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The theory of kin selection was introduced by Hamilton (1963, 1964) and
developed further by many others in terms of help directed from one relative (the
donor) toward another (the recipient). In this paper, as well as its companion
(Eshel and Motro 1988), we decal with the more complex (though quite common})
situation in which an individual needs help, and this help can be provided (with
some risk to the donor) by each of several relatives.

In such a situation, even if Hamilton’s condition for altruism between two
relatives is satisfied, it is advantageous to stand by and wait for another relative to
take the risk and help the relative in need. It is true, though, that if all helpers are
passive, Hamilton’s argument again holds, and any potential helper can increase
its own inclusive fitness by exclusively taking the risk and saving the relative in
need. However, this entails an even greater increase in the inclusive fitness of the
other relatives that decided not to offer their help. : :

The analysis of situations involving more than one potential helper carried out
in the preceding paper (Eshel and Motro 1988) and in this paper reveals that if
Hamilton’s condition for one-to-one altruism does not hold, full selfishness is the
onily evolutionarily stable strategy (ESS) independent of the number of helpers. If,
however, Hamilton's condition is satisfied, the ESS in the multiple-help cases is
usually a mixed strategy of altruism and selfishness, characterized by a positive
probability of providing the needed help.

In the preceding paper we analyzed situations in which immediate help is
needed. In such cases, each potential helper has to decide instantaneously
whether or not to offer its help, without knowing what the other potential helpers
are doing. Here we discuss the case of delayed help. Each potential helper can
wait in the hope that another relative will take the risk and help the individual in
need; vet if they all hesitate too long, it might be too late for the relative in
distress. .

We first present an' ESS model of delayed help, based on arguments of the
maximization of inclusive fitness. We then add a simple genetic model, whose
results coincide (at least for the case studied) with those obtained by the ESS
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method. A somewhat more complicated ESS model, which involves the notion of
reciprocity, is then introduced.

DELAYED HELP: THE ESS MODEL

Consider a group of » symmetrical relatives, and let » (0 << r < 1) be the degree
of relatedness (measured by Wright's coefficient of relationship) between any two
of them. Assume that at some moment (¢ = 0}, one individual from that group (call
it B) gets into trouble and needs help, which can be provided by each of its n — 1
relatives in the group. If no one among the » — 1 relatives has helped B before
time ¢ and if B is still alive, then if no help is given during the time (¢, ¢t + A#), B has
a probability pAt + o(A#) of dying during that time interval. In other words, if the
individual in trouble is not saved and if it is still alive at any time, its future life
span is exponentially distributed with expectation 1/p. if no one saves this individ-
ual in the future.

If any of the n — 1 relatives in the group gives a helping hand, it succeeds and
saves the individual in trouble, but it has a probability ¢ > 0 of losing its life while
‘saving B.

If B has not been saved and is still alive at time ¢, then each of the n — 1
potential helpers has a probability AA¢ + o(A#) of offering its help during the time
interval (¢, ¢t + Ar). Hence, for each potential helper, the time passed until offering
its help (if help has not been provided yet and the relative in need is still alive) is
exponentially distributed with expectation 1/A.

We are looking for a value of A that is an evolutionarily stable strategy (ESS).
Such a strategy, if adopted by a large enough part of the population, becomes
advantageous, in terms of inclusive fitness, over any other strategy adopted by the
minority (Maynard Smith and Price 1973).

Assume that the prevailing strategy in the population is A, and consider the
inclusive fitness of a rare mutant (call it 7) with a strategy x # A. We concentrate
on mutations of limited probabilistic effect (Eshel and Motro 1988); hence, this
mutant is likely to be the only one in its group.

If the individual in need dies before help has been offered (the probability of this
event is w/[A(n — 2) + x + ul), the inclusive fitness of Fis 1 — r.

If help is offered by any of the other n — 2 relatives (the probability is A{n — 2)/
[A(r — 2) + x + ]}, the inclusive fitness of Iis 1 — rc. (The individual in trouble
is saved, whereas the helper dies with probability c.)

Finally, if 1 is the one that helps B (the probability of this event is x/[A{n — 2)
+ x + ul), its inclusive fitness is 1 — ¢.

Hence, the (unconditional) inclusive fitness of 1 is

_AMa -2 —ra) + x(1l ~ )+ p(l —
i N - D+ x TR ’

and we are looking for the strategy x(\) that maximizes £, (x).
Differentiating £2,(x) with respect to x yields

dih(x)  plr—c)— an— el = »
X [A(r — 2) + x + u}

(1)
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Hence, 3, (x) is either always increasing or always decreasing with x. (It does
not change with x if the numerator in the right-hand side of eq. 2 is zero.) Denote
by A the value of A for which the numerator vanishes. Thus,

= plr —on — 2)e(l - r) (3)

If r < ¢, then for all A = 0, 0, (x) is a monotonically decreasing function of x.
Hence, the smaller x is, the larger the inclusive fitness of the mutant having the
- strategy x, and this holds whatever the value of ) (the strategy prevailing in the
population). Thus, if r < ¢, the only ESS that exists is A = 0 (i.e., the strategy of
absolute selfishness).

If, however, r > ¢, then Q,(x) is a monotonically i increasing function of x if A <
A, and itis a monotonically decreasmg function of x if A > A. (It has the constant
value 1 — cforallxif A = X.)

IfA < X, then any mutant with a strategy x > X has a selective advantage over
the prevailing type (which has the strategy A), whereas if A > X, any mutant with
x < A has a selective advantage over A. Hence, A is the only ESS.,

Notice that the condition r > ¢ is, the same as Hathilton’s condition for altru1sm
between two relatives. Thus, we obtain result 1.

. Result I (a) If Hamilton’s condition for altruism between two relatives is not
satisfied (i.e., if ¥ < ¢), absolute selfishness is the only ESS.

(b) If Hamilton’s condition for altruism between two relatives holds (i.c., if r >
c), the only ESS is A as defined in equation (3).

For r > ¢, the evolutionarily stable strategy X is an increasing function of r (the
relatedness) and of p (the danger to the relative in need). It is a decreasing
function of ¢ (the cost to the helper) and of » — 1 (the number of potential
helpers). Hence, the larger the group, the smalier the evolutionarily stable ten-
dency to help a relative in need. Indeed, X tends to zero as n approaches infinity.

Assume now that the population is fixed on the ESS, and let us examine the
probability that each potential helper will be a donor and the probability that the
individual in trouble will be saved.

If Hamilton’s condition for altruism between two relatives does not hold, the
ESS is absolute selfishness, and both probabilities-—that of providing help and
that of getting help—are zero, independent of group size.

If Hamilton’s condition holds, then for each potential helper, the probability of
its being a donor is

A F—C

A - D +p F—c+ra=—20 -0

n—

a decreasing function of n, which tends to zero as n approaches infinity. The
probability that the individual in need will be saved is

n—1DF-—-o0 r—c

Li=IL = D) = o =9 o2 W=q

I, is also a decreasing function of n, but unlike I1,,, it does not tend Lo zero as »
approaches infinity.
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DELAYED HELP: A SIMPLE GENETIC MODEL

Consider a diploid population and broods of a fixed size (n). Any sib will
volunteer and help its brother in need according to its genetically determined,
single-locus strategy.

Let AA be the wild type, and let A be the strategy of this type (i.c., the
probability that AA will offer its help during any time interval of length A is ANA¢
+ o(Af), provided that the brother in need has not been saved before the begin-
ning of that time interval and that it is still alive). Let a be a rare mutation, and let
Ag individuals have the strategy x # . Assume that in each generation exactly
one individual in a brood needs help. _

A typical brood consists exclusively of AA individuals. For any one of them,
the probability of being the one in need is 1/r, and in that case, it has a probability
w/[A(n — 1) + ] of not getting help and dying. If someone else in the brood needs
help (the probability of this event is I — 1/x), the probability that an individual
will provide this help is M/[A(r — 1) + w], and the probability that it dies in its
attempt to save the brother in need is ¢. Hence, for any sib in the brood, the
probability of dying as a result of the described situation is

I = o = [+ An — Delulh@z — 1) + pl. C))

If the frequency of allele a-is small enough (e > 0), the viability of a random AA
individual is w; + eo(e). The rare aliele a is usually carried, with probability
1 — o(e), by a heterozygote Aa, which is an offspring of an AA X A« mating. The
probability that Aa has exactly & Aa brothers (and # — 1 — k AA brothers) is

(n - 1) 1
k 2"—1'

Hence, for Aa, the probability of dying is

n—1

_ ~ 1y _1
1= wx) = ,;)(nk )2H*‘[n[kx+k(nfl—k)+ﬂ-]

+ kxc + (n — 1~ kxc }
altkx + Arn — 1 — k) + pl nlxtk + 1)+ A(n — 2 — &) + pnl
The viability of a random Aa is w; + o(e). Natural selection operates for
{against) Aa, when rare, if 0; < w; (if @ > ).
But w,(\) = w;, and when x = A,

&)

n—1

doax)| 1 ()
dx lean  nlMn— D+ pP S0\ K

x 2+ [w(r ~ De = kp + Ma = 1 = b — 2] (©)

1

- n -1 Yo — ¢) — YaA(n — 2)c).
T = D)+ o7 (w2 — ¢) 2h(n )c)
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Hence, if ¢ > ¥ (i.e., if Hamilton’s condition for altruism between two relatives
does not hold), wy(x) decreases at x = A (for all A).

fc<Wandif A < p(¥2 — o)/[Va(n — 2)c], wa(x) increases at x = A, whereas
ifh = p(¥a — o)/[Ya(n — 2)c], w2{x) decreases at x = A. (Notice that the right-hand
side of these inequalities is exactly the ESS A defined in eq. 3, with r = 14, i.e.,
A(A).) If N = K(1%), then w,(x) has a global maximum at x = A(%%) (see the Appen-
dix); that is, w,(x) < wy[A(¥2)] = @, for all x # A(%A).

If w,(x) decreases at x = A, then a mutant with a tendency to help x slightly
larger than A will be selected against, whereas if x is slightly smaller than A, Aa has
a selective advantage. The reverse holds if w,(x) increases at x = A, In both cases,
natural selection favors strategies slightly closer to the ESS. If A equals the ESS,
natural selection operates against any mutant with a different strategy.

Result 2: The ESS of the preceding section (which is 0if ¢ > 4 and is X, defined
in eq. 3 with r = 1, if ¢ < ') has the property of evolutionary genetic stability,
EGS (see Eshel and Feldman 1982; Eshel 1985): it is the only strategy that, when
fixed in the population, is immune to any mutation determining a different ten-
dency to help. Moreover, if the population is fixed on a different strategy, that
strategy is always unstable with respect to mutations that determine, at least in a
heterozygous form, a strategy slightly closer to the EGS.

THE EFFECT OF RECIPROCITY ON THE ESS OF MULTIPLE HELP

The situation in which a group member needs help may be repeated in the
future; as already mentioned elsewhere (Eshel and Cohen 1976; Eshel and Motro
1981, 1988; Motro 1988), this possibility can lead to a higher level of mutual help
than that expected by relatedness alone. This higher level of altruism does not
require the existence of gratitude or memory; it is a direct consequence of kin
selection itself.

We consider now a model in which the individual that volunteers and saves its
relative in need can, as a result, find itself in a similar bad situation. More
specifically, we assume that the helper succeeds in saving its relative’s life, but
with a positive probability ¢ > 0, the helper itself gets into the same kind of trouble
from which its relative has been saved. (In the delayed-help model above, the
helper has a probability ¢ of losing its life. Here, the helper has a probability ¢ of
getting into trouble, and loses its life if nobody comes to its rescue in time. Apart
from this difference, all other assumptions are the same as for the delayed-help
model.)

Using the same notation as in the delayed-help model, we are looking for an
evolutionarily stable strategy A (that is not necessarily unique). Thus, we assume
that X is the common strategy in the population and consider ), (x), the inclusive
fitness of a mutant I with a different strategy, x.

If the individual in trouble dies before help has been offered (the probability of
this event is p/[AMnr — 2} + x + w]), the inclusive fitness of Fis 1 — r,

If help is offered by any of the other n — 2 relatives (the probability is A(rn — 2)/
[Mr — 2) + x + wl), the individual in trouble is saved, but the helper has a
probability ¢ of needing help. Thus, the inclusive fitness of J is then 1 — ¢ +
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¢, (x) (with probability T - ¢, the inclusive fitness of 7 is 1; with probability c,
once again one relative needs help and the other # — 1 relatives, including I, are
potential helpers).

If I offers help (the probability is x/[A(n — 2) + x + p]) and subsequently gets
into trouble, it loses its life if not saved (the probability for that is w/[A(n — 1) +
pD): If 1 is saved, there is a probability ¢ that the one helping [ gets into the same
trouble. Hence, I’s inclusive fitness, if 1 offers help, is

1-—c+ cfl — w/Nn — 1) + ulill — ¢ + cQ )]

The unconditional inclusive fitness of / satisfies

_ _ '8 _ h(n—2)
M) =0 -Nm—p s T U et e
e S U I T
+{1 c+c(1 ?\(n—l)-i-p.)[] c+cﬂh(x)]}_
X

><)\(n—2)+x+|,l.'

Rearranging yields

_ vl — oy 4 X = ) + M = 1) = )]

p{l — 1)+ An — 21 — ¢) + NCEREE

e = RS
.u+)’\(n—2)(1—c)+ R

Hence, €, (x) is a monotonic function of x. Let us define $(A\) as
W@ — ) + A — DU — A [+ Aa — 2] = )]
= {p+Mr = DU =AU =1+ N - 20 = o).

Thus, 0,(x) is an increasing function of x if (A} > 0 and decreases if ¢(\) < 0.
With some algebraic manipulation,

GN) = pi{plr — o) + A1 = )lr(n — DA + ¢) ~ (n — 2)c]}. (8)

If r is larger than ¢, then r(n.— 1)(1 + ¢) — (n — 2)c > 0. Hence, $(A) is less
than zero for all A, and the only ESS is that of immediate response. We denote this
situation by A = « and call it full altruism.

X Ifr<(n-— 2)c/[(n — 1D + ¢)], then $(A) < 0 for all A, and the only ESS is
A= 0,
If(n — 2)e/l(rn — D + )] < r < ¢, then $(A) < 0, for

wle — 1)
(1 —cflr(n — DA + ¢) — (n — 2)c]

whereas $(\) is larger than zero for A > k. Thus, we have here two evolutionarily
stable strategies, A = 0 and A = o, and which one will be fixed in the population

A,
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depends on initial conditions. (No mixed ESS exists in this model. The strategy A,
though a Nash solution, is not an ESS.)

Result-3: (a) If Hamilton’s condition for altruism between two relatives holds—
that is, if ¥ > ¢—full altruism (A = ) is the only ESS in our model.
- (b) If Hamilton’s condition does not hold, then full selfishness (A = 0) is an
ESS. It is the only ESS if r is small enough, that is, if r < (n — 2)¢/[(n — D(1 +
c)l, whereas if (n. — 2)¢/[(n — {1 + ¢)] < r < ¢, both full altruism and full
sclfishness are evolutionarily stable.

DISCUSSION

We find it interesting to compare the results of this study with those obtained
earlier (Eshel and Motro 1988). Both papers deal with models of multiple help,
namely, with situations in which an individual needs help, help that can be
provided by each of several relatives. In the earlier models, immediate help is
needed, and each potential helper must decide instantaneously whether or not to
provide help, without knowing what the other potential helpers are doing. The
models in this paper are cases of delayed help: no immediate help is mandatory,
yet any delay increases the risk 1o the individual in need. At any moment, each
potential helper has full information on what the other potential helpers have done
and on the situation of their distressed relative.

If Hamilton’s condition for altruism between two relatives is not satisfied, full
selfishness is the only ESS in the case of multiple help, whether immediate or
delayed. If Hamilton’s condition is satisfied, then in both cases of multiple help
the ESS is a mixed strategy of altruism and selfishness, with the probability of
altruism monotonically decreasing to zero as group size increases.

In both cases, the probability that the relative in need will be saved (assuming
an ESS response by its potential helpers) is maximal for some group size n*, and
the probability is a monotonically decreasing function of the number of potential
helpers once the number of helpers exceeds #*. In the case of delayed help, this
“‘optimal”’ (optimal from the viewpoint of the relative in need) number is always
n* = 2 (the more potential helpers, the smaller the chances of receiving aid). In
the case of immediate help, however, the optimal group size n* is a number larger
than or equal to 2, depending on the parameters. In both cases, the probability of
getting help approaches a positive value as the number of potential helpers
approaches infinity. Comparing the limits for the relevant models in both cases,
we see that with equal parameters, this limit is larger for the model of delayed
help. Hence, with a group of potential helpers large encugh, the chances that an
individual in need will be helped are larger when its potential helpers can delay
their response and obtain full information about each other’s behavior.

Though approached in two different ways, repetition has a similar effect in the
case of immediate help (Eshel and Motro 1988) and in the case of delayed help
(this paper). The possibility that the distress situation will be repeated increases
the evolutionarily stable level of altruism. This higher level of mutual help is
maintained without further postulates such as the existence of gratitude, the
possibility of individual recognition, or even the existence of memory.,
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SUMMARY

The evolutionarily stable strategy of helping behavior is studied in situations
involving a single relative in distress and several potential helpers. We consider
cases in which no-immediate help is mandatory, and at each moment every
potential helper has full information on the response of others.

Although it seems always advantageous to leave the risky job of providing the
needed help to any of the other potential helpers, it turns out that if Hamilton’s
condition for one-to-one altruism is met, the evolutionarily stable strategy is
usually a mixed strategy of altruism and selfishness, characterized by a positive
probability of helping.
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APPENDIX

We prove here our assertion of the delayed- help model, namely, that if ¢ << s and A
= A(%), the function w;(x) obtains a global maximum at x = ACA):

do(r) i (n - 1) 1 {k[p.(l — ) - Mr -1 — Bl

de Nk | e+ A= 1 - k) + pP

_(n»ﬂl—k)[p,c+)\(n—2—k)c]}
[xtk + 1) + A(n — 2 = &) + pl?

n—1{""(n—z)p.(1—c)~x(n—1—k)c
2t N = ke +An— 1 — k) + p]P

_ni(ﬂzz) pe + AMn —~ 2 — ke }
k=0

[xtk + D+ M — 2 — k) + pP?

=2
_n—1 (n——Z) p(l —¢) = Mn — 2 - f)c

(j+ 1D+ A -2 =)+ pp

(n—Z) pc+)\(n—ﬁ-_k)c }
k) [xte+ 1) + Mo — 2 — k) + pP

I.
- -
“M'
= (]

Ii

Z( 2) w2 — ) — Mn — 2 = k)
= k

n2” etk + 1)+ N — 2 — &) + ul?
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But A = A(%2) = n(%s — &)/%(n — 2)c; hence,

doy(x) _ -1 i (n - 2) p — Ok — (n — 2 —K)]
dx 2 B3Nk kDR -2 -8+

The sum is of the form 3/} 2 aklbi, where by = x(k + 1) + A(n — 2 — k) + > 0and

@G = —au-z-x k=0,1,2,...,r — 2). If Lis the integral portion of Va(r — 2), then
n—2 L L
Z__k_ = Z ( 1 ) — ak(bk + bn—2-k)(bnf'27k — bk)
k=0 b K0 bio2k ¥=0 bEbE 2

Since b, _y_j — by = [k—(n—2—k)](h—x)andak<0fork 0,1,2,...,L, weget,
for A = A(1),

sign (dwz(x)/dx) = sign (A — x),
which proves that at x = A, wy(x) has a global maximum.
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