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Abstract.—The evolution of offspring handicap is studied in two ways. First, the problem is
formulated in terms of a population game in which each player, parent and coffspring,-seeks to
“increase its own fitness. Second, we study the dynamics of an exact two-locus model in which
one locus affects the behavior of offspring and the other affects that of parents. It is shown that
the latter approach leads to a more complicated **game structure,”’ in which parents maximize
a weighted average number of offspring, with lower weight ascribed to the handicapped type.
The weights depend on the rate of recombination. Under the assumption of fitness maximization,
used in the game-theoretical approach, it is shown that a handicap always evolves, The two-locus
analysis, however, produces a more realistic set of specific conditions for initial success and
fixation of the handicap. When linkage is loose, these latter conditions coincide with a verbal
prediction of Zahavi, With tight linkage, however, conditions for this evolution of offspring
handicap are significantly restricted.

Parent-offspring conflict describes potential differences between the fitness ob-
Jjectives of parents and offspring. The antagoenists in this conflict are, on the one
hand, parents, whose fitness increases when the limited resources they provide
are used more efficiently by offspring and, on the other hand, offspring, whose
chance of survival relative to sibs would increase if they were able to sequester
a larger fraction of the available resources. Discussions of this potential conflict
by Alexander (1974), Trivers (1974), West Eberhard (1975), and Zahavi (1975,
1977, 1981, 1987) have not produced a consistent evolutionary scenario to de-
scribe how offspring that acquire a larger fraction of parental resources (to the
apparent detriment of parental fitness} might evolve. Offspring of this type are
called *‘handicapped,” a terminology originated by Zahavi. In some contexts
such offspring might be called “‘selfish’” to distinguish them from less demanding
or ‘‘altruistic’’ members of their cohort.

Zahavi's original argument (1975} was couched in terms of characters that are
preferred by one sex in their choice of mates but whose possession by the chosen
sex is disadvantageous to survival. He suggested that the handicap in survival
might serve as a marker of mate quality and might, in the overall accounting of
fitness, confer a net advantage to the handicapped individuals. In the theory of
sexual selection, this verbal argument is rather controversial (see, e.g., review in
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Vehrencamp and Bradbury 1984), The interpretation of handicap may be broad-
ened, however, to include any conflict in the form of a nonzero-sum game in
which a new game structure is established by reducing the options of one player
who receives a higher payoff at the Nash solution to the new game (see, e.g.,
‘Ben-Porath and Dekel 1988 and references therein). The relevance of this some-
what curious result from game theory to the theory of evolution is that in some
cases in which natural selection has led to an optimum, it may be easy to produce
natural conditions that lead to departure from this optimum. In the case of
parent-offspring conflict (Zahavi 1981, 1987), the argument would be that by re-
ducing its own viability under some circumstances, a handicapped offspring can
create a situation in which its parent, in order {o increase its own fitness, must
invest more in that handicapped offspring. Under some conditions this extra
investment by the parent could produce a fitness that is higher for the handi-
capped offspring than for a normal one. As a consequence, handicaps of this kind
might then evolve. ‘

In order to make these arguments more precise, suppose that the probability
that ‘a normal offspring survives to maturity is an increasing function v(x) of the
amount of resources, x, invested in that offspring by its parents. Here, x is consid-
ered.a fraction of the total resources available to the broed. If the parent invests
a fraction x of its resources in each offspring, then the expected number of off-
spring for that parent (surviving or not) is x~', and the expected number of
surviving offspring, which is a reasonable representation of the parents’ fitness,
is (see, e.g., Parker and Macnair 1978)

w(x) = vix)/x. (1)

A rather plausible assumption is that w(x) is maximized at some optimal invest-
ment x* with

dw - X¥v (x*) — v(x*) ~0:
dx - (x*)? ’
thus,
v(x*) = v(x*)/x* (2)

(Parker and Macnair 1978). In addition, we require that

d*w Vix®)y  2v'(x*)  2v(x™)
—_— —_ - — + ,
da® | _ . x® (x*)? (x*)
and we have, using equation (2),
vi(x*) << 0, 3)

One way to state Zahavi’s claim quantitatively is in terms of another function,
u(x), the survival function for the handicapped offspring, with «(x) < v(x). Here,
v(x) — u(x) could be called the handicap. First, it is easy to show that for any
survival function of a normal offspring, v(x), a handicapped survival function u(x)
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= v(x} exists, such that when the parent of handicapped offspring has no normal
offspring in its brood, a value y* may be found, which maximizes u(y)/y and
which satisfies #(y*) > v(x*), where x* is defined in equations (2) and (3).

In order to see that this claim is correct, we introduce an infinitesimal local
handicap, specified by a handicapped-survival function #(y) defined in the viginity
of x* by the relations

w(x®) = y(x¥) — e, 1)

wWixty = v'iix®) + 8§, (5)
and

Hx*) = vi(x*) = —a <0, (6)

where « is a positive number determined by v, € > 0 and small, and 8 > 0 and
small. For y in the vicinity of x*, u(-) is a smooth, monotonically increasing
function satisfying

u(y) = v(y) — e + (y — x*8 + o(y — x¥); )]

outside this vicinity, we assume only that u(y) < v(y). (For example, we might
assume that u(y) = w(y) for ¥ = x* + €/b and that u(y} = v(y) — 2e fory = x*
— €/d.)

In simple biological terms, u(-) may be interpreted as a survival function of an
offspring that tends to beg for food more loudly than a normat offspring, thus
increasing by 2e (>0) its chance of aftracting predators (see, e.g., Zahavi 1981,
p. 320). In this case, the value 3 determines the rate of decrease in the offspring’s
begging activity as the parent increases its share of the resources above x*.

By a straightforward calculation, it may be verified that as long as

8 = ¢ 8)

for ¥, < 8 < 1 (i.e., as long as the offspring reduces its begging activity at an
appropriate rate), then

¥ = x* + dla + o) > x*. 9
Moreover, even though v(y*) > u(y*), we have
u(y*) > v(x¥). (10)

In other words, if a parent raises one offspring at a time and if parents estimate
that future offspring will be equivalent to the present one, parents’ optimal alloca-
tion of resources to a handicapped offspring, y*, would ensure that the survival
probability of such an offspring, w(y*), is higher than that of a normal one, v(x®),
Result 1.—Suppose that v(x) is a survival function such that x* maximizes the
parents’ fitness, v(x)/x. Then there is a handicapped-survival function, u, with
u(x) < v(x) such that at the maximum of the parents’ fitness, y*, the fitness u( ¥¥)
of the handicapped offspring exceeds that of the normal offspring at x*, v(x*).
This does not mean that natural selection favors the handicapped offspring type
when it is in a state of dynamic coexistence with the normal type. Indeed, since
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x* maximizes v{(x)/x and since u(y*) < v(y*),
u(y")y* < v(y¥)ly* < v(x*)/x*; (11)

thus, in the state of dynamic coexistence, parents with normal broods are fitter
(i.e., have larger broods) than those with handicapped offspring.

Parents with mixed broods have alternatives among which to choose in posi-
tioning their resources. A crucial question here is whether natural selection, op-
erating on parental allocation of resources, necessarily favors a partition that
maximizes a parent’s total number of surviving offspring (its ““fitness’’). It is a
tacit but basic assumption in Zahavi’s argument that fitness is maximized. Aside
from the general problem of the relationship between natural selection and optimi-
zation, relation (11) means that if the handicap is heritable (a necessary condition
for its evolution by natural selection), then, since handicapped offspring tend to
have more handicapped offspring of their own, handicapped offspring shouid
have lower fitness (as parents) than nonhandicapped offspring. Thus, the criterion
for maximization of offspring number may be different from the criterion that
maximizes grandoffspring number.

If we assume that there is one gene for the handicap and a second that affects
parental behavior, thien the proportion of nth-generation descendants of a handi-
capped offspring depends on the recombination fraction between the loci. Indeed,
the reproductive value of a handicapped offspring (see, ¢.g., Eshel 1984, p. 205;
Taylor 1988) should depend on the recombination fraction. Nevertheless, it is
intuitive that such a measure of fitness should be lower than for a normal off-
spring. Thus, the tacit assumption that parents’ fitness is maximized warrants
further examination.

In the next section we, address the single-locus problem of initial success and
fixation stability of the handicap under the assumption that parents do seek to
maximize their own fitness. We then introduce an exact two-locus model in order
to determine from the dynamics which sort of maximization criterion, if any,
characterizes the system. In a sense this addresses the issue raised by Trivers
(1974) and Charnov (1982), namely, the potential genetic disagreement between
parent and offspring. Finally, we reexamine the handicap principle in light of our
results from the dynamic model,

THE PARENT-OFFSPRING CONFLICT AS A POPULATION GAME FOR FITNESS MAXIMIZATION

One way to approach the possibility that handicap in offspring may evolve is
to pose the problem as an asyminetrical population game between parents and
offspring. Each is supposed to attempt to maximize some relevant payment func-
tion, given the opponent’s strategy. In this section we follow Zahavi’s postulate
that the mother seeks to maximize her expected number of surviving offspring.

Suppose that the handicapped type of offspring appears first as a rare dominant
mutation. Then, while rare, it appears almost exclusively in broods of which one
parent is heterozygous. Such broods contain half normal and half handicapped
offspring, and we assume that mothers of these broods allocate proportions x and
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y of their resources to normal and handicapped offspring, respectively. As a
result, the fitness of such a mother is

_ v + u(y)_ 12)

wix,y) Xty

This fitness is maximized at £,3, such that aw/3x = dw/dy = 0, which is equivalent
fo
v(£) + u(¥)

£+ 9 (13)

Vi(E) = u'(P) =
Recall that the mother’s strategy toward offspring in an all-normal brood should
be x*, where x* satisfies equation (2). Now assume that the mother adopts the
strategy £,y that maximizes her fitness with respect to mixed broods and that the
total amount of resources available to the parent for offspring production is con-
stant and does not depend on the quality of the offspring. Then, the survival
probability of a heterozygous handicapped -offspring is u($). Since such an off-
spring will also have a mixed brood, its average expenditure on each of its off-
spring is (£ + ¥)/2, and its brood size (provided that it survives) will therefore
be 2/{(# 4 ). Thus, the fitness of handicapped individuals may be represented by
2u(9)/ (£ + ). We determine whether the handicapped type can succeed according
to whether

2u(P) _ v(x*) ‘
x +53> P (14)

In the same way, a population of handicapped individuals resists invasion by
normals if

2v(8) _ u(y*®)
< (15)

where y* maximizes u(y)/y, and £,y maximizes w(x,y) as in equation (13).
As in the preceding section, we use the perturbed handicap function defined
by equations (4)—(8). Using the notation £,y for the solution of equation (13),

2 =xF + £, ¥=xF+n7. (16)

From equation (2), neglecting terms o(£) and o(vw), we have

VIR = v'(x®) — af = vx®)/xF - af, (17)
W) = Vi) — am + 6 = v(x*)/x* — om + 5. (18)
Furthermore, _
v(£) = v(x*) + 8'(x*) = v(x®) + v(x*) &/x*,
and

u(P) = v(x®) + [v(x®)ix* + 8Im — €.
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Thus,
v(2) + u(P)  v(x®) + (& + ) v(x)x* + dn — €
4§ h 2x* + £+ 7 (19)
= v(x*)/x* + (bn — €)/2x%,

neglectihg‘ the terms o(£) and o(n). Combining equations (13) and (17)-(19), we
conclude that

—af = —an + & = Bdn — €)f2x*;
thus,
28x* +e 8 € '
"2t a 2am OO @
and _ _ .
£ = e/2ax* + o(B,m). - 21

According to our previous assumptions (4)—(8), 8 < € < §; thus, n = d/a
+ 0(8) < €/ and £ = 0(8). Hence,

u(¥) = v(x*) + w'(x*) + 3 — € + o(n)
< v(x*) + nv'(x*) + o(n) 22)
=v(y), '

which establishes that u is indeed a handicapped-survival function in the relevant
region (x*,¥}. Furthermore,

2u(¥)  2v(x*) + 2[v(x*)x* + 8lm — 2e

£+9 2t + E+ 1
= %‘3 %8 + 0(8)

Thus, condition (14) for the invasion by the handicapped type is satisfied for any
values of v(x*), x*, and o with the appropriate small perturbation satisfying &
> e > B%,

Result 2.——For any survival function of the normal offspring, v(x), we can find
a slightly perturbed handicapped-survival function u(x), with u#(x) < v(x), such
that, provided that parents act to maximize their own fitness, the handicapped
mutant type characterized by u#(x) will initially increase.

In order to examine invasion by normal individuals from fixation of the handi-
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capped type, return to equations (7) and (9), where we have, to o(e),
w(yNy* = v(x®)Ix* + @Yo — e)/x*. (24)
From equations (20) and (21), we also have, to o(e),
2v(8) _ 2v(x*) + v(x*)ela(x*)

£4+9 2%+ 8la + efox* (25)
o) v o
= - Salx *)2 o(d) .

Condition (15) follows from equations (24) and (25), since & < ¢ < §.

Result 3.—Under the conditions of the perturbation described above, if parents
maximize their own fitness, a handicap u(x) permits invasion by the handicapped
type when it is rare and prevents invasion by the normal type when the handi-
capped type is common,

It is important that despite these results 2 and 3, we have

v(£) + u(9)  v(x™) 8 — ae
£+P 0 x* * 2ox® +o®) (26)
< v{x¥)/x*

The right side of the inequality is the expected number of surviving offspring
within a completely normal brood; since the handicapped type is rare, it approxi-
mately equals the number of surviving grandoffspring produced by a normal off-
spring, if it survives. The left side is the expected number of surviving offspring
in a mixed brood, which is approximately the number of surviving grandoffspring
produced by a handicapped offspring, if it survives. Thus, equation (26) means
that the strategy £,§, which maximizes the parent’s expected number of surviving
offspring, does not maximize its expected number of grandoffspring. The latter
might be augmented by, for example, increasing the proportion of parental re-
sources allocated to normal offspring. But in this case, the optimal number of
grandoffspring would be different again.

A natural solution to this optimization dilemma has been suggested by Taylor
(1988; see also Oster et al. 1977). This involves the assumption that the ratio of
the reproductive values of handicapped and normal offspring should be some
value z. Then, as long as the handicapped type is rare, the total reproductive
value of the offsprmg of a handlcapped individual (if it survives) may be written
in terms of & = v(£)/(£ + 9) and b = u(PH/(# + ¥) as

V) + zu(DI/ (£ + §) = & + zb, @7
which should be compared with the total reproductive value
v(x*)/x* = 2g* (28)

of the offspring of a surviving normal offspring. Hence, reconciling equatlons @7
and (28) and the definition of z, we must have 2a*/(d + zb) 1/z, giving the
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solution
5= alQ2a* — b). (29)

This suggests that any optimization argument should include different weights
for the handicapped and normal offspring, with the ratio 7 between them given
by equation (29). Note, however, that the reproductive values themselves depend
on the parental strategy £,9 that is to be optimized. Furthermore, if parentai
behavior is under selection, the chance that some descendant carrying a specific
allele affecting this behavior also carries an allele for offspring handicap (and
therefore, by inequality [26], has fewer surviving offspring) depends on the re-
combination fraction between the loci that affect parental and offspring behavior.
In order to clarify the relationship between the optimality approach described
above and the dynamic approach, we introduce a two-locus model that simultane-
ously incorporates natural selection acting on parental and offspring behavior.

DYNAMIC TREATMENT OF PARENTS’ BEHAVIOR: A TWO-LOCUS MODEL

In an earlier study (Feldman and Eshel 1982), we analyzed a formal two-locus
genetic model that describes a potential conflict between the fitness objectives of
parents and offspring. The model we now describe also includes two loci and
involves a substantial extension of our previous work. It is assumed that one
locus with alleles A and g determines the dichotomy between handicapped and
normal offspring. A second locus with alleles B and b determines the parents’
behavior toward both types of offspring. This behavior may be characterized by
four categories for the recipient of parental investment: offspring in completely
normal broods, offspring in completely handicapped broods, and each type of
offspring in mixed broods. The recombination rate between the two genes is r,

We assume first that only one parent—say, the mother—invests in offspring
([a)ther the analysis is extended to allow both parents to contribute). Initially, the
population is close to fixation of BB and AA, where individuals of genotype AA
are normal and have the survival function v(x). A very small fraction of handi-
capped individuals, of genotype Aa, has the survival function u(x), with u(x)
< v(x}. The genotype BB determines a maternal strategy x*,y*£,9. That is, such
a mother invests x* and y* in each offspring from completely normal and com-
pletely handicapped broods, respectively, and £ and §, respectively, in normal
and handicapped offspring from mixed broods.

The question is whether, for any handicap function u(x) < v(x), there exists a
maternal investment strategy that (1} prevents initial success of the u-type handi-
cap, (2} is unbeatable by any mutation at the B locus (see, e.g., Hamilton 1967),
and (3) occurs while the handicap is maintained at low frequency by mutation-
selection balance. We therefore begin by assuming that the #-type handicap is at
low frequency in such a mutation-selection balance and proceed to demonstrate
and characterize the unbeatable maternal strategy x*,y*2,9. Such a strategy,
determined by the genotype BB, cannotl be invaded by any aliernative strategy
determined by a Bb mutant. Without loss of generality, we may assume that both
BB and Bb mothers adopt the same optimal strategics, x* and y*, when their
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broods are homogeneous. In this case, the alternative maternal strategies may be
characterized by just the pair £,9 for a BB mother and x,y for a B mother.

In this section we see that, under the assumption that the normal type is near
fixation and a handicapped type is maintained at mutation-selection balance, an
unbeatable maternal strategy £,§ always exists. Moreover, it is uniquely deter-
mined by the handicap function, u(x), given the survival function v(:) of the
normal type. Hence, if the fact that the maternal strategy is unbeatable implies
that fixation of the normal type is unstable, then it must be true that no combina-
tion of maternal and offspring strategies can resist all mutations as long as the
resident offspring type is normal. Under these conditions, we may conclude that
the handicapped type will eventually succeed, By contrast, if the condition that
the mother’s strategy is unbeatable implies that fixation of the normal type is
stable, then the handicapped type is unlikely to become established in the popu-
lation.

We begin by assuming that at fixation of the genotype BB, which determines
the maternal investment strategy £,7, there is a mutation-selection balance at
which a low frequency of u()-type handicapped individuals of genotype Aa is
maintained in a population that is almost fixed on the normal AA genotype. We
use three relative fitnesses:

a¥ = v(x®)/2x*%, a=vR/E+ 9, b = u(PIE + 9), (30)

where a* refers to normal offspring in a completely normal brood, & to a normal
offspring in a mixed brood, and & to a handicapped offspring in a mixed brood,
all given the mother’s strategy £,9 (see also Parker 1984). Accordingly, if the rate
of mutation is sufficiently low, then the frequency of the heterozygote Aa at the
mutation-selection balance is approximately 2p, where p = a*u/(a* — b). For
convenience, we use

w = (a* — b)pla*. G

Homozygotes aq are sufficiently rare that they may be neglected.

In the neighborhood of this mutation-selection balance, a mutation from B to
b appears, such that the strategy of the mutant mother, as a heterozygote, is x,y.
Let

a = vix)x +y), b =u(Wx +y), = uly"2y*, (32)

and let €, €;, €, and €, be the frequencies of the mutant heterozygous mothers
of genotypes AB/Ab, aB/Ab, AB/ab, and aB/ab, respectively. In table 1 are listed
all matings in which one party is a mutant heterozygote Bb and the other is BB,
and both are either AA or Aa at the other locus. In such matings, the probability
is 0.5 that the mother is Bb and, therefore, employs the strategy x,y. The probabil-
ity is also 0.5 that the father is Bb, in which case the mother employs the resident
strategy £,5. Denote by

=@+ a2 and b=+ b2 (33)

the average number of surviving AA and Aa offspring, respectively, from AA
X Aa matings in which one of the parents is Bb. Let ¢,/2, ¢,, and c,/2 be the
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TABLE 1

MaTinGs INvoLvING HETEROZYGOSITY AT ONE Locus, Bb

OFFSPRING SURYIVING

MATING TYPE FrEQUENCY ABIAb aBiAb ABlab aBlab
ABIAB x ABIAD 2(1 — 2ple a* 0 0 0
ABIAB x aBlAb 21l — 2p)e, al — r) 0 _ br 0
AB/AB x ABlab 2(1 — 2p)ey ar Q b1 — 0
AB/AB x aBlab 2(1 — 2pley 0 0 c* 0
ABfaB x ABIAb 4pe, al bhi2 0 0
AB/aB X aBlAb 4pe, el — 2 ol — /2 cyrf2 cyrf2
ABlaB X ABlab 4pey o2 o2 ol — /2 cy(l — r)/2
ABlaB x aBlab 4pey 0 0 c*/2 c¥/2

average number of surviving A4, Aa, and aa offspring, respectively, from Aa
X Aa matings in which one of the parents is Bb, and let ¢* = u(y*)/2y* be
the average fitness of a completely handicapped brood. No assumptions are nec-
essary for ¢, ¢y, €3, or ¢* since they play no role in the analysis. For the time
being we ignore the effect of the flux of mutations from A to a on the distribution
of the four Bb offspring genotypes.

Sum the columns of the table and divide the results by the average rate of
increase of the population, W. The proportions €, €,, &, and §, of the Bb geno-
types in the next generation are then given by

W, = 2a*p, + dpye, + (1 — N(2dp, + ¢,p,)e; + r(2dp, + cipley,  (34)

We, = 51)26, + 2c,0,(1 — ey + 2e,pore,, (35
Wés = (2bp, + cypdre, + (2bpy + cyp )1 — Pey + ¢*Q2p, + pe,,  (36)
Wé4 = 2(,‘3,02!'62 + 2C3p2(] - F‘)E3 + C*P2€4 . (37)

where p;, = 1 ~ 2p and p, = 2p. In the resident population, which is BB, a
fraction 2p is Aa. Thus, approximately 4p of all matings involve Ag parents and
so produce mixed broods. Thus, we may use the approximation

W= (1~ dp)v(x*)ix* + 4p[v(£) + v(N/ (£ + P (38)
=2a% + 44 + b — 2a%)p .

To complete the recursion to the next generation we must incorporate the effect
of mutation, at rate . from A to a, on the frequencies of the four Bb genotypes.
After mutation we have, ignoring terms o),

€ = (1 — 2p)§,, (39)
€ =(1 — wé + ME;, (40)
€5 = (1 — W& + pé, 41)

€= & + E + &). (42)
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The analysis of the linear transformation (39)-(42) is presented in. Appendix A,
where we show that the condition for the stability of the strategy £ y agamst any
invading strategy boils down to S

H = HE9: xy) <0, o (43)

where |
H = a*[a* — (b + b)Y — PNi2](a — &)

+ (@ + Dla* — (b + BT — 29020 — Byid.

Here d and b are given in equations (30) as func‘uons of # and ¥, and a and b are
given in equations (32) as functions of x and ¥,

We seek a maternal strategy £, that is unbeatable at least under our condl‘uons
of a mutation-selection balance near fixation of the normal type AA. In other
words, we seek a pair £, such that, for all x,y # 2,9, inequality (43) is satisfied.
But from equation (44) it follows 1mmed1ately that H(%,$; £,9) =.0.

Result 4. —The maternal strategy £, resists all invaders determined by muta-
tions at the B locus, when invasion occurs near fixation of the normal AA type,
if and only if H(£,9; x,y) as defined in equation (44) attains its maximum in.x and
yatxy = i5¥.

.We may state this result equivalently as follows: 2,7 resists all mutatlons (under
the same conditions) if and only if it is an evolutionarily stable strategy (ESS;
see Maynard Smith and Price 1973) of a formal population game in which the
payment function to an individual playing x,y against an opponent playing £, is
H (eq. [44]). (See similar results in Eshel and Sansone 1991.)

It is critical to note, however, that the formal payment function (eq. [44]),
deduced from an exact analysis of the two-locus model, is by no means equivalent
to the intuitive *“fitness” or inclusive-fitness functions that are traditional in ESS
analyses, specifically: a — 4 = v()/(x + y) — v(@®/£ + ), the {(positive or
negative) advantage of the mutant Bb mother over the resident BB population in
terms of the total number of surviving normal offspring in a mixed brood. Like-
wise, b — b is the same advantage measured in terms of surviving handlcapped
offspring in a mixed brood. Since both kinds of mothers behave in the same
way toward a homogeneously normal brood, the condition that H(£,9; x,y) be
maximized at x,y = 2,3 would appear to involve maximization of a weighted
average between the normal and handicapped offspring. As can be seen from
equation (44), the weights giventoa — dand to b — b are unequal, and parents
are not selected just to maximize their total number of survwmg offspring. For
the case r = Y, we find from equation (44) that

H = a*(a® — bi2a — &) + a*ab — b)/2;

(44)

thus, the relative weight of a handicapped offspring turns out to be a/(2a* — b).
Taking account of the difference between uniparental and biparéntal investments,
this result is exactly the same as equation (29), above (computed by Taylor’s
method), for the relative reproductive value of the handicapped offspring. Note,
however, that because the “‘weights’” in our treatment are functions of x,y and
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£,¥, maximization of H as a function of x,y is not equivalent to maximization of
the sum of offspring reproductive values. Note further that in the general case,
these weights depend critically on the recombination fraction between the two
loei.

To conclude this section, we briefly study the case in which both parents are
equally likely to interfere in the allocation of resources to an offspring. The analy-
sis of this case can be shown to be quite similar to the one just completed.
Assume, as before, that the strategy of a couple in which both parties are BB is
%7, and that, if one is Bb, then the strategy is x,y. Again, we seek conditions
under which BB will not be invaded by any mutation at the B locus. Repetition
of the preceding analysis produces a local stability matrix that exactly equals
matrix (A2) of Appendix A but with the values 4 and b rcplaced by a and b,
respectively. (In addition, there are adjustments to L, L,, . . ., L,;.) In this way
it can be verified that £, is stable if and only if

G = a*la* — b(l — Pl(a — &) + ala® — b(1 — 21)(b — b)/2
= Gy %y

(45)

is maximized at x,y = %7,

Result 5.—The parents’ strategy £, will not be invaded by any mutant strate-
gies if and only if £, is an ESS in a population game where G (defined in eq.
[45]) is the payment function of a player choosing strategy x,y against an opponent
playing 2,5.

- Again, for r = Y,

G = a*(a* — bl2(a — &) + aa*(b — b2,

and the relative weight of the contribution by a handicapped offspring to that of
a normal one is 4/(2a* — b) in agreement with the value from equation (29),
calculated by Taylor’s method for the relative reproductive value of the handi-
capped offspring.

As we see below, the functions H and & are maximized at exactly the same
values, It follows that the assumption of uniparental or biparental interference
does not affect the results.

A REEXAMINATION OF THE DYNAMIC CONDITION FOR INITIAL INCREASE AND FIXATION
STABILITY OF THE HANDICAP

. Our assumption (to be relaxed below) is that the population is initially close to
fixation of the normal type with a small fraction of the handicapped type main-
tained in a mutation-selection balance. We employ result 4 and equation (44)
(which is equivalent to eq. [45]) to compute the mother’s (or parents’) unbeatable
strategy £,7. We then check the stability of fixation of the normal type AA under
the condition of fixation of £, among mothers or parents; that is, we check the
stability of fixation of BB.

In order to estimate the unbeatable maternal strategy £,9, we employ equation
(44) or (45) to obtain

8H/oa = 8Glaa = a*[a* — b(1 — M, (46)
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AHI3b = 3Glab = ala* — b(l — 21)/2. (47)

Thus, without loss of generality, we may use the mother’s interference function
H. We may also compute

£+ Pp'(R) — v '(£) -
da _ ( F'(£) _ v(x) _Y ) _ d, (48a)
x|, &+ ) £+
b| _ —up _ b
ox |, G+ L4y )
ba) _ _—4 (48¢)
dy g Y
ab W)~ b
o I -b 48d
> . N (48d)
The identities
OHI3x |y ymcy = 0HIOY| yurs = 0
are then used to produce
2a*la* — b(1 — NIv'(%) = a2’ — (a* + bb(1 —29] (49)
and
[a* — b1 — 29l'(H) = 2a*? — bla* + b)(1 - 2r), (50)

We are now in a position to determine the conditions for initial success of
a slightly perturbed handicap, characterized by the survival function with the
conditions of the infinitesimal local handicap (eqq. [4]-[6]). In Appendix B we
show that a sufficient condition for this is

—V(x™*) = a*f2rx 51

Recall that 2a® = v(x*)/x* is the fitness of a completely normal brood. Near
fixation of the normal offspring type, A4, we may normalize so that this fitness
is 1. Then, F = 1/x* is the size of a completely normal brood or the average
fertility in the population near fixation of AA. Condition (51) can then be writien
as

VI(x*) << —Fldr. . (52)

Result 6.—A sufficient condition for the establishment of the handicap, in the
long run, is inequality (52), namely, that the relative concavity of v(x) at x*
exceeds F/4r. If the relative concavity of v(x) at x* is less than F/4r, there is
always a two-locus evolutionarily stable situation in which the handicap cannot
enter the population.

In order to evaluate the stability of fixation of the handicapped type, consider
a population with offspring survival function #(x) and maternal strategy y* where,
for example, u'(y*) = u(y*)/y* = 2c*. Again assume a mutation-selection bal-
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ance at which the heterozygote determined by the dominant mutation is of the
normal offspring phenotype and has the survival function v(-), with

v(yFy = uly*) + & (€>0),

ViI(y*) = u(y*) - 8 >0,

VI(y*) = —a=u"(y").
Assume first that there is an unbeatable maternal strategy with investments £ and
¥ in the mutant (i.e., normal) and resident (i.e., handicapped) offspring, respec-
tively, in a mixed brood. )

Setf = (§ — y*)and &€ = (£ — y*). We now repeat the calculation carried
out in the previous sections with u,v,a%,8,¢,£, and n replaced by v,u,c*, -8,
—&,4, and &, respectively. (Note that these calculations were independent of the
sign of e and 3 and depended only on the condition that 8 < |e| < |3].) The

condition for initial increase of the new mutant (i.e., normal type) becomes v(£)
/X + ¥) > ¢*, which entails

o — € + c*(h — & < 0. (5%
A necessary and sufficient condition is
<0, (54)
which becomes equivalent to
af + 8> 0. (55)

Under the restrictions that % < |e| < |8| with Je| small, we obtain the approxi-
‘mation

-(2my* — ¢*Waf + 8) = —(1 — 218/2 (56)

(see eq. [A17]). Hence, for r # Y%, the condition for stabilify of fixation of the
handicapped type is '

a < cE2ry* = a*f2re* + 0(3), (57)
or, equivalently,
Vi(x*¥) < —Fldr, (58)

and the result extends, as above, to r = %,

Result 7.—() If —v"'(x*) < F/2—namely, if the relative concavity of the sur-
vival function v(x) is less than half the average fertility -of the population near
fixation of the normal offspring type—then fixation of the handicapped type can-
‘not in the long run resist invasion by nonhandicapped mutations. Fixation of the
normal type may, however, be compatible with an unbeatable maternal strategy
that precludes invasion by the handicapped type. (ii) If —v"(x*) > F/2, then,
provided that the linkage between the B/b and A/a loci is sufficiently loose,
fixation of the nonhandicapped type cannot in the long run withstand invasion
by handicapped offspring. In this case, fixation of the handicapped type can be
compatible with an unbeatable maternal strategy that precludes initial increase of
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the normal type. The exact condition on the recombination fraction for this to
oceur is r > r¥, with 1* = —F/4"(x*), which obviously depends on the relative
concavity of v at x*. (iii) An unbeatable maternal strategy can always preclude
both initial increase of the handicapped type and stability of its fixation provided
that the linkage between the two loci is sufficiently tight.

Parts i and iii of result 7 stand in sharp contrast to results 2 and 3, which were
obtained under the naive assumption that parents should act to maximize their
own fitness in terms of the total number of surviving offspring of either kind, In
the preceding section, we show that this assumption is false in general, and we
now see that its acceptance may produce incorrect predictions.

DISCUSSION

The evolution of a form of handicap to offspring has been studied here in two
ways. In the first, the formulation is in terms of a simple parent-offspring popula-
tion game in which parents seek to increase their expected number of surviving
offspring of both handicapped and normal types. In the second, we set up an exact
two-locus model with offspring phenotype and parental behavior determined by
the distinct loci. When mutation to the handicapped offspring type balances selec-
tion against it, maximization of the parents’ fitness does not occur. Instead, a
weighted sum of contributions from handicapped and nonhandicapped offspring
is maximized. The weight ascribed to the nonhandicapped type is higher, which
is not surprising since such offspring are in turn likely to have more offspring of
their own (see, e.g., Taylor 1988). The relative weights are shown to depend
critically on the recombination rate between the two loci. Evolutionary predic-
tions based on the two formulations differ, including those concerned with initial
success and final fixation of the handicapped type.

According to the game formulation, Zahavi's (1975, 1977} argument concerning
the evolution of the handicapped type is validated for any survival function of
the normal type, w{x), where x is the parents’ investment. Specifically, for any
v(x), u(x) characterizes the survival of the handicapped offspring, with u(x)
<2 v(x), such that a mutant type with this handicap can initially increase and be
stably fixed in the population, In the process, the survival probability of the
handicapped type increases, but the overall success of broods with handicapped
individuals decreases because of the higher investment in each individual off-
spring. In contrast, the two-locus dynamics reveal that this result can be true only
for functions of resident-offspring survival, v(x), that are sufficiently concave, at
least near the optimum of the parents’ investment. In fact, for the handicap to
succeed, the ratio between the local concavity of the normal offspring’s survival
function and the parents’ fertility must exceed a critical value, which depends on
the linkage between the two loci. This critical value is 0.5 for free recombination
and increases without bound as the linkage becomes tighter. Thus, as long as the
ratio of concavity to fertility exceeds 0.5, a mutation to handicapped-offspring
survival ability can always increase when rare, and its fixation in the population
is stable provided that its linkage with genes affecting the parents’ investment
strategy is loose enough. Under the same conditions on concavity and fertility,
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however, a mutation that affects parental behavior and prevents the success of
the handicap can always succeed if the linkage between the genes affecting par-
ents and offspring is sufficiently tight.

That relatively low fertility and high concavity of v(x} at x* favor the entry of
the handicapped type agrees with Zahavi’s verbal argument. Zahavi claimed that
the handicap is unlikely to evolve when parents® fertility is high, the optimal
investment in any simple offspring is low, or any increase in investment increases
the offspring survival function substantially; this would be the case when the
local concavity of v(x) near x* is low.

The key role played by recombination means that ecological information about
the conflict between parents and offspring is inherently insufficient to produce
deterministic predictions about the direction of evolution. In fact, only in the
case of high fertility and Iow concavity of the offspring survival function can
we confidently predict the outcome, namely, that the handicap cannot evolve.
Otherwise, the conclusions are rather statistical in nature; in some populations,
handicapped offspring are expected, and their frequency may be quite high. The
greater the concavity of the offspring survival function and the lower the parental
fertility, the more likely is selection to favor handicapped offspring.
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APPENDIX A
ANALYSIS OF THE EQUATIONS FOR LOCAL ANALYSIS OF THE DYNAMIC MODEL

Using equation (31) in equations (34)-(37) and (39)—(42), the linear transformation has
the matrix A given by

A = A(p) = B(p)/W(p), (Al)
where W(p) is given by equation (38), B(p) can be represented as
a* + (@ — 2a%)p — 2a* ~ bp @l — P + Lp ar + Lop 0
(a* — b+ by L.p L,p 0
B(p)/2 = (@* — byp br + Lip b1 — N + Lgp Lip| (42)
0 Lyp Lyp Lyp
and L,,L,, . . ., Ly are constants independent of p. Quadratic-order terms in p are
neglected.
At p = 0, A(p) reduces to
a* dg(l ~ ) ar 0
0 0 0 0
A=@ My 5 sa-n of

0 0 0 0
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which has eigenvalues 1, (I — rb/a*, and 0. With BB fixed, the assumption of mutation-
selection balance at the A/a locus entails that the average fitness of Aa, namely,
29/ (% + 5) + Op) = b + Op),

is less than the average fitness of AA, which is a*. Hence, b < 4*, For mutations of small
effect at the A/a locus, b < a*; and indeed, 5(1 — ©) = (b + ) (1 — /2 < a*. Thus,
we have the expected result that, when p =0, the largest eigenvalue of the local stability
matrix is 1. (In fact, the mutation B — & only changes the mother’s strategy toward the
mutant type Aa, which does not exist at p = 0; i.e., the mutation B — & is neutral.} This
means that the characteristic polynomial f,(x) of A, intersects the x-axis at x = 1, and it
must do so from below. We may then use the implicit-function theorem to establish that,
for small p > 0, the leading eigenvalue of A, is less than | if and only if

aq;p(l)/ap lp=0 > 0, (A3)
where W,(x) is the characteristic polynomial of A,. But
g (1) = W(p) B, —~ IW(p)]|,
and at p = 0, |B, — IW(0)] = W(O(1) = 0. Hence,
a, (1) i, a
= —|B, — 2a*I . Ad
ap 16((1*)4| Pl r @1 (Aad)

Straightforward calculation of the right side of equation (A4), differentiating the determi-
nant row by row, produces the result

(1)
ap

p=0 p=0

= 32(a*a* — (1 - D)@ — a*) + L16a*ala* — b(1 — 29)(b — B)

p=0

= 16{(a®)a* — (b + b)(1 — P/2)(@ — a)

L 4 (a+ datlat — b+ b)Y — 25/2Kb — b)4},
which gives us the function H in equations (43) and (44).

APPENDIX B
THE CONDITIONS FOR THE INITIAL SUCCESS OF A SLIGHTLY PERTURBED HANBICAP

Specifically, we seek the conditions under which the initial net fitness 24 = 2u( IR
+ 3 of the handicapped type exceeds that of the normal type, 2a* = v(x*)/x*. To this
end, write

E =12 — x*, m=y—x*, a = —v(x¥). (B1}

With the definition of #(x) given in equations (4)-(8), we seek conditions on ¢ and & with
e sufficiently small so that £ = x* + £and § = x* -+ m solve the equations (49) and (50),
with |€] and || less than €/, and such that u(§) < v(9) with

WPNE + 9) = b > a* = vix¥)ix*,
Equation (18) shows that, for small n,
u'(F) = v(x*) —om + § = 2a* — an + 5. (B2)
Under the same conditions, equation (25) shows that
a=v)IR+ 9 =a* + a*¢ — n)2x*, (B3)
and from equation (23),
b = u(HiE + 9) = a* — a*(E — M2x* + (B — €)/2x*, (B4)
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Insert equations (B2)-{B4) into (49) and (50) to obtain
' 2raf + (1 + 29La*(n — €) + o1 — el/2x* = 0 (B5)
and :

2ra*'(an —'8.)_"+ (1 — 20(a* — Bla*E — n) — 8n + €]/2x* = 0. (B6)

-From equation (B4}, the condition b > &* for initial success of the handicapped type is
equivalent to : ‘

a*(n — ) + 8n — e >0, : (B7)
From equation (BS5), this means that . ‘
£<0. (B8)
Simple manipulations on equations (B5) and (B6) produce
(a* — B} — 27)at = a®™(—am + 8)}(1 + 21). (B9)

Thus, since & is small, the condition that & < 0 for the initial success of the handicap is
equivalent to

7 an — 8> 0. (B10)
Insert equation (B9) into (B6) to obtain

| (2'a*r'm ]2;?'(;:*)2) (om — 8) = lz_xf"(a* — 8)(a* + B — <,

which, after r_eorganization, becomes
[4a*r ax® — 2(a®)? + (1 — 218 = [drax* — a*(1 + 2MN)a*dle — (1 — 29(a* — 8.
(BL1)

It is not difficult to verify that, except for the degenerate case in which 2rax® = a*, the
condition 8 = €’ with ¥, <0 < 1 and € small (see eqq. [4]-[8]) guarantees that n < /3
and #{x) < v(x). Thus, u(x) is a handicap for all x in the interval x*,¥. Also from equation
(B11}, it follows directly that

[a*r ax* — 2(a*)? + (1 — 2)8|(en — 8) = (1 — 29{[(a*)* — 8418 — a(a* — B)e},
(B12)

which, ignoring terms O(¢) and smaller, becomes
Qrox* — a*)am — 8 = a*(1 — 21N8/2. (B13)

Provided that r < Yo equéﬁoné (B10) and (B13) together produce the sufficient condition
for initial success of the handicap:

o > a¥2e¥, (B14)

Tn the case r ="Y%, this line of reasoning needs modification since equation (B6) then

entails an =8, and thus, b = ¢* + o(3). That is, with free recombination, the intensity

of selection for or against the handicap is weak (at least in our example with an infinitesimal

local handicap).
In equation (B35), however, if we set r = !4 and = 8/a, we have

Elax* — a*) = — 8o — a*dlo + €, (B15)
which under our assumptions on € and & entails that
o > a*fx®,

since the right side of equation (B15) is negative and so is £; hence, equation (B14) is
proved for 0 < r = U,
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