual preference. This
preference in turn, in this model, must be a relatively beneficial influence on health,
although whether it pays its costs in this regard is a question we will not address.

As a first step we introduce some notation and analyse the advantage obtained
by a choosing female (to take the predominant case) as a function of the heritability
and the variance of fitnegs in the population.

If a correlate of fitness in a potential partner is being assessed during mate
choice, it is far more likely to be, at the outset, a correlate of viability than of
fertility. Direct correlates of fertility of a male would often be hard or even
imposgible to assess. Therefore, we agsume for present purposes that viability s
fitness, Assume that such fitness of a given individual at a given time is a function
only of its genotype as expressed at the time in question. We are ignoring for the
present the possibility of environmental variance in fitness. Assume, for simplicity,
that this function is independent of sex. Let X, be a random variable, proportional
to the viability of a random adult individual in generationt (f =1,2,3,...). ¥} is
the viability of a random newborn offspring in the same generation. By P(Y,, | X,)
we denote the conditional distribution of the viability of an offspring, born in
genieration {4+ 1 to a parent (say, father) whose viability is X,.

The regression coefficient of Y, over X, is given by

cov (X,, ¥, var Y,
B(Y,, X,) = ooV &y Yin) _ R(X,, YwJ (A) (1.2)

var X, var X,

where R(X,, ¥,,,) is the correlation between the fitness of a father and that of its
offspring. Such a correlation is often referred to as the heritability, in the broad
sense (Falconer 1960), of fitness in generation ¢. This value depends on the genetic
get-up of the population in generation {, but also on the forces of selection in both
generation ¢ and £+ 1,

From-(1.2) it follows that a female who succeeds in obtaining a mate of fitness
4 standard deviations above the mean increases the expected fitness of her offspring,
on the average, by

G(d) = d+/(var X;) B(Y,,,, X,) = 4v/(var ¥,,,) R(X,, K;r1)- (1.3)

Sexual preference of fit mates can therefore be selected for, only under conditions
that guarantee the preservation of both substantial heritability and variance of
fitness in the population. In the following sections we show that these two
conditions are met when the population is simultaneously exposed to many, more
or less independent, slow, environmental cyclings, each interacting with a different
locus. Such cycling may be typical of a system composed of a host and many
parasites {Hamilton & Zuk 1982).

We start by studying one locus effect of fluctuating environment on the
heritability of fitness,
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2. HERITABILITY OF FITNESS OWING TO ONE LOCUS EFFECT IN A
FLUCTUATING ENVIRONMENT. A HOST-PARASITE CYCOLE

Let us assume first a simple model of one locus with two alleles 4 and a in a
host population that is afflicted by a parasite (or perhaps two). Assume that owing
to some co-evolutionary cycle arising from the parasitism the selection coefficients
for genotypes at the 4 locus are fluctuating. As already mentioned host-parasite
systems very readily go into cycles. The cycles could be of a demographic kind
first postulated by Volterra, in which case perhaps one allele could be adaptive
for low host densities and the other for high. Or the cycles could involve some
genotype matching between host and parasite, in which case one allele tends to
confer resistance to one parasite or parasite genotype and the other allele to
another (Eshel & Akin 1983); or there could be some combination of demographic
and resistance cycling. The details need not concern us. We postulate merely that
fluctuations in coefficients of selection occur and that in the consequent cycles
changes in gene frequency are not so extreme that fixation will occur. Notice,
however, that our focus here on the host-parasite relation as a source of fluctuating
selection is only due to our belief in its being the most likely source; this is by no
means a necesgary assumption in the development of the model.

Let the viability of the three genotypes AA, Ae, and ae at generation t be

- proportional to 1+a,, 1+, and 14y, respectively. Being interested in relative
values we can assume, without loss of generality that y, = — e, (a normalizing factor
can always be chosen so that the arithmetic mean of the two homozygote fitnesses
will be 1). 8, is then the deviation of the fitness of the heterozygote from the average
of those of the homozygote fitnesses. Let p, = p{, p, = p{P, and p, = p¥ be the
relative frequencies of the three genotypes after selection. Being interested in the
initial advantage of female preference, we first assume random mating of males
and females. The frequencies of the three genotypes 44, Aa, and as among
newborn offspring in the next generation will be p?, 2pq, and ¢* respectively when

'P=p(t)=Pl+%'P2=1_q' (2.1)

Let us now calculate the distribution of the offspring fitness ¥,,, as a function
of the father’s fitness X,. Note that for any father, there is a probability p that
an allele passed by the (random) mother is 4 and a probability g that this allele
is a. Hence, if X, = 1+a,, that is, if the father is of type A4, then there is a
probability p that the offspring will be of type A4 in which case ¥,,, = 1+«,,,,
and a probability g that the offspring will be of type 4e in which case

Yo =148,
In other words: P =1+, |X,=1+a)=p,
PV =148, X, =1+a,) =g, (2.2)
P, =1—o,|X,=1+a,)=0.
But, P(X, = 1 4+a,) = p, hence
PX,=1+a; Y, =1+a,)
=PX, = 1+a)P(¥; = 1+a,] X, =1+a)=p,p
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and in the same way

PX,=1+0; Y, =1+4) =P1§’:}

(2.3)
PX,=14¢,;¥,,=1—g,)=0

Dealing with the other two father types similarly, we obtain the combined
distribution of X,, ¥, as given by table 1.

TaprLe 1. COMBINED DISTRIBUTION OF X, AND ¥, |

AA Aa o
A\Y L+ety, 1+ 84, 1—ea; total
A4 1+4a, P Pq 0 ”
Ao 1+, (@e2)/2 /2 {peq)/2 Pa
g 1 —o 0 DaP Psq Ps
total pa qu qﬁ i

By straightforward caleulation we get the covariance:

Ceov (X, Yo ) = (019 0aD) [0y +{g—D) By ]
+[(—2p9) Br11— 30— @) 0ty | 25, (2.4)

As a special case, if fluctuations of the environment affect mainly the homo-
zygotes, leaving the viability of the heterozygote close to the average, we get
By = 0 and (2.4) becomes

cov (Xy, Yp) = (g +pep) ooy, OB, fiyy). (2.5)

In this case we also have:
var X, = [p,+p3— (01—, ) ]ef + 0(8,), (2.6)
var ¥, = 2pgai,, + O0(f,4,). (2.7)

Denote by a = p2 the frequency of the allele 4 among adults in generation
t—1. We know that the frequencies of genotypes among adults in generation { are:

1+a )
pl = pg_t) = W ¢x2,
1+
Py =pP = 2%Wﬂ La(l—ux), (2.8)
Py = piP = ﬂ(l—mf
3 3 W ? )
where
W=1+2zx—1)a,+22(1—x)8,. (2.9
Hence

p =51 +aa+f,(1—a),

1—
¢=— e (l—2)+4a2)
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Inserting (2.8) to (2.10) into (2.5)-(2.7), we obtain:

1 2(2 — x)o? o
R , Y. ==|1 (1 ] (|
CARY 2[ (1—om) (1 —et, o) | oy, OB Firr)

i, x(2—a)al
-

=i§ 1+“t$)(1—05g+055m)} +0(ﬁt1(3t+1): {2.11)

the sign being positive unless the selection forces alter their direction in the
generation step in question. Hence, if the cycle is short, the heritability of fitness
may be negative during a substantial part of the time. If, on the other hand, cycles
are long and the selection forces are weak the term involving af becomes negligible
and (2.11) may then be written as:

R(X,, ¥y ) = 23+ 0(ad) + OB, fer), (2.12)

the sign being positive most of the time. Moreover, for any —1 < e, <1 and
0 <z < 1 one can readily verify the inequality

x(2—x) o1

(I+oz)(l—a,+oyz)  1—a? (2.13)
while for selection forces not too drastically high (say |a,| < 1)
of ]%
— Z1—af. .
[1 g | 21— (2.14)
By using (2.13) and (2.14), {2.11) becomes:
0 <1—I1R(X, Yy € /24008, 8,,1)- (2.15)

Thus, even for such substantial selection forces as when 44 is 509, more viable
than aa (implying &, = 0.2), R lies between 0.5 and 0.48.

We conclude that if oycling is slow and if the selection forces, determined by
one locus without dominance, are not too drastically high, then the heritability
of fitness, as determined solely by that locus, stays close to  most of the time.

3. THE EFFECT OF DOMINANCE AND OVERDOMINANCE ON THE
HERITABILITY OF FITNESS OWING TO ONE LOCUS EFFEQCT

To study the general one-locus effect on fitness-heritability let us return to (2.4)
and usge the notation

By = 06,0, (3.1)

Here 0, is the degree of dominance at generation ¢. 8, = 0 or 8, = 1 is the case
of full dominance, 0 < 6, < 1 is the casc of subdominance. As a special case, if§, = 6
is fixed over time (2.4) becomes

cov (X, ¥ipy)
=g+ pyp+[p1g+p o+ (2./2)] (g —p) O+ (p,/2) (g — )20 (3.2)

O Oy
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and by a direct calculation from table 1 we have

1
Evar}(ﬁ =[p1+p3— (P1— s P1=2(py—ps) p 0+ po (11—, ) 62, (3.3)
i

1
i var Yo, = 2pg+4(g—p)pel +2pg(l —2pg) 0. (3.4)
t+1
If the selection forces operating on the locus in question are not so drastic as
to shift the genotype frequencies much from the Hardy—Weinberg distribution we
have

P =p1+0()], py=2pq[1+0(x)], p3=q*1+0(x;)]

Therefore

1 .
o Covi(Xy, ¥ipy) = [pg+2pglg—p) O+ palg—p) 0" 1[1+0(,)]  (3.5)
(e &
and
1 1
OTEV&F X, = aVal Y, [14+0(, )]- (3.6)

Hence, from (3.4), (3.5) and (3.6):
_ 1142001 —2p)+ (1 —4pq) 2,2,
T 2142001 —2p)+ 6% (1 —2pq) |ty 0ty |
_+1[1_ 2pgt*

—2 [1+(g—p) 01 + 2pgt®

the sign, as before, being positive as long as sign a, = sign ¢, ;.
In the case 0 < & < 1 of subdominance one can use the fact that the expression

R(X,, Y1) +O(a, )+ O0(etyyy )

il+0(05¢)+0(“z+1) (3.7)

2pqbf
[L+0{g--p)]?+ 2pqt?

obtains its maximum when

P
It then equals (1+6)/2 and (3.8) can, therefore be written as
1 62
13 1B, Yol 2 (157 5 )+ 0(0) + 00 ) (3.9)

Moreover, the right side of (3.9) is indeed a lower bound of |R(X,, Y;..)l,
obtained for the special frequency (3.8). However, in the case of subdominance,
if the cycle is long, the value 2pq is likely to be very small most of the time and
as follows from (3.7), B(X,, Y,,,) is likely to stay even closer to L.

The situation is different in the case of overdominance, say & > 1 where o, > 0 (or
8 < —1, where a, < 0). In this case (3.7) still guarantees a non-negative value of
R(X,, ¥,,,) as long as the selection does not alter ite direction. Yet for different
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values of p it may obtain any value between zero and a half. The value
R(X,,Y,,,) = 0is obtained for:

g—1
p = 55 = H(Y, say. (3.10)

Values close to } are obtained for p close to 0 or to 1. Note, however, that in
the case of constant environment o, =a, 0 =0, (t=1, 2, 3,.. .) the frequency
P = P(8) of the allele 4 is globally stable. Hence when the cycle is long, as assumed
before, and the solection forces are changed slowly, p is likely to stay near $(6).

We find, therefore, sharply divergent expectations according to whether A does
or does not imply overdominance. If the cycle is long, then the heritability of fithess
owing to a subdominant locus is likely to stay close to 1 most of the time. On the
other hand the heritability of fitness owing to an overdominant locus is likely to
stay close to zero most of the time.

4. THE EFFECT OF MULTICYCLING: PRESERVATION OF BOTH
HERITABILITY AND VARIANCE OF FITNESS

Until now we have restricted our study to the effect of one locus on the
heritability of fitness. Denoting by X, and Y, the contribution of this locus to the
general fitness of a random adult and a random newborn offspring respectively,
we have seen that the fitness heritability R(X,, ¥,,,) attains values close to a
maximum of half most of the time when the selection forces operating on this locus
are moderate, when they are subject to the effect of a slow cyeling, and when a
polymorophism is maintained without overdominance. Unfortunately one must
admit that such a locus can hardly be much of a source for a substantial variance
of fitness in the population. Indeed, either the selection forces operating on this
locus are very small or one allele must be close to fixation during most of each half
of the cycle. In both cases the advantage G{4) = AR(X,, ¥,,,) v/(Var Y,,,) of a
female attempting to choose a mate 4 standard deviations fitter then the average
cannot be large (see (1.3)). The situation appears to be different when we regard,
more realistically, the combined effect of many non-synchronized host—parasite
cyclings, each having a moderate or minor effect on a different, non-epistatic, locus,

Denote by X{? and ¥{# the contribution of the locus ¢ to the general fitness of
a random adult and random newborn offspring respectively,

k3 T
X, =T XP, ¥,=% ¥ (1)
i=1 §=1
With independent effects of the various loci
n
var Y., = X var Y{%,. (4.2)
=1

With large enough #, this overall fitness variance in the population may not be
small even if the component variances owing to individual loci are so. Moreover,
with the law of large numbers, the overall variance may stay more or less constant
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even when each of the values var ¥{?, is changed from one generation to the next.
To estimate the multilocus fitness-heritability R(X,, ¥,,,), we employ the
assumption that the cycles are non-synchronized and loci are non-epistatic;
therefore, for ¢ # j

RXP, Y{#)=0 (4.3)

that ig, the effect of locus 4 on the father’s fitness, is not correlated with the effect
of locus § on the fitness of its offspring: Hence

cov (s, %p,) = B(S X Y{)~ZBXP Y2,
= B oov (X, ¥{1,) = Teov (X[, Y{0,)

=X/ (var X{P var Y{D,) R(X{ Y{9,)
i

and ,
T/ (var X{P var Y ) R(X®, Y0 )
R(Xy, ¥yq) = :
V(Zvar XP T var ¥{,)
i i
v/ (var X{? var Y{,) R(X$, Yi%,)
oy (4.4)

Ty (var X{Pvar Y{%))

i
where

T V{var X{P var Y{?))
0=-t <1 (4.5)
V(Zvar X var Yi#))
i

Thus, the fitness-heritability B(X,, ¥,,,) is equal to the weighted average of the
one-locug values R(X{®, ¥Y{) )}, multiplied by the constant C, the weights of
averaging being the geometric means +/(var X{¥ var Y{},) of fitness variances in
the parent and in the offspring populations.

From §3 and (4.4) it therefore follows that if overdominant loci (even under
cycling effect) are the main source of fitness-variance, then overall fitness
heritability R(X,, Y;,,) must be close to zero.

If cycles are mostly short, then some of the values R(X{?, Y{¥,) are small, and
some are negative and R(X,, ¥,,, ) must, again, be small (or even negative!).

However, if the selection forces operating on each locus separately are weak and
if cycles are long so that they are changed slowly, one may safely use the

approximation
var X & var Y{, . (4.6)
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In this case (4.5) becomes €'~ 1 and from (4.4) we get:
Zvar Y RXP YY)

R(X, ¥, )~t (4.7)
Tvar Y9,
!

(the left side being always a little bit smaller than the right side owing to inequality
(4.5)).

If, in addition, we assume no overdominance, we know that | R(X{?, Y¥,)| a1,
the sign being positive most of the time, and it follows from (4.7) that

RB(X,, Y=} (4.8)

the approximation being also an upper bound.

5., DiscussIoN

The present work concentrates on the limited question of the maintenance of
& heritable variance sufficient for the evolution of sexual preference, treating
specially the case where preference is based on a polygenic assessment. Tt has been
shown above that contrary to intuition, it is possible to have a selection process
that does not exhaust the additive variance that it feeds on. With periodic reversals
of the selection at many different loci, and with the timing of reversals uncorrelated,
variance in fitness can be maintained at an almost steady value. In this situation
the parent—offspring correlation in fitness is steady to the same degree at a value
that may approach but does not exceed one half. How closely the parent—offspring
correlation approaches } depends on, firstly, the average dominance of fitness
effects at the loci, with overdominance specially tending to reduce correlations
towards zero, and, secondly, the average length of cycles, with long periods making
for closer approach to the limit of { except in the case where overdominance is
common.

It was argued earlier {1.3) that 44/ (var ¥) B(X, ¥)showsthe expected increment
to offspring fitness for a female who obtains a male of fitness which is 4 standard
deviations about the mean. Actually a female cannot be expected to gain as much
as this for a given amount of effort (represented in 4), because the phenotypic
quality she selects always includes non-heritable effects from the environment.
Assume that the female is choosing as a phenotypic quality Z = ¥+ £ where £ is
the environmental effect, assumed independent of genotype, and 4 is now in units
of standard deviations of Z. Then it can be shown that the gain to a choosing female
is G(4) = 4+/(var Y)R(X, Y) (+/var X/+/var Z). Since the correcting quotient
factor is less than one and the rest of the regression is unchanged, a given amount
of effort now achieves less, as would be expected. In other words environmental
variation in the perceptible characters that correlate with fitness makes choosiness
for those characters and consequent phenomena of sexual selection less likely to
evolve.

With this point made, the way is cleared to appreciate a more interesting
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diminution of the advantage of choosing. Since, excluding the case of common
overdominance, B(X, V) rises toward { as cycles lengthen, it might seem that the
power of sexual selection would always be greater for longer mean periods of
cycling. However, this neglects.the fact that if the eycles are long, gene frequencies
almost inevitably go very extreme with consequent reduction of the variances. In
fact, in reasonable models G(A4) must tend to zero as the mean cycle becomes very
long, and this, combined with the fact that if all cycles are of period 2, G{4) must
be negative, implies that this function has a maximum for some intermediate
median period. With the mixture of cycles occurring in real life, there is therefore
some mean periodicity that maximizes the advantage that females can get for their
offspring by a given effort of mate selection.

The problem of characterizing cycle mixtures that would maximally promote
sexual selection in the above sense will not be pursued here. Such a study would
require more detailed specification of a model with attention paid to the nonlinear
dynamics that fixes the nature of the cycles, whereas here we have only been
concerned with very general assumptions about eycle length.

Although parasite coevolution was suggested earlier to clarify the underlying
idea, our result does not require that parasites be the cause of cycling. Other kinds
of biotic interaction might cause cycling. So aiso might fluctuations of the physical
environment. Physical examples here would be dry to wet cycles oceurring on a
time scale of a few to many generations, hot and cool periods similarly, or changes
owing to the sun spot eycle. However, such physical fluctuations do not seem to
be likely to be as important as the biotic factors for two reasons. First, they do
not slacken their pressure when alleles approach fixation, Conseguently, it is
relatively hard to maintain polymorphisms under regimes of this kind (Hamilton
et al. 1981). Second, even if non-biotic ‘eycles’ occur and are buffered againat
fixation in some way that does not involve overdominance to the degree that
destroys the parent-offspring correlation (see Felsenstein (1976} for possibilities),
it remaing hard to believe that there can be many such cycles operating at one
time. Qur result involving a parent—offspring correlation that is both steady and
substantial requires many cycles co-occurring —in effect, polygenic cycling. If
species were subject to just a few drastic cycles it is likely, firstly, that such cycles
would have been noticed, and, secondly, that sexual selection based on them would
show dramatic switches in preferred traits at particular points of the cycle: again,
a phenomenon never observed. In contrast to the potentially fluctuating physical
factors, parasites, on the other hand, are very numerous. Hvery species of
substantial body size (for example, any bird or mammal) has many parasites, and
a high proportion of them are quite host specific, The characteristics of parasites
relevant to co-evolutionary genetical cycling have been reviewed elsewhere
{Hamilton 1982).

While any numerous large free-living animal such as a bird or mamimal is likely
to have a numerous set of parasites, the same becomes less likely to apply as we
review primary parasites themselves as potential hosts of hyperparasites and so
on down. The very fact of being a parasite tends to ensure a life that is somewhat
secluded biotically, although some exception must be made for ectoparasites and
species with complex life cycles and free-living stages. Altogether parasites are



Parent—offspring correlation 13

likely to experience fewer more drastic cycles or changes of selection that are
dependent on genotypes of their hosts. 1f the parasite’s life cycle is fairly long,
as usual in macroparasites, this may well select for maintenance of sex, but it
will not be conducive to sexual selection occurring on the lines discussed
here. These predictions seem to fit roughly with the facts of parasite sexuality
(for a recent discussion see Bell (1982)).

Returning to hosts in general, another prediction is that we expect sexual
selection to be most highly developed in the part of the host range where host-specific
parasites are most numerous. This would normally be the centre of the range.
Examples of this are easily found. Unfortunately they are also open to explanations
not involving parasitism (Eshel 1979). Far more testing of the ideas in this paper
would be a direct search for genetical evidence of polygenic cycling.

We are grateful to J. Seger for helpful discussions.
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