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EVOLUTION PROCESSES WITH
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Abstract

The objective of this work is to study the long range evolutionary traits
in a population with an infinite number of types; we are especially interested
in the asymptotic rate of evolution, variance and type-distribution. In this
paper we concentrate on an asexual population with the same probabilistic
mutation force acting over all types in the population,

Most results are proved under the assumption that the mutation effect
is also unchanged in time; some are extended to more general cases with
time-changed distribution of mutation,

EVOLUTION; MUTATION ; SELECTION; MUTATION-SELECTION BALANCE; RATE OF
EVOLUTION; TIME HOMOGENRBGUS PROCESS OF EVOLUTION; PERFECT PROCESS OF
EVOLUTION; SEMI-MARKOV PROCESS OF EVOLUTION; DISTRIBUTION OF PITNESS;
DISTRIBUTION OF MUTATION; ASYMPTOTIC DISTRIBUTION OF FITNESS

1. Introduction

The motivation for this work stems from the many investigations carried
out on the combined effects of mutation and selection on a large population
(see [3], [10], [11], {27], [32] and references therein).

Although most classical works concentrate on the situation in which very
few, usually two or three, possible genotypes are involved, a deeper under-
standing of some aspects of the natural process appears to require study of a
polygenic sitvation for which the development of an infinite-type model is
the most feasible. This approach, justified by the large number of possible
genotypes offered by the chromosomal system, has been pursued by Kimura
and Crow [23], Kimura [19], Karlin and McGregor [17], Karlin [16], and
lately, in connection with problems of biochemical evolution, by Kimura [21],
[22], Kimura and Crow [24], Kimura and Ohta [25], Ewens [7] and others.
Another approach, attributing quantitative variation in population both to
phenotypic and genotypic features has already been treated by Fisher [9],
Wright [31], and more recently by Bodner and Edwards [1], Kojima [26],
O’Donald [28] and others. In all of these works, however, the genetic factor
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has béen restricted to a one-locus two allele situation. Finally, polygenic
models which allow qualitative features to be genetically inherited were used
by Kimura [19] and by Slatkin [30].

This work attempis to analyze the combined effect of selection and mutation
on an infinitely large, asexual population, in which quantitative'diﬁ"erences in
fitness are determined by a genetic variation on a continuum. Changes in the
distribution of the fitness-factor are investigated with a special consideration
given to the asymptotic behavior of the population in the long run.

In introducing an amount of a parental material as a basic unit of repro-
duction, the approach of this work is somewhat similar to that of Jirina’s
continuous-state branching processes (see, for example, Jirina [14], [15],
Seneta and Vere-Jones [29] and reference therein). However, both the basic
problem of this work and the mathematical methods used are quite different.

For biological applications and discussion, the reader is referred to [4].
Extensions of some of these results to a sexual model are given in [5].

2. ‘The general model and basic properties

We consider an infinite population characterized by various inherited
properties. The types of the population are identified with points of a certain
measurable space (E,#>. The population is described by its frequency-
measure over this space. Starting with p, as the initial frequency measure of
types in the population, the population is assumed fo change over successive
generations, under the influence of selection and mutation pressures. We for-
mulate the problem in a quite general setting, but the bulk of the analysis
concentrates mainly on the one-dimensional case E = R, where all types in
the population may be ordered according to a single real parameter.

(i) Selection. At the first step, each individual in the population produces
offspring replicating its type. In agreement with the traditional approach of
population biology (e.g., Fisher [10], Haldane [11] and Crow and Kimura [3]),
we postulate that each generation, the expected number of viable offspring
produced by an x-type individual (x&E), is proportional to a given value
7(x), namely the fitness of this type. The fitness function ¥(x) is naturally assu-
med to be positive and integrable over {E,%,u,», with

@.1) - B = [ 1medn) < e
For any class of types AcE, the frequency of offspring produced by an

A-type individual, relative to the entire population, is

Ja()po(dx) a 1
[ y(ite(dx) — Eop(x) L Yuo(dx).

(2.2)
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(i) Mutation. As a second step, each offspring in general may mutate
(alter its type) governed by a given probabilistic law, which depends on the
generation-time and on its parental type. Explicitly, let v( - | y) be the type-
probability-measure of each offspring produced by a yp-type parent in time
t(t=0,1,2,-; yeE). v(-|p) is called the mutation probability-measure.

Influenced by selection and mutation, the frequency-measure of all offspring
types is given by:

I

m(4) = (1/Eg(x)) LVo(AIy) L HWtio(du)

(1 [Eqy(x) f VoA | Yol
for all Ae&,.

In exactly the same way one may express the frequency-measure p,,; of
the ¢ + [ generation in terms of g, and v{ - | ) {ycE)

23 Hea1(A) = (1 [E(x)) ]' V(A Y.

"The sequence {¢}, is thus recursively determined by pt, and by the mutation-
distributions.

Definition. A sequence {y,} of frequency-measures over E, as determined by
(2.3), is called an asexual process of evolution.

If for some T, (T =1,2,3,---) Ex{x) = 00, the process is said to explode in
a finite time. If not, we speak of a lasting process of evolution.

In this work we exclusively.consider lasting processes, which are manifestly
most meaningful for biological applications,

When the types of the population are characterized by any (finite or infinite)
number of continuously ordered biological features, the measure space E is
naturally described as a vector space. In this case it is convenient to use the
notations

Fx) = f )

Gfx|y) = f

u=s

and
vi(du| y)

for the distributions of types and mutations respectively in the tth generation.
Henceforth the limitations of our analysis require the homogeneity assumption
that in each generation all mutations are equi-distributed around their parental
type; so that

2.4 G(x| ) =Gx—p), . t=0,1,;x,yek.
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Under this assumption (2.3) becomes
@235 - Fio(x)=(1 /E:?(X))L Gilx — yy(WAF(y).

With some special forms of p(x) in mind it is convenient to describe the
process by its generating functions (g.f.’s):

2.6 Bl = f YR,

@7 U(s) = L $0G,(),

where s =1(3y,...,5,), 5 =57 ...5" and wherever the right hand sides are
defined (i.e., when F(x) is defined, G,(xl ¥) = G(x — y) and the integrals
converge). In terms of generating functions, (2.5) may be expressed in the
manner:

Pee1(5)

n

2o [ 7 [ 6 - unar )

(2.8)

]

(1/E()) f Y(u) f S VIG,(x)dF ()

W) [En() f Y)S'dF, ).

A recursive formula for ¢,(s) is readily obtained when [y(u)s*dF{(u) can be
expressed in terms of the g.f. ¢,(s). This, for example, is the case when y(u) is a
polynomial function of u (with y(u) = 0). Thus, in the simplest, linear situation
for u 2 0 y(u) = « + pu (with a, f = 0), we get:

aps) + Bsdi(s)
a+po(1) -

A more important case, on which we concentrate throughout the sequel of
this work, occurs when x is a single parameter which corresponds to the general
Darwinian trait of fitness, i.e., the expected number of surviving offspring of an
individual of a given type., Defining x, more precisely, to be a logarithmic
function of this expectation, postulate (2.4) complied with the biologically
plausible assumption (see [4]) that relative change in fitness due to mutation
is equi-distributed over the whole population.

In this case we get

@9 . (%) = A%,

Be s 1(5) = P, (8)
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where 4 > 1 is a measure for the intensity of selection in the population (see
[4]), and (2.8) then reduces to

Yis)p(As)
YO N

Definitions. (a) A general process of evolution with y(x) = A* (4>1) is called
a fitness process of evolution or (in this work) simply a process of evolution.

In such a process, 4 is called the Malthusian parameter (see Fisher [10]).
The parameter x is referred to as the fitness. The value E,, ,x — Ex (t=
0,1,2,..+), measuring one-generation changes in fitness, is called the rate of
evolution.

(b) Any process in which G(x)= G(x) for all +=0,1,2,..- is said to be
time homogeneous in respect to mutation. _

If for some n and all ¢, G, (x) = G,(x), we speak of a periodic process.
Later, we shall also be interested in the more general case in which eruptions
of mutation are stochastically dependent on previous eruption, thus producing
a semi-Markov process.

(2.10) Pre1(5) =

The main results proved in this work concern time homogeneous fitness
processes; these are as follows.

(a) If the fitness in the initial population is bounded from above, then the
rate of evolution tends to a limit which depends only on the mutation dis-
tribution.

This limit is finite iff the parent-offspring difference in fitness due to mutation
is bounded from above. Furthermore, in this case the rate of evolution tends
exactly to the supremum of this parent-offspring difference, independent of
the initial distribution and of the Malthusian parameter.

(b) Under the assumption of (a), the variance of the centered distribution
F(x — E,x) is bounded and tends to a finite limit.

(©) F{x — E,x) converges in law to a limit distribution F(x), which depends
only on the distribution of the mutation, Furthermore, under the assumption
of a bounded fitness population, there is a 1-1 correspondence between the
distributions of the mutation and the limit centered distribution F(x). An
explicit formulation for this correspondence will be developed in terms of the
g.f.’s,and a criterion will beelaborated to determine whether a given distribution
may be obtained as a limit distribution of a time homogeneous process.

(d) The support of the limit centered distribution is bounded from above
(i.e., the limit relative-fitness is bounded from above) iff there is a positive
probability for the maximal mutation,

(e) The absolute fitness tends (in law) to a limit distribution iff all possible

mutations are deleterious but there-is a positive probability for each offspring
to suffer no mutation,
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In this case, although the limit mutation selection balance distribution
depends on the distribution of the deleterious mutation, the limit fitness of the
population as a whole is independent of it; here we have defined population
fitness as the average number of surviving offspring per individual. Furthermore,
the population limit fitness is always equal to the maximal fitness in the initial
population multiplied by the (positive) probability of an offspring not to be
mutated,

3. Fitness processes, regularity and limit rate of evolution

Theorem 3.1. A fitness process is lasting (non-exploding) iff one -of the
following conditions is satisfied:

i) ds)<cwforalll £s<owand £=0,1,2,:;

(i) ¢o(s) and all yr,(s} are finite for [ 55 < 0.

Proof. By definition the process does not explode iff:
3.1 Eyx)=EAN = ¢y <o0, t=0,1,2,-.

This is automatically true under Condition (i} and also follows from (2.10)
by virtue of Condition (ii).

On the other hand, suppose the process does not explode. Then ¢,(3) < o
(¢=0,1,2,...), which entails ¢(s) <0 for 1 s £ 4,¢=0,1,2,--.

Assume now that all ¢,(s) converge over [1, A**1] for some non-negative
integer n. Inspection of (2.10)} reveals that for all ¢=0,1,2, .- and
sE [AH,A:1+ 1], , .

(2) Brests) = O,

Since ¥,(s) > 0, ¢,(s) is finite for [1"*+1, 27+ 2]. Convergence of the ¢(s) over all
[1, o) is immediately implied. Using (3.2) again, the same holds for all y,(s).

Unless otherwise stated, we shall now restrict attention only to lasting
processes (i.e., when ¢,(s) < oo for s = 1). A convenient formulation, aiding
further investigation of the process {F,(x)}, involves independent random
variables (r.v.’s) X, (t = 0,1,2,-..), distributed as F,(x) respectively, called the
successive fitness r.v.’s. We are interested in the law of the sequence
X}

Let us call a process without mutations, i.e., with all ¥,(s)=1, a pure
selection process.

Theorem 3.2. The t-generation fitness r.v. X, may be represented as the sum

=1

(3.3) X,=Z+ £ Y,
k=0
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of t + 1 independent r.v.’s, Z, being the t-generation fitness r.v. of a pure
selection process starting with a fitness distribution Fy, and ¥, , standing for the
k generation pure selection process starting with a fitness distribution G,_,_,,
and the equality is in law.

Proof. By iteration of (2.10) we get

: Xe _ Po(A's) e '!f:—k—1(/1ks)
(34 Bt =0="g.a0 W 5 iom -

As a special case, for a pule selection process starting with Fy (then y,(s) = 1)
we get

Es™ = ¢o(Xs) [o(X).
In the same way, for the k generation pure selection process starting with
Gt—k'—l
ESYt = o1 (A%8) fre—y— 1 (A9,
From (3.4)

ESTr = ESZ‘[I ESTe,

and the theorem follows immediately.
In a time-homogeneous process, (3.4) has the form

Po(N's) = W(A's)
(35) ¢J(S) (}50().’) ].—.[0 l]/(ﬂ.k)

and (3.3) {(Theorem 3.2) becomes

t—1

(3.6) Xy = Z; + > Y.
k=0

Theorem 3.2 allows us to study a general process of evolution by consideration
of the much simpler pure selection process. FFor this we require the following
definition.

Definition. For any distribution H(x), we define the value & = sup {x [ H(x)
< 1} as the (upper) bound of H(x). The distribution is said to be bounded (has
bounded support from above) it H < w.

Lemma A. In a pure selection process {H,(x)};=,
{0 if x<H,,

3.7 tim H(x) = _
@7 ) 1 if xx H,

1= co
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For the special case whete i, = o0, lim,_,  H(x) =0for all — o0 < x < 0.
Furthermore, if Z, is the f-generation fitness r.v. of the process, then,

38 lim EZ, = H,

= oo

(clearly Hy = H, t=0,1,2,--).

Proof. If x = H,, then H(x) =1 for all t. If x < #,, choose ¢ < H, — x,
so that 1 — Hy(x + &) > 0. ' '

From (3.5):
J: isde:(x) = Lstﬁ'dea(x) / fq:ﬂ.”‘dHo(x), ‘
and thus
e = [ g [ [ rearg
0s) s [Dargt ([ wearto) + [ aearo)

é Atx/{ltx + At(x+a) [I—Ho(x+a)]},

from which lim,., ,, H(x) < 0. The conclusion of (3.8) is also inferred from the
left hand side identity of (3.9).
As an immediate result we have the following theorem,

Theorem 3.3. For a time homogeneous process with Fy < oo

(3.10) lim {EX,,, ~ EX,} = G.

1+

We see that the rate of evolution tends to the supremum of the offspring-
parent difference in fitness,

Proof. From (3.6) we have
EX,,,—EX,=EZ,,—EZ + EY,
By Lemma A
lim EY, = G,

t—r o

and since Fy < o0,
EZ,+1 - EZ‘ =F0 _FO = 0

which completes the proof.
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Definition. A time homogeneous process {F/(x)}, is called injtially regular
if Fy < co. If, in addition, G < o0, the process is called a regular process.
It is easy to see that the following statements are true.

(i) In a regular process F, < oo for all ¢. In fact
(3.11) F,=Fy+1C.

(i) A time homogeneous process in which F, < oo for some ¢ is a regular
process.

The main claims of Theorem 3.3 can be stated as follows.

(i) The rate of evolution of an initially regular process tends to a limit
(finite or infinite) as #— oo.

(i) This limit is independent of both Fy(x) and A and depends on G(x)
only through its upper bound.

(iii) This limit rate of evolution is finite iff the process is regular; i.e., if the
fitness in the initial population is bounded from above, and so is the offspring-
parent change due to mutation. These assumptions are manifestly plausible for
a biological application of the model (see [4]).

Remark. The theorem does not necessarily hold if Fy = c0. Consider, for
example, a normal fitness distribution of the initial population

dols) = Hn",
then
Es® = §o(As) [o(4) = s i+ o,
and Z, ~ N(¢In A, 1) with EZ, = t In A for all ¢.

Unlike the homogeneous case, the limit rate of evolution may not exist in
non-homogeneous processes. For the more general case, we are thus interested
in the weaker Cesaro average limit lim {EX, [t} If F,, < oo, then (3.3)and Lemma
A show that this limit, if it exists, is also independent of Fy(x). We shall prove
its existence and also calculate it in a certain class of semi-Markov processes,

Definition. The process {F,(x)} is said to be semi-Markov if the distribution
of its mutation is stochastically varied in time, being randomly equal to one of
the n distributions H,(x),---, H,(x) according to the Markovian Law

(1)) PGa)=HM|GM =} =ay 154 j5n,

ijs
where | a;; | = 4 is an irreducible stochastic matrix.

Theorem 3.4. In an initially regular semi-Markov process with £, < <0,
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(3.13) lim EX Jt = z PA, as.

tr o0
where P, is the ergodic probability lim,_, .t "' Xi75 P(G, = H).

Proof. Forall1=ignand r=0,1,2,--, denote by Y;* the t-generation
fitness r.v, of a pure selection process starting with H;. Denote by # the right

hand side of (3.13).
- First, assuming A < oo, set ¢ = maxlé,é,,] H, - H’] < oo,
Let e > 0. By Lemma A, there is a number N such thatforall 1 £iZn-

(3.14) tzN=|EY}%~ H| <1

For t > N, let N} be the number of generations up to t — N + 1, for which
G, = H,. Clearly

and from (3.14) we get
Z NiT, — 3e(t - N) = 2 EY,,, 2 NiH,
i= E=N+ i=1

(here the Y, are defined as in Theorem 3.2). For ¢ large enough the ergodic
theorem implies that

1t gf2cn if ¢>0,
|G~ Ny 'Nj—P;| <5 =

1=i
1 if e¢=0, 1<i

{I/\ lI/\

For such a t we thus get

A-e g £ PH—6cn—4e<(t—N)"' X NH —1s
i=1 i=1

t H n
£ (¢-N"1' I EY%,.2(¢-N)"' % NA L T PH+6
k=N+1 i=1 i=1

= H+ .

Eventually, since F, < oo and sup, ,EY,; < max ,;.,H; < oo, we have

N
lim {Ez,/t+r“1 h EY,”}=0. _

i~ k=0
Hence
. N _ t—1
lim EX. _ lim [E—z'+L Z EY“+t—I-\—T _1 pX EY,‘I,}=I?,a.s.
o P I x=o ’ t =N iy
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Now, assuming A = co, then ;= co for some 1 <i < n. In this case
EY— o0 by Lemma A and again, since the proportion of the Y% in the sum
E;;é Ve tends as to P> 0, t~1 EX, — o0 a.s.

Corollary. In a deterministic periodic process, lim,., , EX, [/t =n~' X .

Taking into account the slow rate of evolution in nature, Theorem 3.4
indicates the rarity with which the too advantageous mutation appears (see
Fisher [107). Although based on a different approach, this result agrees with
Kimura [20] and [21] (see also [23] and [24]).

In cases when the distribution of the mutation may, in itself, be subject to a
stabilizing selection (see Kimura [21], [22] and also Eshel [6]), it is of interest
to prove the following proposition.

Proposition 3.5. If Fy< oo, lim,.,, G(x) = G(x) uniformly and G, -G,
then EX,/t - G. ) '

Proof. Let us first suppose G < 00. Denote t —k — 1 = n. For n fixed,
since ¥ and xA™ are continuous and bounded over ( — 0, G,

. G el
lim EY;, 44, = lim { f XA dG(x) /f A"xde(x)]
—on -

thk->w tik— o

f_(:xl"xdG(x) / Ji)u""dG(x),

and on the other hand, when ¢t — k— w

,1,1_1.]1, {j_i, xA™dG(x) / J;Gwﬁ,”xdG(x)] =G
G

m EYyep4q = G lim Gy =

t— o0 k—+w

Il

Given thus ¢ > 0, a number N exists such that fortand kwith N <k <t ~N

,'EYt.t+k+1 - GI <é

Hence
’ 1 —N
ra ) IEYrr+k+1 G|<3‘
k=N
In the case, k < N, since lim,,,m|EY,+,‘+1 [ = |G | < w, we get -
1
hm — E |EY1:t+k+1 =|0.
t—ao k=0

For Itz t— N we have

G+H(G-Gz EY i1 2 EYy e = f xdG{(x),
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and

w0 w0
lim J. xdG(x) ='J xdG(x) > — o0,
t~rco o0 —w
But lim,.. {G, — G} = 0, therefore -

1 t-1
lim — X |EY4441—G|=0.
N

E~r a0 k=t—

We have thus proved

. =1
lim L p ‘EI’,_,+k+1—GI§eforalls>O,
2] k=0
80 1 t—1
lim =~ T |EY 41— G| =0
- [ k=0

We also know that EZ, /f — @, so
1 t—1
lim EX,/t = lim {EZ, LS BV, =G
troo = ! k=0 '
Suppose now that G = oo . For each real number r such that G(r) > 0
o o«
EY t4p41 = J‘ x)t('"k_l)xde(x)/J AETETDEG(x)
@ - o0

r r ’
= J xAETETDRAG(x) /J AT DYG(x)
-0 -0

and, as £ —» ¢0, by Lemma A,

lim EY; y1544 = Min(r, G

t— w0

But G, — o and so limy, o EY, 4x+q1 = 7 for all r with G(r) > 0. We get
lim,, oEY; ;4441 =0 for all k, and by exactly the sgyne method we used before:

lim EX,ft=c0.

-+ oo

Remarks. (i) The requirement F, < o0 is not needed for the case G = 0.
(i) The conclusion of Proposition 3.5 may not hold without the condition

G, —G.
Example. Letus have Xy =0 and
0, x <0,
G(x)=< 1—-1/t+1, 0=x<1, t=0,1,2,--,
Uy, 1< x.
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In this process
. 0, x<0,
lim G(x) = G(x) = {
F g ] l, X g 0,

the rate of mutations tends uniformly to 0 as t — oo the fitness distributions are
bounded and yet the rate of evolution does not tend to G = 0.

Proof. The mutation g..’s are: y,(s) = 1 + (s — 1) /(¢ + 1). From (3.4)

LA+ D)TIEE TR ) o g sptRed
Pi(s) = kl;IO 14 (k + D~ IQAr-*"1T 1) _k1=_[0 %+ At-E-12
t—1 Af—k—l

EX, = Y, —
SRR SIS

and so
-1 k(ﬂ. - I)A‘_k_l ' 1
(3.142) B (T e R
' — femk
> A-1 max kA

= A ozksi (k + ATm8)2”

For a given t 2 1, let n = n(f) be the largest integer for which n < A7,
Clearly n 2 1 (since 1 £4'~!) and also n < ¢ (since x > A"~ for all x = #).
Hence, from (3.14a):

A—=1 pit-s

EXI+1 - EX: = 1 (n iy n)z .

But from the definition of #, we know that A*~*2 n, and A" l< pn + 1.
We thus get

A1 n? o _A=1

T i+ O 2 i+ O

(3.15)  EX,.,~EX, =

forallr =1, and
lim (EX,,; — EX)> 0.

=+

This example is of interest by itself since it demonstrates a situation in which
the distribution of the mutation tends uniformly to the trivial case of no
mutation, and still the rate of evolution does not tend to zero.

4. Mean square and convergence-in-law of time-homogeneous processes

For most biological applications one is interested in relative fitnesses and
their fluctuations about the mean, rather than in their absolute values. Thus,
in this section we shall study the behavior of the relative fitness distribution.
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(4.1) H(x) = F(x+ EX,).

As before, this distribution is represented by the law of its relative fitness r.v.,
U, defined by

t—1

(4.2) . U,=X,~EX,=7,—EZ+.% (Y,~EY)
k=0

and by its g.f,

4.3) | L) = j SAH(x) = 5 (5).

Lemma B. If the rate of evolution is bounded (in particular, if the process
is regular) then for all 1 fa<b< there is a constant ¢ such that for all
i=0,1,2,andasssh L) = e

Proof. t(s) <14 [Qs"dH(x). The second term increases with s, so it is
sufficient to prove equi-boundedness over the intervals [1,A*] where n is any
arbitrary integer.

For t=0,1,2,--

$i(s) = sPXLYs) + EX "N (s)
'and 50

SO st
o Yo R

~ Consider now a time-truncated process, starting from the #th generation of
the original one. For the nth generation g.f. ¢,,(s) of the truncated process,
we get, as a special case of (3.6): :

n n—1 k
il = 2D T LED

¢A") g0 YA’
and so
B _ 2,"(}5:(1") n—-1 A.kl,[l (’1}4)
4.4 X = X0 =3 0y — B 2 a8

l"(:,(;{") n—1 lkl,ll’(lk)
AN T WSe ¥R
Let M = sup, (EX,;{ — EX,). Having assumed a bounded rate of evolution
we know M < o and EX, ., — EX, < nM. From (4.4) we gct
A”C:(All) n= 1 l’c"!’ f("{k)

com =™ - X an

(4.5) =¢, < 00, s4ay.
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Employing now the logarithmic convexity of the Laplace transform whenever
it is defined on [0, c0), we infer the convexity of In {,(1") for all ¥ >0,
Equivalently:

d o Auc:(lu)
+6 M = gy ek
is thus monotonically increasing with u. For 0 < u < n, inserting (4.5) we get:

d w < A"
Eln LA £ Ty Ind =¢,ln A.

We know In¢(A%) =0 and so for 0 S u < a,
Inf,(A" £ ue,Ini < nenl.
‘For 1l =s= A", we get
) < 2
and this holds for all £=0,1,2,---,

Definition. The process {F/(x)} is said to be converging if alimit relative
fitness distribution F(x) exists such that

4.7 H(x) = F(x) in law.
If, in addition,
(4.8) L= L6s) = f N §dF(x) < o

over all [1, c0), the process is said to be strongly converging.

Proposition 4.1. A converging process {F(s)} is strongly converging iff
its rate of evolution is bounded. In this case its rate of evolution also has a
finite limit,

Proof. (a) If the rate of evolution is bounded, then for all b > g = 0 the
Laplace transforms {(e") are uniformly bounded over [a,b] (Lemma B),
H(x)— F(x) in law and so

fim ¢(e) = f " ARG = 1),

i—*00 —w

ayforallu =0.Fors =1

lim §(s) = on s*dF(x).
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(b) Suppose lim,.,, {,(s) = {(s) < co over [1,00). From the analyticity of
{(s) and {(s) we know that lim,., ., {i(s) = {'(5) < co for all s > 1. By virtue of
(4.5) we thus get: '

@9) lim (BX,, — BX} = fim 2Dy = B 1y < o,

and we have also proved that the rate of evolution tends to a finite limit.

Let us assume convergence of the pure selection process, that is, convergence
in law of Z, — EZ,. As implied from Lemma A this holds trivially for any
initially regular process. Then the process {F,(x)} converges iff the sum
2z (Y, — EY,) converges in law (immediately from (3.7)). By virtue of the
3-series theorem, this sum converges if the sum X°_ , V(Y}) of the variances
converges (see, for example, Chung [2]). Since V(X)) = V(Z,) + 2., V(Y), a
sufficient condition for 2%, ¥(Y;) converging, is the convergence of the
sequence {¥(X,)},. In an initially regular process (and more generally, if the
pure selection variance V(Z,) converges), this condition is also necessary.

The main theorem of this section is thus as follows.

Theorem 4.2. The variance ¢f = V(X,) of a regular process of evolution
tends to a finite limit 6? < co as t— oo, Furthermore,

(4.10) lim H(x) = lim F(x — EX,) = F(x)

-0 1= w
in law, where F(x) is a distribution function with mean 0 and variance o2,

Proof. We know
=1
of =V(Z) + L V(Y)
k=0

where lim,.,, V(Z,) = 0. Without loss of generality, we assume X, = 0 so that
V(Z,) =0 for all .

In this case, the sequence {g,};2,, being monotonic increasing, either
converges or tends to oo. Let us assume o, — co and show first that the sum
X, Zi25Y, in law, satisfies the Lindeberg condition, that is, for all 7 > 0,

-1
(4.10) lim iz Z (y — EXY*dGyy) =0,

tooo 97 k=0 Jy~EYe|>1w

where G(p) is the distribution of y,, ie.,

4.11) G(y) = TH% f_ywa"*dc(x).
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Since by Lemma A, lim,.,,, EY, = G, there is a number I, such that for
k g Iis

4.12) ‘ G < EY, + 104 £ EY, + 0,

for all #(o, = o)
But (2 = {&, 1*dG(x) and from (4.11) we have G(G) = 1. Hence for
all ¢ and k = I, using (4.12) we get

G(EY, +1a)=1
and

f " = ERYAGy) =

EYy+te

Yor k=1, and all ¢ we thus have:

f (v — EY)%dG,()
|y—EYr[>1a.

EX,—ta. . T,
@13 = f O-ERNGO) S | (G- pa60)
G- ta'

Havmg assumed g, = 0o we get
lim sup {(y — G)*I’} = lim {(y — G)?N} =0,

t+ yST—1o. ¥

It is thus possible to choose a value T> 0 such that, for all 1> T,

(4.14) sup {(y — O} <1
yelG-10.

and

(4.15) - G-, <G —1.

From (4.14) and (4.15) we get

sup (y— G)2A® £ sup K1Y L JG-DE-D)
y20-10. YEG~ta.

and so .
&—1o,
“.16) [ "0~ arapacy <as-vo,

— o)
As an immediate result from Lemma A we get, for all £ >0,
lim s%~*hy(s) = 0,

5% co



492 TLAN ESHEL

and as a special case (e =1)

A—1)(E-1) JME-1)
4,17 fim 2 = A% lim = = 0.
4.17) T6G) im =

k- o0 k-t

From (4.13) and (4.17) we thus conclude, forallt> Tand k> 1,

fim (y — EY)%dG(»)

koo o [y—E¥x]|>1o:

G—10-
TR R

= e
ko0 ]*l/(lk)
< Jk-1E-1)
< lim m—f—=
P )
A number [ thus exists such that for k>1, t>T
(4.18) f (v — BB dG ) < 2777
|p—EYx| > voe
Denote
i
¢=% (v — EX)dGy(y).
k=0 J |y—EYx|>10.

The sequence {C,} is a decreasing sequence, and for ¢ > T (4.18) immediately
indicates

t 1 4 2-G
b J (y - EY)dG,(N = C; + Y A2 ERge + =1 < 00,
k=1 -

k=0 J|p-EYs|>10.

Under our assumption that ¢, — oo, the Lindeberg condition (4.10a) is im-
mediately satisficd and we obtain that

U,/o,— N(0,1) in law.

For s=1,

lim (s = *!" s

fr o0

and since all g.f.’s converge on [1, 00)

lim - stog(stion = 09 n s

(4.19) o 01 ’
]im m—]n
1o O':Cr(sum)

S.
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From (4.6) it follows that s{j(s)/¢,(s) is an increasing function of 5. For a
given s>1 we now choose a number R such that for t> R, 1> s!/
(we use again g, — o0) and so

A5

sEsty

lim = lim Ins.
o OhdA) T 1o O':C:(Sljat)
This may be done for all s > 1 and so
. AL(A)
lim =22 = oo,
oo Ol A)
Since ¢, — o0 we get, even more strongly,
(4.20) lim AZ(A) f{,(3) = oo
=0
But as a special case of (4.4), with n =1
AL
EX,, 4 —EX, =725 4 y(D),
i+1 t Ct(a') l}’l ( )
and by (4.20):
(4.21) lim {EX,;; — EX,} =
t—+cn

in a contradiction to Theorem (3.3).
This completes the proof of the first section of the theorem:

V(¥)= limo,=0< o0.

t—+oo

Trge

k

The convergence in law of the sum X%, (¥, — EY)) is now implied by
virtue of the 3-series theorem. From Lemma A we know lim,_, ,(Z, ~ EZ,) =0
and the convergence in law of the r.v.’s

=1

Uy=Z,—EZ,+ % (Y, — EY))

k=0
follows immediately.
As an immediate result of Proposition 4.1 and Theorems 4.2 and 3.3 we have

Corollary 4.3.

Corollary 4.3. (i) A regular process is strongly converging since it is
converging and has a finite limit rate of evolution.

(i) A strongly-converging process has a finite limit rate of evolution.

It must be mentioned, however, that not all strongly converging processes
are regular (for example, take any process with bounded mutation and initial
normal distribution, as previously described).
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Corollary 4.4, A time homogencous process with a bounded rate of
evolution is converging (and thus, by Proposition 4.1, it is strongly converging)
iff its associated pure selection process {Z,},2, is converging.

Proof, Since the rate of evolution is bounded, the mutation is bounded and
hence the sum %.-, (¥, — EY,) converges in law by Theorem 4.2. Corollary
4.4 is thus immediately implied by the representation

t—1

U;=X,~EX;=Z - EZ+ X (¥, — EY,).
. k=0
From the last two corollaries, together with Theorems 3.3 and 4.2 and
Proposition 4.1, we immediately obtain Proposition 4.5.

Proposition 4.5. Under the assumption of initial regularity, i.e., a bounded
fitness in the initial population, the following properties are equivalent:

(i) regularity; (ii) convergence; (iii) strong convergence;
(iv) bounded mutation; (v) bounded rate of evolution;
(vi) finite limit rate of ¢volution.

As we know from Theorem 4.2, a finite limit of the variance is a necessary
condition for (D)—(vi). A still unsettled problem is whether it is also a sufficient
condition.

Proposition 4.6, Let {F(x)} be a strongly-converging process with M the
limit rate of evclution, {(s) the limit g.f, and ¥(s) the mutation g.f. Then

(4.22) s"Us) = (QAW(s) 10CA).
Proof.

tlim SRR () = ().

But also
s TEXer ‘(5: + 1(3) =g B lf,b,(ls)!,b(.?) /‘)bt(‘l)
= 5~ EXe B0 TR (A(s) [A P4 (),

and the limit of this as t — o0 is

(4.23)

™M) (A,

Remark, 1If the process is regular, (4.22) becomes

(4.22y $PC(s) = L) JE(x).
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In the general case of a converging rate of evolution we have, as an immediate
result of identity (2.4):

M = lin (EX,y, — EX)) =G + lim (EZ,, , — EZ).
E= o0 !

L= w

Notation, (i) R.v.’s X and Y are said to be shifting congruent (X ~ ¥)
if X =Y+ rfor some real r. Analagously, for g.f.’s

(4.29) b ~ Y p(s) = s"Y(s).

(i) Any g.f. congruent to a limit g.f. of a strongly converging process (i.e., a
limit g.f. converging over [1, 00)) is called a limit g.f. If the process is regular,
we speak about a regular limit g.f.

If y/s(s) is the mutation g.f, of the process, we say that the limit g.f. is generated
by ¥(s).

As an immediate resuit of Proposition 4.6 we obtain Proposition 4.7.
Proposition 4.7, For any limit g.f. {(s), the mutation 2.f. (s} by which it is

generated is uniquely determined up to a shifting congruence

@.25) W) ~ %(gigs) ~RIE),  say.

The transformation R maps the set of all limit g.f.’s onto the set of all
congruence classes of bounded g.f.’s.

The following three propositions indicate that this is a 1-1 mapping, up to a
shift,

Proposition 48. (i) If { ~¢, and ¢ is a limit gf., then R{, =R, ie.,
(4.26) R(s"{()) = R({(s)).

(i) If { = ¢,¢,5, £, and ¢, are limit g.f’s, then R = R¢,RE,

Proof. The proof is immediate from (4.25).

Definition. For any g.f. y(s) which is converging over [1, c0), let us define

ST oA apon WARS)
4.27) | Ti(s) = k};[0 § e

provided the right hand side converges.
Proposition 4.9. (i) Ty(s)isa probability g.f. which converges for all s in

[1, c0) iff y(s) belongs to a r.v. which is bounded from above (henceforth, a
bounded generating Junction).

(D) If {F(x)} is any converging, initially regular process with a mutation g.f,
(s), then {(s) = Ty(s) is its limit g.f. whenever it converges,
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As a special case, TW(s) is the limit g.f. of a regular process w1th a mutation
g.f. Y(s).
Proof. For an initially regular process {F(x)} we have:

rn Bt e VO
o=+ GG I G

where EY, = 2%'(A%) i (AF). Immediately from Lemma A (since Fj < o0) we
find that

.- Alsy
1] EZ, qsﬂ( — 1
G WD)

for all s = 1, and so, whenever the limit g.f. {(s) exists, we have

“ s EYx ‘J’(l S)
5} == =T
() = IT 57T = TV
From Proposition 4.1 we know that ¢(s) = Ty(s) converges over [1, o)
if the rate of evolution is bounded. For an initially regular process, this is the
case (Theorem 3.3) iff the mutation 1.v. corresponding to (s) is bounded.
By a routine calculation one may prove Proposition 4.10.

Proposition 4.10. For all g.f.’s 4, f, and a real number r,

(4.28) T y2) =Ty, T,
(4.29) T ()" = (TY (),
(4.30) Wy~ = Ty, = T,

whenever these terms are well defined.

Theorem 4.11. The transformations T and R define a 1-1 correspondence
(up to a shifting congruence) between the set of all regular limit g.f.’s and that
of all bounded g.f.’s. Furthermore, for all bounded g.f. ¥

(4.31) RIYr ~,
and for all regular limit g.f. {

(4.32) TR{ =¢.

Proof. The proof follows immediately from Corollary 4.7 and Propositions
4.8-4.10. The strict equality in (4.32) is implied by the fact that both sides
belong to zero-mean r,v.'s,
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5. Relations between limit-distributions of the fitness and time-homogeneous
distributions of the mutation

Employing the basic transformations T and R, we now develop criteria to
determine whether a given distribution of fitness is, in fact, a stable limit of a
time-homogenecous process of evolution, especially whether it is a limit of a
regular process. By considering the image RA of a class A of limit distributions,
we then attempt to draw some general information about the distribution of the
mutation allowing the limit to be in this class. As a special case we concentrated
on a general mutation law that allows bounded-from-above fitness-distributions
in the limit, Finally, a certain continuity feature of the transformations T'and
R will be checked in order to apply the theoretical findings of this section to
possible statistical data.

5.1. Basic Criteria.

Let us denote by I' the class of bounded g.f.'s, i.e., g.f.’s belonging to r.v.’s
which are bounded from above (henceforth bounded g.f.’s). By I't we mean
the class of all g.f.’s which are finite on [1, ). We furiher denote by Q the
. class of all regular limit g.f.’s and by Q% the class of all limit g.f.’s. Clearly

Q=TT cQt Tt

Let ¢ be the congruence class of a g.f. ¢, due to shiftings of the r.v.
Respectively, for a set A of g.f.’s, let A= {¢ | ¢ € A} be the corresponding set
of the congruence classes.

Applying Propositions 4.8 and 4.10 we define the class transformations

7 and R by T\ = T and R{ == R, Theorem 4.11 indicates

(5.1) TR: O+ 220G,

Furthermore, TR/Q is the identity transformation on £. Similarly, BT is
the identity on I'. Using this we have Criterion A.

Criterion A. A converging g.f. { is a limit g.f. of a time homogeneous
process iff R{(s) is finite for ail s = 1, Furthermore, in this case R{ is a g.f. of a
bounded-from-above r.v.

Proof. In a formal way, Criterion A may be written as
(5.2) QO+ = BT+ = BT,

Since R: (% » 1" < I'*, we know that O+ < BT < B-1T**. Assume, on
the other hand, Rl eI**. In order to show Ce{™*, let us observe a time-
homogeneous process with an initial g.f. ¢y(s) = {(s) and a mutation g.f.
Yl(s) = R{(s) = L(AL(s) [¢(As). Since both ¢y and y are finite on [1, c0), the
processislasting (Theorem 3.1). Thus from (3.6) it follows that forallt=0,1, 2,-.-
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_ 09 S RIGE)
) =y 1, rey

(5.3)
_ (%) 'ﬁ LAY Y(R)

"D iz WD

- The requirement lim, ., ,, ¢,(s) = {(s) is trivially satisfied, the rate of evolution,
being identically 0, is indeed bounded, and therefore { e ", We have thus
proved R—'I'* < (3* and this completes the proof.

Proposition 5.1, A converging g.f. { is a regular limit g.f. iff TRE T+,
Proof. Formally, the proposition may be written as:
(5.4) . I+ =TRC+ =03

From Proposition 4.3 we know that TR{ converges for all s = 1iff R{e T,
As we know from Criterion A, this holds iff {e{+. Employing (5.1), this
implies TR{ € &, We have thus proved I't < TR+ < (. On the other hand,
sinceQ = It and Q= TRQ < TRT+, Q@ =T+ < TRT* and (5.4) immediately
follows,

As an immediate result of Proposition 5.1 we get Criterion B,

Criterion B. A converging g.f. { is a regular limit g.f. iff TR{ ~¢.

Proof. From (4.32) we already know that if { € & then TR{ ¢ Q. If, on the
other hand, TR{ =ZeT*, we get £ eI+ = TR+ and by Proposition 5.1
£ & . Since T'R is the identity-transformation on &, this completes the proof.

Let us denote by A the class of all converging g.f.’s ¥ with Ry ~ 1. In other
words, A is the class of all limit g.f.’s generated by the trivial mutation g.f.
¥(s) =1, We call such g.f.’s trivial limit g.f.’s,

Examples. (i) The normal g.f. y(s) = e*™)* ig a trivial limit g.[. since

Ry(s) = e¥"* 4 1(In AP = 3(nAd 4 Ins)? =5 "~ 1, v

(ii) The trivial g.f. y(s) =1 is, up to a shifting factor, the only trivial limit
g.f. which is also a regular limit g.f.

Criterion C, A converging g.f. is a limit g.f. iff it is a product of a regular
limit g.f., to be called its regular component, and a trivial limit g.f,, to be
called its nom-regular component. Futhermore, these components are
uniquely determined up to a shift transformation of their 1.v.’s. '

Proof. (i) Assume { eQ+, then we define ¢ 1 = TRE{. From Theorem 4.11
we know {; eQ. For all s 2 1, {,(s) > 0 and, thus, we may define
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(O (O
K = 705 = TR

Ry(s) = ) _  TRUASHAM) . R w
x(As) {(A)TRUDTRU)  R{TR{)}

and thus yeA. Clearly { = %¢{;. ‘
(ii) Let { = x{; where {; €Q and y € A. The requirement y € A means that a
real value r exists such that for all s = 1

_ s
RX(S) - X(AS) =§ ~ 1.'

As before, wé consider an auxiliary process with an initial g.f. ¢y(s) = £(5)
and with a mutation g.f. Y(s) = s7"RE(s) = s~ () (A) [T (As).
In such a process:

= SO _ L 29N (5)

1(s) ) =8 DA (As)
= 5190, ) 0,09 = 109

By iterations we get, for all £=0,1,2,-.-;¢,(s) = {(s), and trivially, ¢ is a
limit g.f.

(iii) To prove uniqueness assume, as before, ¢ = x{,, 764, I, e{). From
Proposition 4.8 we know R{= RyR¢{, ~ R{,. From Proposition 4.10 and
Theorem 4.11 it thus follows that TR{ = TR{, ~{, and y ~{[TRE,

Examples. (i) The negative Poisson g.f. {(s) = expe(s—*— 1) is a regular
limit g.f.

Proof. By Criterion B:

oo (1) + 1) () -l ()

This is again a negative Poisson g.f. with a parameter c(A ~ 1)A~1,

TR{(s)

Il

o c(A-1)a-k~1 ‘!’(lks)
AL s ey

= g~ o kfjo exp {ijtk;ﬂl—) (%— 1)} ~expc(si— 1) = {(s).

(ii) The Poisson g.f. {(s) = expc(s — 1) is not a limit g.f, (and clearly not a
regular limit g.f.).
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Proof. By Criterion A:
Ré(s)=expe(d — {1 —5).

Since 1 < R{(0) = expe(d — 1) < oo, this cannot be a probability g.f. (For
all p.g.f%s x(s), limg o x(s) = oo if p(x < 0) > 0, or Hm, o x(s) = p(x = 0) = 1 if
pix<0)=0.) '

(iii) &(s) = exp{(Ins)* + s~'— 1} is a limit g.f. but not a regular one.

Proof,

RUO = exp [(In9? + - 1+ @A+ -1

AS

2 A—1¢41 2.—1(_1_ )}
=3 exp{-—-r):— (s—.—l)}fvexp{T . 1),

which is a probability g.f. (a negative Poisson g.f.). By Criterion A, {(s) is thus
‘a limit g.f. Yet

- (Inls)? — L + 1}

TR(S) ~ exp {% ~ 1)~ 1)

By Criterion B, {(s) is not a regular limit g.f,
- Clearly, we get {(s) = x(s){,(s) (Criterion C), where

Li(s) ~ TR{(s) = exp [%- - 1] el

and
{(s)

x(s) = T = P (Ins)? s A.

5.2. Perfect Processes,

The regularity condition (boundedness of the mutation and of he initial
fitness) is equivalent to the boundecdness of the relative fitness of each gene-
ration, Yet uniform boundedness, as well as boundedness of relative fitness in
the limit, is not implied by the regularity conditions alone. Since fitness-
boundedness from above has been amply assumed in this work let us introduce
the following definition.

Definition. A regular process of evolution is said to be perfect if its limit
distribution is bounded from above. The g.f. of such a limit distribution is said
to be a perfect limit g.f.
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Denote by Q- the class of all perfect limit g.f.’s. From' the definition,
Q- =anT.

By '~ = RQ2~ we denote the class of all mutation g.f.’s which generate
perfect processes. Our first objective in this section is to characterize this
class; i.e., to characterize a perfect process by its law of mutation.

For this we use the following lemma.

Lemma C, In a regular process of evolution

(5.5) lim A, = lim F,—EX,=F.

=0 = o0
Remark. Because H,(x) —» F(x) in law it clearly follows that
lim H=F

o0

Yet, in general, convergence in law alone does not imply:

lim 4,z F.
3 t—rcd
We shall prove the Iatter for the special case of a time-homogeneous process
of evolution,

Proof. From (3.3) it follows that

t—1
B =F-EX,=F,+Gt—EZ, -~ % Y,

k=0

Having lim,, , {Fy; — EZ,} =0 (Lemma A), it is sufficient to prove

t~1
(5.6) fim {G:— 5 En] = F.
t= o k=0
For this aim, consider a process {F{(x)} with the same law of mutation and
with the limit distribution F(x) as an initial fitness distribution. For this new
process, let X, and ¢,* be the f-generation fitness r.v. and fitness g.f. respectively,
By definition ¢y(s) = {(s). Furthermore, by employing the identity

{Ash(s) _
C( /-0 - SGC(S)

and by an iterating use of:

" _ dFA(s)
Piv1(8) = —W’

the identity |
(5.7) ¢ = %)
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follows immediately. In terms of r.v.’s this is
t~1

X¢+Gt=XF=2ZF+ Z Y,
where Z¥ is the f-generation fitness r,v. of the pu1e selection process, starting

with X7§.
Since EX = 0 we thus get
=1
Gt— £ EY,=EZ"

k=0
From Lemma A we know lim, ., , EZ = F, and (5.6) follows immediately.

Corollary 5.2. An initially regular process of evolution with a distribution
G(y) of the mutations is perfect if and only if

Y (G—EY) <,
k=0
Proof. As an immediate consequence of Lemma C,

t—1
Fe lim A= lim {'FO—EZ,+(?t— 5 EY;}
t—rco t—rco k=0

-1

= HIm(F—EZ)+ lim X (G- EY) = Z (G~ EY,).

=0 t~+o k=0
Corolldry 5.3. A mutation gf, yeI" generates a perfect process (i.e.,
Y el™) iff:

0 k
(58) T ~ J] L.
G 1Y)

Furthermore, the right hand side of (5.8) converges for all s = 1 to a non-zero
value iff Yel'™.

Proof. For all s =1 we clearly have s ¥ 1 and W) S (%) < 1.
Assume W eI', then 2. ,(G — EY,) < o0, and thus we get

T(s) = s"h=0 @ E1) ]-[ Yy 1°—°[ WA
k=0 $Sy(aky  w=o $By(ah

>

On the other hand, if £, (G — EY,) = o, we have

5 Y o ),
k=0 s

By Corollary 5.2, this completes the proof,
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Definition. A ‘bounded distribution G(x) is said to be jump-bounded if
P(Y = G) > 0, where Y is a r.v. distributed G(x). Respectively, we speak about
a jump-bounded g.f.

Theorem 5.4 (The Theorem of Perfect Evolution), (i} I'~ is the class of
all jump-bounded g.f.’s. In other words, a process of evolution is perfect iff
it is regular and there is a positive probability for the maximal mutation .

(ii) If ¥ is the mutation r.v. of a perfect process of evolution, then

(5.9) P(Y=G)=1"Fe(h.

Proof. For a regular process {F(x)}, define the associated process
{F{(x)} in the same way as in the proof of Lemma C, i.e., with F* = F and
with the original distribution of the mutation. From (5.7) we get, for all real »,
F§(r) = Fi(r + G), hence:

1-F() = 1-Fi(N=1—-Fi¢+ &

1 ® [FaloN _
= hg(l_)ﬁ G + G — w)dF(w)

If

1 @ H il 3 —_
w5 f M= G + G — w)]dF(u)

(510 - ks [Cererzran
= ) MP(YZr+ G —wdF(w)
> A f " Py = G)ar)
B AU R
AI‘
= — _P(¥Y=G 1 - F(r].
For all r < F, 1 — F(#) > 0, and from (5.10) we obtain,
(5.11) P(Y=G)g lim A7) = A~ Fe(h).
. R
If we denote 4™ = oo and 1/e0 = 0, this also includes the non-perfect case
(5.11a) F=w=P¥Y=0G=0.
If on the other hand, F < w0, let us choose r = £ — g, We then get
r .
1—-F(F-¢g) = L AP(Y2 F—e+ G~ u)dF(u)
&) Jr-.
AF F G
5.12 £ —= P(Yz= G — e)dF
(5.12) s 7 |, P2 G- 9dre)

lF
= sy PYZ 6= 9)[1 - F(F - ).



504 1LAN ESHEL

Since 1 — F(F — &) > 0 for all ¢ > 0, it follows that

P(YZG—e =2 Fe).
Thus
P(Y=06)= lim P(Y= G—2) = 1)
el0
and this completes the proof.
For an application of Theorem 5.4 to the situation of mutation-selection

balance and accumulation of deleterious mutants, the reader is referred to [4].

5.3, Continuity of the Transformations. Almost Regular Limit G.F.’s.

Let @(n,s) be a consistent n-sample estimate of a limit fitness g.f. {(s); i.e.,
P{lim,_, , ®(n,s) = {(s)} = 1. Naturally, we are interested in the following
questions:

(i) is R®(n,s) a consistent estimate of the mutation g.f. W(s) = R{(s); or,
vice versa,

(ii) is Ty (n,s) a consistent estimate of the limit fitness g.f. when y(n,s) is a
consistent estimate of the mutation g.f. of the process?

To answer these questions, let us assume the point-convergence weak
topology over '+,

Proposition 5.5. R is a continuous mapping of Q% on I'.

Proof. Assume {,—{; {, {,eQ*. Having {(As) > {(ds) >0 for alls =1
we get

| L L)
(5.14) m RE() = Hm oS = 2@y

for all s=1.

= R(s),

Proposition 5.6. T is not a continuous transformation from I" to Q*.

Proof. Let us assume a generalized Poisson distribution of deleterious
mutations, each with the same effect — ¢ on the fitness:

— = o~ 1le—n
and P(Y=—ne)=e "¢ "[nl

(5.15) W(s) = exp{l/e(s"*— 1)}
Since the process is perfect, we obtain ((5.8) with G = 0)

g k @
949 = 09 ~ 1] L83 Lo 1)

= exp [E’L_j:—iT)(S_B_ 1)] ~ exp {Ea—é)li—l—)(s"‘— 1+ slns)}

i

L¥(s), say.
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In fact, we know (1) = 0 and it may also be shown that ¢*'(1) = 0. Hence,

£

616 L=t =exp (67— 1+ ey |.

As £ 0 this gives the limit (Ins)*exp {— 2InA} which is the g.f. of the normal
distribution N(0,1/InA).
On the other hand, for all s = 1,

lim W (s) = lim exp i(.s:"s— N=s*~1
210 sl0 £
and from this, in conjunction with (5.16), we have

; gty 1 (Ins)*} ..
TClm ) = TG = TC) = 1~ oxp {zm 1} = tim 79,09

The last two propositions provide a positive answer to question (i) and a
negative answer to question (if): a consistent estimation of a stable-shape
fitness distribution may provide consistent information about the law of the
mutation, but not vice versa.

As it has appeared in the proof of Proposition (5.6), a non-regular limit g.f.

. like the normal one (see also an example to Criterion B), may be approached

as closely as possible by regular or even by perfect g.f.’s.

Definition. A converging g.f, is said to be almost regular if it is in the
closure ci(Q2) of the regular limit g.f.’s. Similarly, one may speak about almost
perfect g f.’s.

We now see that an almost regular g.f. is always a limit g.1., i.e., cl(Q) < Q*.
Further, we prove Proposition 5.7,

Proposition 5.7. The class Q% of limit g.f.’s is closed in the point conver-
gence topology on I't, ie., cl(Q) < cl{Q*) = Q.

Proof. Let {ecl(Q"). For each n there is a {, € Q* such that lim,_, , ¢, = ¢,
$0

. L) L)
Jm RLE) = lim = RS T T

Clearly, R{(s} is a continuous function over [1, co) and R, (s) are g.f.’s; thus,
R{(s) =lim,_, , R{,(s) is a g.f.,, (which converges for all s in [1,0)). By
Criterion 5.1 we gei {eQ*.

In conclusion, we suggest that it might be of biological interest to investigate
cases where the effect of mutation is changed according to parental type rather
than to time. The influence of sex on diploidity on a similar model is studied
in a different paper [4].

= R{(s).
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