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In a random mating, diploid population with viability determined by the
genotype at two or more linked loci, natural selection does not guarantee an
increase in the average viability of the population. Since it was first pointed out by
Moran (1964), this apparent contradiction to the Darwin-Fisher-Wright expecta-
tion has been shown to occur in most multilocus nonadditive fitness regimes
(Ewens 1969; Karlin 1975). As a result, even in a constant environment, it cannot
be generally true that natural selection on genotypes distributed among pheno-
types operates to maximize the average individual adaptation to the environment,
i.e., to produce an optimal population strategy.

- When selection is considered to be frequency dependent, as in the models
leading to the theory of evolutionary stable strategies (Maynard Smith and Price
1973), it is far from obvious that average fitness should be locally maximized when
more than a single locus is involved. In this case, unlike that with a single gene, for
a random set of genotypes and randomly chosen parameters relating these geno-
types to the phenotypes, genetic equilibria are most unlikely to determine an ESS
distribution of phenotypes. (See, e.g., Lessard 1984. Of course, one can question
whether such parameters are indeed distributed at random.) g

The long-term effects of natural selection should not be considered in the
context of changes in frequencies of a fixed set of genotypes. Even if nonneutral
mutations occur at random, they do not succeed at random so that the set of
extant genotypes in a population should not be regarded as random. As has been
demonstrated for the sex ratio (Eshel and Feldman 1982) for the Mendelian
segregation ratio under unlinked control (Eshel 1985), and for a one-locus two-
phenotype frequency-dependent system (Lessard 1984), criteria for success of
new mutations may be different from and easier to interpret for genotypes than are
the rules governing frequency changes of a given fixed set of genotypes.

We know very little about the range of possible new mutations that may affect
the course of evolution of a given phenotype. For this reason we call “‘long-term
aspects of natural selection” those genetic criteria for the success of new muta-
tions which can be interpreted in purely phenotypic terms.
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We first determine a compact average fitness condition for the initial increase
from a stable equilibrium of a new mutant allele at one of two multiple-allelic loci.
No new analytic tools are required for this, but we can use the characterization to
address a phenotypic question, namely, the properties of new phenotypes (or
strategies) determined by the genetic system and the distribution of phenotypes
(or strategies) which is immune to invasion, when stability is measured in terms of
immunity to any new mutant allele.

A GENERAL CONDITION FOR INITIAL INCREASE OF A MUTANT
ALLELE IN A GENERAL TWO-LOCUS VIABILITY MODEL

Let A, As, ..., Ayand By, Ba, . .., By be the alleles segregating at two linked
-loci with recombination fraction r. The viability of the genotype A;B;/AxB, is wye
(ik =1,2,...0,j4 =12,...m), with

Wike = Wieg = Wiiie = Weeij. (1

The frequency of the chromosome A;B; after selection and recombination is
denoted x; With random mating the average viability of newborn offspring is

W = Z Wike Xy Xre- 2
ike€
After random mating, segregation, selection, and recombination the frequency
of A;B; in the next generation is

Xy = (W)*'{rz WikeXieXyy + (1 — r) Z wy-kgx,-jxke}. 3)
k€ 134

We denote the equilibrium frequencies of {A;B;} by {x7}. Clearly {x7} solves (3)
with the prime deleted from the left side. This is true for frequency-independent as
well as for frequency-dependent selection. In the latter case wye should be
interpreted as functions of x = (xy1, X2, . -« Xum)-

Now suppose that a new allele A, at the A-locus appears in low frequency
near the equilibrium {x;}:

Yoy = 6 D g=e>0 g —afl<e G#An+D )

J
where e is small. If (in the case of frequency-dependent selection) wy, are
continuous functions of x (with frequency-independent selection included as a
special case) then, neglecting terms of smaller order than e,

H " " i

ST - ® , ® %
W¥e; = ¢ Z Z Wyt jkeXke + F Z Z Wt 1, kel€eXy; — €iXke)

k=1t=1 k=1e=1 (5)
j=12,...m.

In the case of frequency-dependent selection wy, stands for the selection
coefficient evaluated at {xﬁ}. The perturbations in the selection coefficients away
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from their equilibrium values in this case will be multiplied by €'s and vyield
quantities which may be neglected in (5). The linear approximation (5) may be
written .

€ = Ae {6)

where the matrix A = ||d¢j/de|| and

= O€; % :
w aJ =( - Z Wai 1, jkeXee + F Z Wa 1 jkiXij
€ Y] 3
de; @
W— L=y Z WatigkeXyy (€74,
€y T
Let A be the leading eigenvalue of A and w = (uy, us, . . . , 4,,) the corresponding

right eigenvector of A normalized so that Z; ; = 1. From the Frobenius theorem
we know that X is a positive real number and that u is a unique positive vectm
We now claim Proposition I:

i ’n m

A=Wt Z Hy Z Z Woa+ 1, ke Xk 8)

Ji=1 k=1¢=1

To see this, write forj = 1,2, ... m,

m

. d€;
Ay, = u Ly (9)
! Zl ‘e

Substituting from (7) and summing over j in (9) we obtain
A=A
7
4] M Hi

(1= D D twya pexie (10)

F=1k=1£=1
moooH
-+ ’(W) Z Z Z UeWy 4 Jkt’x.fg
i=1k=1¢=1

The indices j and € can be interchanged and, using (1), (10) becomes

n n tH

A= (W) Z U; Z Z Wy Jké‘xkt’

Ji=1 k=1¢€=1
Now for any vector e = (e, €, . . ., €,) = 0 with 27, ¢; > 0
Ae .
lim ——— = u, with norm |jz]| = Z. (1D)
lim e Il = 2, I

From (8) and (11) the ploportions #; can be viewed as the weights assigned to
Ag 4 1Bjamong the carriers of A, .. in a sufficiently small neighborhood of {xf} so
that the linear approximation is valid. (Note that the i; are independent of the
values ¢; characteristic of the mutant chromosomes since the stability of the
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original equilibrium is independent of ¢;.) With this interpretation of u it follows
from (8) that a mutant allele at one locus of a randomly mating two-locus system
under viability selection will succeed in the population if its average marginal
viability is greater than that of the resident population (i.e., if A > 1), the average
being a weighted average with weights corresponding to u. Clearly, under these
conditions A > 1 and {x}} is locally unstable to the invasion of A, ;.

SOME TWO-LOCUS DYNAMICS OF ESS

Our point of departure is Maynard Smith’s construction of a population viability
game and the general definition of an ESS. Let «y, oy, . . . , &, be the alternative
(pure) strategies of an individual in the population, An individual is said to have
the (mixed) strategy h = (), Aoy . . ., B WithZE[_ Ay = land i, > 0 (i = 1, 2,

. ., 1), if it chooses the pure strategy o; with probability #; (i = 1,2, ...,

Now suppose that there are s types in the population with p; the proportion of
individuals of type j, all of whom have strategy h*, The population strategy is
then defined as

y= > ph, (12)
=1

The component y, of y is the probability that a randomly chosen individual in the
population will choose the pure strategy o (£ = 1,2, .. ., r). We make the crucial
assumption that encounters occur at random between the members of the popula-
tion. (For other assumptions, see Eshel and Cavalli-Sforza [1982] and Cavalli-
Sforza and Feldman [1983]). Under these conditions y; can equally well be re-
garded as the probability that one’s randomly chosen opponent will choose the
pure strategy o; (f = 1,2, ..., 1)

Suppose that vy is the expected payoff for an individual who chooses the pure
strategy o; on encountering an opponent with pure strategy oy here payoff is
measured as viability. The matrix ||v;|| defines the population game. From (12),
the expected payoff for an wa;-strategy individual playing against a randomly
chosen opponent from a y-strategy population is 2}, y;v;. The expected payoff
to an individual with mixed strategy h is

v, y) = O D kg (13)
i=1j=1
A population strategy y* is ESS if for all h # y*
v(y*, y¥} = v(h, y%), (14)
and in the case of equality in (14)
v(y*, h) > v(h, h) (15)

(Maynard Smith 1974; Bishop and Cannings 1976). Equivalently, suppose that a
sufficiently small minority in the population, €, chooses a strategy h different from
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the ESS population strategy y*. Then the population strategy becomes (I — €) y*
+ €h and

vih, (1 — €} y* + €h] = e v(h, h) + (1 — €) v(h, y*)

<ev(iy*h) + (1 — € v(y*, y*) (16)
vly*, (1 — €) y* + ¢hl]

(see, e.g., Taylor and Jonker 1978; Hofbauer et al. 1979). That is, in playing
against a random opponent from a population sufficiently close to an ESS strat-
egy, the minority strategy h receives a smaller payoff.

Our ultimate objective is to obtain some information about the dynamic proper-
ties of ESS in two-locus genetic models. To this end we proceed with some more
general continuity features of ESS. Suppose that § is a population strategy
determined by a distribution of types in the population (e.g., by some genetic
equilibrium), and let § be close to an ESS y*. That is, for a given small 8 > 0, ||y —
y*|| < & with Euclidean norm ||||. In this case there is a positive e (0 < e < §) and a
strategy k # y*, within the r-dimensional simplex of strategies, such that

¥y=¢€ek + (1 = ¢) y*, (17
Since y* is an ESS it follows from (16) that
vk, $)= vk, (1 — € y* + e K]
<vly*, (1 — ey* + ek] = v(y*, §).

I

Further, using (17) and (13) we have ,
v(§, §) =vill — e y* + ek, §]
= —e)viy*, 3) + evik, §) (18)
<v{y* 9

(Hofbauer et al, 1979). In other words if § is sufficiently close to y*, then y* is a
better strategy against § than is §.

This line of reasoning can be used to show Proposition 2: Let § be a population
strategy close enough to an ESS y*. A proportion of a mutant strategy h in the
exact direction of y* or beyond, i.e., such that

h —§=cly* -9 (19)

for some ¢ > 0, is advantageous over $ when h is sufficiently rare. A mutant
strategy in the opposite direction under the same conditions, i.c.,

h—§%=—cy* -9 (199

is inferior to the population strategy ¢,
To see this note that if h = (1 — ¢} ¥ + cy* then

vih, §) = (1 — ) v(§, ) + cv(y* §)

and, from (18) with ¢ > 0 we have v(h, §) > v(¥, §). In other words, h is better than
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the original population strategy ¥ against §. By continuity, it follows that h is also
better than § against any new population strategy consisting of a large enough
proportion of § and a small enough proportion of h.

In the two-strategy case (r = 2) any deviation from the population strategy can
be expressed as one of (19) and (19°}). In this case we have Proposition 2': In a two-
strategy game, if a population strategy ¥ is sufficiently close to an ESS y*, then a
sufficiently rare new muiant strategy is superior to the ¥ if and only if it is in the
direction of y*, or beyond.

When r > 2, deviation from the population strategy is multldlmensmnal and the
direction of this deviation must be clarified. However, a stronger version of
Proposition 2 may be obtained. We require the Definition: Let y" and y® be any
strategies (mixed or pure). A strategy y'¥ is said to deviate from y‘’ in the
approximate direction of y® if the zero-sum vector y& — y‘ falls within some
sharp cone around the direction of the deviation y® — y'. y® is said to be in
approximately the opposite direction to y® if it falls within the adjacent cone
around —[y? — yV]. Clearly y*® deviates from y*" in the approximate direction
of y if and only if for an arbitrary strategy y we can write

y(3) _ y(1) — a[ym _ y(1)] + B[y _ y(l)] (20)

where «, B > 0 and B/« is bounded from above. This enables us to show
Proposition 3: Let § be a population strategy sufficiently close to an ESS y*. Then
a mutant strategy h in small enough frequency will be advantageous against § if it
is in the approximate direction of y*, and disadvantageous against y* if it is in
approximately the opposite direction.

To see this refer to (18) from which it follows that there is a value 0 << 8 < 1 such
that

v(§, ) = 6 v(y*, §). (21)
If a mutant strategy h deviates from § in the approximate direction of y* then
h—§=oay -9+ faly -9 (22)

for some arbitrary y in the simplex of strategies, o > 0 and sufficiently small § > 0.
From (22) it follows that

vih, ) = (1 — a — al) v(§, § + aviy®, 3 + af v(y, §).
From this and (21} we infer that

vih, $) > (1 — a — af) v({§, §) + % v{¥, §).

Hence for 0 < £ < {I — 6)/6 we have
v(h, §) > v(@, ). (23)

In the same way v(h, $) < v(¥, 9} if h deviates from ¥ in approximately the
opposite direction to y*, By continuity, it further follows that if h is sufficiently
rare and deviates from y* in the approximate direction of y* then it is also
advantangeous over any mixture of § and h.

-
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These general ESS considerations can be applied to the two-locus genetic
situation. Consider a population defined at two genetic loci such that an individual
with genotype AiBy/AyB, (i, k = 1,2, ... ,n;j,€ =1,2,...m) has the mixed
strategy h'*. Let the frequency of the chromosome A;B; among newborn off-
spring (or, equivalently, among adults before encounters occur), be Xy With
random mating the frequen01es of the genotypes A;B;/AyB, at this stage are 2x,J Xie
if (3, ) # (k, €} and x%if (i, j) = (k, £). From (12) the population strategy is

Y= O xyigchlO, (24)
ikt
Using viability as the payoff, i.e., the probability that an individual survives an
encounter with a randomly chosen opponent, the payoff to A;B;/AyB, is

wike = v[hEEO | y], (25)

These viabilities substituted into (3) determine the (frequency-dependent) geno-
type frequency transformation.

Suppose now that & = ||£;]| is a chromosome frequency equilibrium and iet the
population strategy § (from [24]) determined by this equilibrium be close to an
ESS y*. Assume, further, that a mutant allele A, .., occurs at low frequency in the
population. Let B+ Like) be the strategy of A, Bj/AcBe. Its viability will initially
be

Wari,jke = V[h("+ldk€) A)- (26)
By Proposition 1, A, will invade the population if
Do D Beewns 1 e > . @
F Y
Now let
b= w ) gt Lo 28)
7 k€

be the appropriately weighted average strategy of individuals carrying A, ;. Then
we may rewrite {27) as

v(h, §) > v(3, 9), (29)

which, together with proposition 2, allows us to state Proposition 4: In a two-
strategy population viability game in which the individual strategies result from a
two-locus genetic system with random mating, suppose that the population strat-
egy, ¥, determined by a genotype frequency equilibrium, is sufficiently close to an
ESS y* of the game. Then a new mutant allele will invade the population if and
only if its appropriately weighted average strategy deviates from the population
strategy in the direction of the ESS y* (or beyond).

Here by ‘“‘appropriate weights’” we mean the normalized values of the leading
right eigenvector of the linear genotypic transformation near the genotype fre-
quency equilibrium. If the population remains long enough within a small vicinity
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A of the original equilibrium, then the relative frequencies of the mutant chromo-
somes become as close to the right eigenvector as we please. Hence, if we start
from a sufficiently small subneighborhood A’, then these frequencies can be made
as close to the right eigenvector as we wish before the population leaves A. The
weighted average strategy of the entire population (mutant and nonmutant) will
then be closer to the ESS than the original equilibrium population if and only if the
appropriately weighted mutant strategy is in the direction of the ESS or beyond.
This we may restate as Proposition 4': Under the conditions of Proposition 4, a
mutant allele will succeed if and only if it renders the population strategy (at least
at some initial stage) closer to the ESS.

Proposition 3 allows a corresponding multidimensional result: Proposition 5.
Suppose that in a general population viability game the individual strategy results
from a two-locus genetic system with random mating. If the population strategy ¥
determined by a genotype frequency equilibrium is sufficiently close to an ESS y*
of the game, then a new mutant will invade the population if its appropriately
weighted average strategy deviates from the population strategy in the approxi-
mate direction of y*. It is selected against if its appropriately weighted strategy
deviates from the population strategy in the opposite direction.

DISCUSSION

In one-locus multiple-allele genetic systems a new mutant allele will increase
(when rare) if its marginal fitness exceeds the average fitness of the resident
population (e.g., Kingman 1961). Conditions for initial increase of a2 mutant at a
monomorphic locus linked to another with two alleles were obtained by Bodmer
and Felsenstein (1967). These conditions, while algebraically complicated, of
course, can be summarized by the more general Proposition 1 above. Proposition
1 shows that a correctly defined marginal average fitness takes the role of the
classical one-locus marginal fitness, and illustrates to what extent the increasing
mean fitness property might be regarded as being valid for more than one gene.
This average uses as weights the leading right eigenvector of the local stability
matrix for initial increase, which, of course, may not be easy to evaluate directly.

Propositions 4 and S pertain to the long-term stability properties of an ESS
strategy in a two-locus genetic system. A continuity property similar to that of
Proposition 4 has been shown to hold for the one-to-one sex ratio when sex is
determined by an autosomal locus (Eshel and Feldman 1982} and for Mendelian
segregation when the segregation ratio is controlled by an unlinked modifier
(Eshel 1985). We have termed this property Evolutionary Genetic Stability (EGS)
to emphasize that the phenotypic changes result from the accumulation of genetic
mutants and the dynamics of the latter are actually what the model depicts.

The concept of EGS applies to a phenotype strategy x (mixed or pure) within a
given genetic system, if, within this system, a new mutation is favored if and only
if it renders the population strategy closer to x. That x is EGS does not necessarily
imply that genetic equilibria are those that determine x, For example, the implica-
tion is valid in the case of sex ratio determined by an autosomal one-locus system
but not valid in the case of a two-locus viability system. The concept of EGS
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differs from ESS by the former’s independence from arbitrary assumptions about
optimization with respect to some ‘‘natural’’ payment function. In at least some
specific, well-defined cases the two appear to comc1de thereby validating com-
monsense ESS arguments.

For a two-strategy population viability game determined by a one-locus genetic
system, strong results have been shown by Lessard (1984). He showed that a new
mutation will invade the system if and only if it initially renders the population
strategy closer to the ESS (in the sense of this paper) and further, the population
will achieve a new stable equilibrium which determines a population strategy
closer (in Euclidean norm} to the ESS. Lessard (1984) called the stronger property
for a two-strategy one-locus ESS “‘evolutionary attractiveness.” It has not yet
been demonstrated in any other case.

Karlin and Lessard (1983) showed that in the case of sex ratio determined by an
autosomal gene, if the one-locus genetic system converges, then it converges to an
equilibrium closer to the one-to-one sex ratio ESS than the point of departure. It is
important to note, however, that in the two-strategy situation any one-locus
genetic equilibrium determines a population strategy which is locally closest to the
ESS (Eshel 1982; Lessard 1984). This is not necessarily true for two-locus sys-
tems.
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