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Abstract.—A two-locus diploid model is developed in order to analyze stable mother’'s and
offsprings’ strategies concerning the offsprings’ sex determination and progeny’s sex ratio when
the cost of rearing a male offspring is different from the cost of rearing a female offspring. It is
shown that if the ratio in cost is A:1, then the resulting stable sex ratio in the population lies
between the value L: A, obtained with full mother’s control, and 1: A2, obtained with no maternal
interference. The effects of biologically relevant parameters on the sex ratio and sex deteriina-
tion are investigated.

Under the assumption that natural selection operates to increase the fraction
of one’s descendants in future generations, it has been argued by Fisher (1958,
pp. [58-159) that natural selection in diploid, fully sexual populations should
operate to adjust the sex ratio so that the total expenditure incurred for offspring
of each sex shall be equal. This is so, as the argument goes, because in such
populations each individual has exactly one male and one female parent; hence,
the total number of offspring born to all males and to all females in the population
must be the same. Thus, if the total expenditures incurred in producing males
and females were not the same—say, if higher expenditure were incurred in
producing females—‘*then, since the total reproductive value of males is equal
to that of females, it would follow that those parents, the innate tendencies of
which caused them to produce males in excess, would, for the same expenditure,
produce a greater amount of reproductive value and in consequence would be
the progenitors of a larger fraction of future generations. . . . Selection would
thus raise the sex ratio until the expenditure upon males became equal to that
upon females.™

Assuming equal cost of a male and a female offspring, the assumption that
natural selection operates to increase the fraction of one’s descendants in future
generations is readily reduced to the assumption that it operates to increase the
number of one’s grandoffspring (see, e.g., Eshel 1975); and, at least under the
assumption of a panmictic population, Fisher’s argument leads to the prediction
that natural selection should then operate to establish an even sex ratio of 1:1.
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This prediction has been extensively studied under the exact dynamics of various
genetic models. It proved false when sex was determined by a sex-linked locus
(Hamilton 1967; see also Thomson and Feldman 1975; Bengtsson 1977;
Charlesworth 1977; Uyenoyama and Bengtsson 1981, 1982; Eshel and Feldman
1982b), in which case Fisher's argument for the maximization of grandoffspring
number can be replaced by the likewise intuitive argument of the maximization
of the number of one’s genes carried by grandoffspring (Eshel 1984, 19844). The
prediction that, under the assumption of equal costs of a male and a female
offspring, in a panmictic population the sex ratio tends to 1:1 has been proved
when sex is determined by autosomal loci, carried either by the mother (Nur
1974; Uyenoyama and Bengtsson 1981, 1982; Eshel and Feldman 19824) or by
the individual (Eshel 1975; Uyenoyama and Bengtsson 1979, 1981, 1982; Eshel
and Feldman 1982q; Karlin and Lessard 1983, 1984). Indeed, in this case the
number of one’s grandoffspring is easily shown to be proportional to the number
of one’s genes carried by grandoffspring,

These results have been recently extended to systems determined by two loci
and more (Liberman et al. 1990). More specifically, it has been shown that if
either one’s own sex or the sex ratio among one’s progeny is determined by any
number of autosomal loci with any number of alleles in each and if the system is
already at an internally stable equilibrium, then a new, nonepistatic mutation at
any of the loci will be successfully established in the population if and only if it
initially renders the population sex ratio closer to 1:1.

Unlike in the case of one-locus systems, however, it is not true that the short-
term dynamics of changes in genotype frequencies in a closed, multilocus system
lead to a sex ratio closest to 1:1 (Karlin and Lessard 1986).

More important to our subject, however, is the general finding that in the case
of an equal cost of rearing a male and a female offspring, the same sex ratio, 1:1,
is established in the population regardless of whether the sex ratio among the
progeny is determined by the genotype of the mother or (because of individual
sex determination) by the different genotypes of the offspring, In fact, if the costs
of a male and a female offspring are the same, then Fisher’s argument about the
equality of the reproductive value of (all) males and (all) females leads to the
establishment of the same sex ratio, 1:1, in both cases.

The situation is essentially different if rearing an offspring of one sex costs
more than rearing an offspring of the other sex—say, if the cost of rearing a male
is A times the cost of rearing a female (A > 1). We shall see that in this case, not
surprisingly, natural selection, when operating on autosomal genes that affect the
mother’s behavior, leads to the establishment of a sex ratio of 1: A, which means
a ratio of expenditures of 1: 1, as predicted by Fisher. Yet, in this case, since the
number of males in the population is lower than the number of females, each
male has more offspring, on the average, than each female. Thus, an argument
similar to Fisher's may lead to the conclusion that natural selection, when op-
erating on genes that determine the sex of their carrier, favors those mutations
that increase the chance of their carriers’ becoming males. In fact, an analysis of
the exact genetic model verifies this conjecture, as we sce, although the situation
then proves more complicated, and natural selection will not operate to establish
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an offspring-determined sex ratio of 1:1. Yet it will be different from the sex
ratio 1:x resulting from selection pressure on the mother’s locus. Hence, as long
as the cost of rearing a male offspring is different from the cost of rearing a female
offspring, we are likely to envisage a parent-offspring conflict over the sex of the
offspring. Yet the exact formulation of this conflict in terms of population game
theory-is complicated since, as we see, the very payment function of the offspring
is not that clear, although it secems qualitatively clear that it involves some factor
of kin selection.

The main: objective of this work is to analyze the dynamics of a two-locus
model in which the sex of an individual is determined primarily by the pair of
alleles it carries at one locus while the mother’s investment in offspring of the
two sexes is affected by the pair of alleles she carries in another locus. We assume
that maternal interference in the progeny’s sex ratio can be executed either by
aborting some offspring of the more expensive sex (say, males) or, if possible,
by forcing them to convert their sex.

We employ a natural two-locus model to analyze the dynamics of the conflict,
We find a (unique) mutuoally stable pair of mother’s and offspring’s strategies,
with a resulting sex ratio that, under appropriate conditions, may be a compro-
mise between the sex ratios ‘“desired” by the two parties or may be fully domi-
nated by one party as the other gives up any interference. Finally, we use the
findings of the model to explain why sex conversion is less common than selective
abortions and to speculatively suggest a hypothesis for the evolution of ronsym-
metrical chromosomal systems.

THE MODEL

Assume a diploid, randomly mating population in which the cost of rearing a
male offspring is different from (say, higher than) the cost of rearing a female
offspring. Let the ratio in cost be A: 1 (A > ). Assume that the sex of an offspring
is determined primarily by its own genotype, but the mother can interfere and
change the sex ratio among her progeny either by aborting a surplus of male
offspring or, if possible, by forcing sex conversion of a certain quota of male
offspring. Assume, though, that a forced conversion is of some cost in family
resources (otherwise, the problem readily becomes equivalent to that of sex deter-
mination by the mother). The cost of conversion may result from the fact that a
converted male is less viable, less fertile, less attractive, or still more expensive
than an original female offspring. For the sake of simplicity, we assume that the
cost of conversion is all manifested in viability reduction by a factor of [ — 0
(0 = 0 = 1) on the part of the converted offspring. We refer to § as the risk of
sex conversion. Note that if 8 = 1 (i.c., if all the so-called *‘converted’ males
die), we end with the case in which the mother aborts a surplus of males rather
than attempting to convert them. It is convenient, though, to deal with the two
cases (sex conversion with a risk 0 = 6 < 1 and abortion, where 6 = 1) by using
the same parametric model. In the course of our analysis of the model, however,
we pay special consideration to the case in which 0 = 1, which is, in fact, more
common in nature (including human populations).
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Finally, assume that the cost of a dead offspring is ¢ times that of rearing a
female offspring (0 = ¢ = A). Assume that each mother has, independent of the
part of her genome that is responsible for sex conversion, a fixed amount of :
resources, which is the only factor limiting her progeny number. Thus, if a propor- ’
tion, m, of her offspring determine themselves primarily as males and if she
chooses to convert a proportion x of them, then a proportion (1 — xpn of all her
potential offspring will be surviving males, a proportion 8xm will be lost, and a
proportion (1 — 8)xm + 1 — m will become proper females. The average cost
per offspring (either lost or alive, male or female) is, therefore,

W=( —mh + 8xmc +(( —0xm+1—m. (D

The total number of male offspring reared by the mother will therefore be
proportional to

M= - xm/IW=(1 — x)m/(l + an — bmx), (2)
where
a=r—1>0 . (3)
and
b=Xx—1+(0-c=a+(1-c8>0. (4)

(More precisely, M is the number of reared males divided by the total number of
female offspring that the mother’s resources are sufficient to produce.)
The total number of female offspring reared by the same mother will be propor-
tional to
l-—m+ 0 —0xm 1 -—m+(1—Omx

F= w T 1+ am-— bmx (5)

Assume now that primary sex determination depends, at least in a probabilistic
sense, on the alleles carried by the offspring at one locus while the behavior of
the mother depends on the alleles she carries in another locus.

Given the parameters 8, ¢, and )\, we are interested in an evolutionarily stable
pair of strategies (x*, m*) such that if the primary chance of being a male, m*,
is determined by a homozygous pair of alleles AA at the offspring’s locus and the
chance of converting the sex of a male offspring, x*, is determined by a homozy-
gous pair of alleles BB at the mother’s locus, then fixation of the population on
the genotype AB/AB will be stable against any nonepistatic mutations at either
or both of the loci.

In the course of analysis we prove, further, that once the primary sex ratio
m*:1 — m* is fixed in the offspring’s locus, the mother’s strategy x* (to be
explicitly calculated) has the property of evolutionary genetic stability (EGS;
Eshel and Feldman 19824, 1984), namely, that (1) fixation of x* in the mother’s
locus is stable against any nonepistatic mutation affecting it, and (2) if a value x,
close enough to x*, is fixed in the mother’s locus, then a new, nonepistatic muta-
tion will successfully be established in the population if and only if it initially
renders the average mother’s strategy in the population closer to x*,
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Assuming a mutation of small effect relative to the rate of recombination,
r (>0), between the two loci, it can be shown (C. Matessi and 1. Eshel, unpub-
lished manuscript; see Motro 1991 for a somewhat similar approach} that the
frequency of the double mutant tends to the order of magnitude of the product
of the frequencies of mutation at the two loci. In this case, local analysis can be
carried out at each of the two loci separately. .

In the next section we find, thus, a (unique) mother’s strategy, x* = x*(m)
(say, a proportion of interferences with the sex of a male offspring), such that,
given a fixed primary proportion of males, m (and given the parameters X, 6, and
¢), x* is evolutionarily stable against any mutation at the B locus.

Following that, we find a (unique) offspring’s strategy, m* = m*(x) (say, a
primary proportion of males in the progeny), such that, given a fixed proportion,
x, of mothers’ interferences, m* is evolutionarily stable against any mutation at
the A locus.

Finally, we use these results to find and investigate the (unique) pair of strate-
gies (m*, x*) that, once fixed in the population, is stable against mutation at either
locus,

Note that by using the dynamics of an exact two-locus model, we end here
with a definition of two-strategy stability slightly weaker than the one suggested
by Maynard Smith and Puarker (1976) and formally analyzed by Selten (1980).
(See Summary, Discussion, and Some Speculation for details.)

MOTHER'S EVOLUTIONARILY STABLE STRATEGY

Assume that the population is fixed on the genotype AB/AB, determining a
strategy 0 << m << | on the part of the offspring and 0 = x < 1 on the part of the
mother. Assume that a rare mutation b is introduced at the mother’s locus.

Let the proportion of males being converted by a heterozygote Bb mother be
" x', and let the proportion of the heterozygous mutant be ¢, > 0 and ¢, > 0 among
adult males and females, respectively, where €; and ¢, are small.

Assuming random mating, we know that the proportion of the homozygous
mutant &b will be on the order o(e;,€,) in both sexes.

The number of male and female offspring produced by a heterozygous mutant
mother will be

, 0 =x)m
M T 1+ am — bmx’ ©)

and

, 1 —m+ (1 — 8ynx’
F' = -
1 + am — bmx

)

respectively. If terms of order ole,, €,) are ignored, the number of male and female
offspring of either a mutant or a resident father will be (1 — €)M + €M’ and
(1 — €)F + &, like that of any father in the population, since these values are
determined by his random mate. Since half the offspring of either a mother or a
father of genotype Bb will be of that genotype, regardless of their sex, one gets
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,_eM &M € & 1-—x' 1+am— bmx ®
T T oM T2 2 T—x 1+ am - bmx'
and
E;:ﬂ£+g-_’=_€_1 € 1—m+ (1 —0)mx' |+am— bmx ©)

PTR2F 2F 2 2t=m+-0mx |+am—bmx'

The matrix of linear approximations of the transfoi‘maﬁo_h € — ¢ ,'willl, there-
fore, be '

1 T =x"1+am— bmx
d¢! 2 2 1—-x1+am-— bmx' (10
o¢; 1 11 -m+ (0 ~-8mx" 1+ am— bmx )
2

21—-m+{0—=—0mx 1+ am— bmx'

This is a positive matrix, and, with the assumption of a small-effect mutation
already made above, we know that the sum of the two expressions on its main
diagonal is less than 2 (in fact, it is close to 1). By a straightforward calculation,
one can thus show that a necessary condition for local stability against the specific
mutation in question (i.e., for the leading eigenvalue of eq. {5] to be less than 1)
is that ' B

Hxom: x) = 1, o

where

H

_Il+am—bmx(lkx I~m+(1*9)mx) (12)

T2t am - bme' \1—x Il —m + (1 — O)mx

(a sufficient condition for stability is that expression [11] holds as a strict in-
equality).

Hence, a necessary condition for a mother’s strategy x¥, if determined by BB,
to be stable against all possible nonepistatic B — b mutation is that the inequality

Hx* m; x}y =1 (13)
holds for all x'. But from equation (12) it follows that
H(x* m; x%) = 1. (14)

From expressions (13) and (14) it follows that (given m), if the mother’s strategy
x* is stable against all mutation that changes it, then

H(x* . m; x%) = Hx*,m; x) (15)

Cforalld=x' = 1.

If, on the other hand, expression (15) holds as a strict inequality for all x* #
x*, then we know that x* is stable against all mutation. -

Expression (15) implies that either

(o m;x) s =0, (16)
ax
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in which case x* = 0, or, for 0 < x* < 1,

a?lf(x*,m;x')lx-:x; =0, (17)
Note, however, that H is a linear fractional function of x’ and that its denomina-
tor is always positive for 0 = x’ = [. Hence (for given m and x), aH/ox' does not
change its sign as x’ changes over the interval [0, 1]. Thus, if expression (16)
holds as a strict inequality, then x* = 0 and is, indeed, an evolutionarily stable
strategy (ESS), because any mutant affecting the mother’s strategy will be di-
rectly selected against. '
Suppose now that

OH . -

ax,(x X o = 0. (18)
In this case, we know further that H(x*,m; x'}, as a function of x’, is a constant
(since its derivative, being zero at x’ = x*, must be zero for all 0 = x’ = 1), We
prove, however, that the value x*, satisfying equation (18), has the property of
EGS (Eshel and Feldman 1982¢, 1984; Eshel 1985), or, employing a terminology
recently used by Taylor (1989), x* is m-stable. That is to say, if the population is
fixed on (x, m), where x is close to x¥, then natural selection will favor small-effect
mutations determining maternal strategies in the direction of x*. If expression
(13) is used, this is equivaient to saying that H{(x, m, x') is larger than 1 when x'
lies between x and x* and smaller than 1 when x’ lies on the other side of x;
namely,

dH(x, m; x')
¥ ) 7 >
(x x) Py . 0. (19)
In order to prove this, we calculate
a2H(x, m; x") _ bim?
axax’ e (1 + am — bmx*)?
bm ( (. (1 — 8)ym )
L+am—bmx*\1 —x* 1 —m+ (1l —0)mx*
_1( 1 (1 — 0’ )
2\ —x* [l —m+ (1 — @)ymx*)? 20)
B brm? bm 1
(1 + am — bmx®? 1+ am — bmx* 1 — x*
11
4(1 — x*y

2
bm 1
_H(l+am—bmx* 2(1—x*))<0'
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From expressions (18) and (20), it follows that H(x, m; x')/8x’|,._ . is equal in
sign to x* — x. However, since we already know that the sign of aH(x, m; x')/dx
is independent of x’, we get

(x* — x)aH@x, m; x)ox' >0 2D

for all x’. This implies, as a special case, expressnon (19), which is the condltlon
for the evolutionary genetic stability of x*

CoroLLary 1. If, for a fixed value of m, the value 0 = x* < 1 satisfies either
expression {(16) or equation (17), then it has the property of EGS. Moreover, x*
is the only maternal strategy that, once fixed in the population, can be stable
against all mutation affecting it.

Now, by interchange of parameters, expression (21) can be written as (x* —
x"YoH(x',m; x)/ox > 0, which implies that

H{x',m; x*) > Hx',m; x') (22)

for all x' 5 x*.

We therefore get

CoroLLaRrY 2. For any fixed primary sex ratio m: 1 — m, the conditions stated
in expressions (16) and (17) for genetic stability (and, thus, in this case also EGS)
of the mother’s strategy x* are equivalent to those of an ESS in a mother’s
population game in which H(x,m,; x'} is the payment function of an individual
(say, a mother) who plays x' where the population strategy is x (here, m is
considered a natural force). More specifically, for x' # x*, H(x* m; x*) =
H(x*,m; x'); in the case of equality, H(x',m; x*) > H(x',m; x') (see Maynard
Smith and Price 1973).

Morecover, from expression (13} it follows that natural selection pressure on
the mother’s behavior always operates to increase the individual’s value of H.
We can therefore say that the mother’s payment function & is objectively de-
duced from the dynamics of the genetic model. Furthermore, inequality (20)
guarantees that any m-dependent mother’s ESS x* = x*(m) is also contin-
uously stable (Eshel and Motro 1981; Eshel 1983; sce also Taylor 1989); that is,
it is an ESS such that, if the population’s strategy is close to it, each individ-
ual ptayer can gain (in terms of the payment function H) by getting even closer
to it. {For the condition stated in expression [20] for continuous stability, when
*H(x*,m;x")/9x'?| «_, = 0, see Eshel 1983.) In a different terminology used by
Taylor (1989), x* is both a &-stable and m-stable equilibrium of the mothers’
population game in which H is the payment function.

For the biological interpretation of the payment function H, equations (2), (5),
(6), (7), and (12) yield

H="%MIM+ F'IF}. (23)

Hence, H can naturally be interpreted as the expected number of grandoffspring,
where a male grandoffspring weighs A times a female grandoffspring (cf. Fisher
1958). We can therefore conclude that, for any value of m, natural selection
operates on the mother’s locus to maximize an individual’s (mother’s) weighted
number of grandoffspring.
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We now check the condition stated in expression (16) for the evolutionary
stability of the mother’s strategy of no interference, x* = 0. Employing equation
(12), we get
20— m) — (1 — 2m + om)x’

1 + am — bmx'

H(0,m;x") = K . (24)

where K > 0 and does not depend on x’. We know that x* = 0is stdble if H(0,m;
x') is a nonincreasing function of x’. This holds if '

2bm(l — m) — (1 + am)(] — 2m + 6m) = 0, 25
Denote the left-hand side of expression (25) by ¢(m) = ¢, 4 .(m), which we know
to be a polynomial of order two with o(0) = —1 < 0 and ¢(1) = (1 + a)(1 —6)

= (I — @)» > 0. Hence, ¢{m) changes its sign exactly once in the interval [0, 1].
CoroLLary 3. For any given values A > 1,0 =06 = 1, and 0 = ¢ = XA, there
is a critical value m, between zero and one, with mg = my(e, A, 0), such that, if
the primary male frequency is less than my, the mother’s strategy x* = 0 of
noninterference is externally stable (exhibits EGS). If the primary frequency
of males is above this value, then the mother’s strategy of noninterference is
unstable against any mutation that introduces a positive level of interference.

We refer to m, as the maximal frequency ‘of males tolerated by the mother. By
straightforward calculations, employing expressions (3), (4), and (25), one can
easily verify that o, o .(m) is a decreasing function of ¢, We already know that
the curve of ¢, 4 .(m) intersects the m-axis from below at m = m,. From the
implicit-function theorem, therefore, it follows that m; = mgh.0,c) and is an
increasing function of ¢. Moreover, one can see that, for ¢ = 0, ¢, 40 (1/[1 + A])
= 0; hence, my(h,0,0) = 1/(1 + A).

CororLary 4. The maximal male-frequency my, tolerated by the mother is an
increasing function of the cost ¢. It tends to 1/(A + 1) as ¢ tends to zero.

Note that as ¢ = 0 and my, = /(A + 1), the sex ratio 1/(x + I MO+ 1)
guarantees an equal maternal investment in male and female offspring, as pre-
dicted by Fisher for the case in which the sex ratio among the progeny is fully
determined by the parents. Since ¢ > (b, the mother is forced to tolerate a higher
frequency of males and, thus, to invest more in males than in femaies without
interference. In the same way it can be shown that the maximal frequency of
males, my, tolerated by the mother is an increasing function of & (as long as
¢ > 0) and a decreasing function of A.

We now turn to the condition stated in equation (17) for'the evolutionary stabil-
ity of a mother's strategy 0 < x* << 1. When equation (12) is used, this condition
becomes

l+am—bmx* 1 —m+ ({1 — &mx* 1 —x*

2bm (1 — O)m L 4

Since all denominators are positive, this is reduced to a linear equation of x*
(with all x*? terms canceling) with the (unique) solution
w_  2bm(1 ~m)+ (1 +am)l(2 — 6)m — 1] 26)
T m{—bl2 — 0Om — 1] + 2(1 + am)(1 — )}’
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provided that the left-hand side of equation (26) is positive. Note, however, that
the numerator of equation (26) is equal to the left side of expression (25). The
condition for the existence of a (then unigque) positive mother’s ESS x* > 0 is,
thus, that the mother’s strategy x = 0 of noninterference is not evolutionarily
stable.

In this case one can readily verify that x* is an increasing function of m and a
decreasing functlon of c. It is always less than one, since, forall 0 < m < 1,

"‘(m) <xH1) = MM+ 1-(1 —¢)p] <1. _ - @27

CoroLLARY 5. Forany givenvalues e > 0,0=6=1,A>1l,and0 <m < 1
there is a unique stable strategy x* of the mother. This strategy, x* = xig (m),
is a continuous function of ¢, X, 9, and m. Itis a nondecreasmg function of m
and a nonincreasing function of c.

In the special case of mother’s pure abortion (8 = 1), one can reaclily calculate
Prre = Rbm — (1 + am)l(1 — m) = [2(A — o)m — (1 + am)](1 — m). Hence,

my = 1O + 1 = 20). (28)

Equation (12) can be written as H = K, (x)2 — x — xJ/[1 + A — Dm —
(A — o)mx'], and equation (26}, which determines the evolutionarily stable strat-
egy x* > 0, thus becomes .

mh+1—2c)—1
mh = ¢)

*:

' (29)

which is positive if and only if m > m,.
CoroLLARY 6. In the case of mother’s pure abortion, (8 = 1), the mother’s
ESS is given by

0 if m=UMN+1-2c)=m

MEmA AL 220 — 1 s a1 - 20), (30)
m(h — ¢)

OFFSPRING’S EVOLUTIONARILY STABLE STRATEGY

- Assume, as in the preceding section, that the population is fixed on the geno-
type AB/AB, determining the pair of strategies (m, x). Assume now that the rare
mutation is introduced into the offspring’s locus. Let the primary rate of males
among heterozygous mutant offspring Aa be m’, and let the proportion of the
heterozygous mutant A« be 8, > 0 and &, > 0 among adult maies and females,
respectively, with 8, and 8, small. Assuming random mating of males and females,
we ignore, as before, the lower order of the proportions o(3,,5,) of homozygous
mutants,

Half the offspring of a heterozygous mutant parent, either a mother or a father,
are of the same heterozygous type; therefore, the primary proportion of males in
such parent's progeny is (m + m')/2, Employing equation (1), we calculate the
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average expenditure per offspring (male, female, or lost) in such progeny as
W =14+ (@~ bx)(m + m')/2, (31

where ¢ and & are given by expressions (3) and (4},

The total number of offspring (male, female, or lost) produced by such a parent,
measured in units of family resources, is the reciprocal of equation (31). Of these,
proportions (1 — x)m'/2 and (1 — x)m/2 will be of nonconverted mutant males
and nonconverted wild-type males, respectively. Hence, the total number of mu-
tant male offspring produced by a mutant pareat is

=_1_ (1 — x)m' _ - x0m
21 4+ (a — bxd(m + m'MW2 2+ (a— bx}m +m")’

M (32)

In the same way, the total number of mutant female offspring produced by a
mutant parent is

Fro— 1—m + (1 —8)xm

T 24 (a— bx)m + m') (33)

We compare these with the M males and F females as given by equations (2) and
(5}, respectively.

The frequency of heterozygous mutants among all surviving male offspring of
the next generation is, thus,

By = (8, + 5 )M'IM. (34)
Among female offspring of the next generation, it is
35 = (8, + d)F'IF, (35
From equations (32) to (35), we get

ag+ag_1(g+ﬂ_4_')
F' M

3 + 5, 2

_ 1+ am — bmx (ﬂ'+ I —m + {1 - G)m'x) (36)
24+ (a—-bxdm+m)\m 1—m+ (1 — 8mnx

= G(x,m;m').

The new mutation will, thus, successtully enter the population if G > 1. 1t will
become extinct if G < 1.

As in the case of an evolutionarily stable mother’s strategy, we are interested
in an offspring’s strategy m* = m*() (0 < m* < 1), such that for all m and m’
that are close to it,

{G(x,m;m') > 1 if (m—m¥m—m*)=>0 a7)

Glx,m; m'y<1 if (m—m)m—m*)<0,

In other words, we are interested in a strategy m* with the property of evolution-
ary genetic stability. We find a (unique) value m* that satisfies expression (37) at
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least for a mutation of small effect. Since G(x,m,; m) = 1 for all 0 < m < 1, this
is equivalent to

aG(x, m; m)Idm | e >0 if m<m*
7 {BG(x, m; ' )om' |y <0 if m>m*. (38)
But G, as defined in equation (36), ié a linear fraction of m’. It can be written as

m+[1—2m+ 2x(1 — 8)mlm’
2+ (a— bxym+ (a — bx)m’

G = T(m,x)

where T(m,x) > 0 is independent of m'. Hence,
aGlam’ = {1 — 2[1 — (1 — &xlm — [1 — (1 — Oxla — bx)m?}, (39)
where v > (. One can easily verify that the right-hand side of equation (39) is
positive for 0 < m < m* and negative for m* < m < 1, where
_ 1
1— (1 —@x+ {1 — (- 8x][(1 — N + ecx]}'?’

*

(40)

CororLary 7. Given the mother’s strategy x (and, indeed, the parameters c,
A, and 9), the primary frequency of males, m*, determined by equation (40), is
the only one with the property of evolutionary genetic stability.

Employing the same technique as in the preceding section, one can readily
show that, given the mother’s strategy x, the offspring’s strategy with EGS,
m* = m*(x), is an ESS of the offspring’s population game in which each individ-
ual tends to choose an individual strategy s’ that maximizes his own payment
function, G(x, m; m’). Moreover, such an ESS is always continuously stable C
{m-stable, in the terminology of Taylor 1989).

While the biological interpretation of the mother’s payment function, f, is easy
to interpret, it appears that the offspring’s payment function, ¢, deduced from
genetic dynamics, is less easy to obtain intuitively. However, a recent result by
Taylor (1989) indicates that, under the assumption of weak selection, m-stability
of the exact, one-locus genetic model (in this case, the offspring’s locus) is equiva-
lent to m-stability of the population game in which the payment function is the
inclusive fitness, calculated with the appropriate regression coefficients. Hence,
G should be recognized as equivalent to (i.e., monotontously increasing with) the
offspring’s inclusive fitness.

One can easily verify that the stable primary proportion of males, m*, is a
decreasing function of ¢, 0, and A. It is an increasing function of the level of
maternal interference, x.

Cororrary 8. If the mother can interfere only by aborting a surplus of males
(i.e., if 6 = 1), then the stable primary proportion of males in the population is

[ - 1
1+ M1 — x) + ex]?

Finally, in the special case of x = 0, when the mother does not interfere at all,
equation (40) becomes m*(0) = 1/(1 + A'?).

(41)
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CororLrARY 9. The “*desired’’ offspring sex ratio, selected for in the case of
absence of maternal interference, is

m*(0):[1 — m*0)] = 1:3"2. (42)

This sex ratio guarantees the reverse ratio, A'2:1, between parents’ invest-
ments in male and parents’ investments in female offspring.

Note that when the sex ratio stated in equation (42) is maintained in the popula-
tion, there is an advantage of A'2:1 10 an investment in a female over an invest-
ment in a male offspring in terms of one’s direct expected contribution to future
generations. However, there is the same advantage of A'2:1 to a female over a
male offspring in terms of the family’s contribution to future generations (indeed,
the cost of each male offspring is A times that of a female offspring, whereas his
expected contribution to future generations is only A"? times that of a female
offspring). ' '

MOTHER-OFFSPRING STABLE PAIR OF STRATEGIES

We are now interested in a pair (£, /) of mother’s and offspring’s strategies
that is stable against mutation at any of the two loci. For this, we have to solve
the equations

x*(r#) (43)

>
Il

and

Py

ho= m*(e), (44)

in which the functions x*(m) and m*(x) are defined in equations (26} and (40),
respectively. We are looking for solutions in the biologically relevant range of
0<m<land 0 = £ < 1.

We start by investigating a possible solution of the form 0, #, in which the sex
ratio #i1:(1 — ) is fully determined by the offspring and in which the mother’s
strategy of noninterference is evolutionarily stable. Following equations (42) and
(44), we know that in this case s = m*(0) = 1/(1 + A"?), regardless of 8 and c.
Hence, the condition stated in expression (25) for the stability of £ = 0 becomes
2602 — (1 + A" + a)(A\'?2 - 1 + 8) = 0. When expressions (3) and (4) are
used, this becomes

A= 1=00'" ~ 1+ 20). (45)

CoroLLary 10. (i) A necessary and sufficient condition for the evolutionary
stability of the mother’s strategy of noninterference, £ = 0, is

c= (A" - DA+ 1 — 0)1728 = ¢*. (46)

(ii) In the case of mother’s pure abortion, 8 = 1, the condition stated in expression
(46) becomes

c= (- A", 47)

(iii) For any value of 8 = 1, the condition stated in expression (47) is necessary
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for the stability of £ = 0. Once it is satisfied, then a necessary and a sufficient
condition for the stability of 2 = 0 is

(iv) Whenever £ = 0is the mother’s stable strategy, the offspring’s stable strategy
is i = 1/(1 + AY?), and the sex ratio maintained in the population is the off-
springs’ determined sex ratio 1:A"2. The proof is immediate from expressions
(45) and (42).

Suppose now that the condition stated in expression (46) for the stability of the
pair 0, 1/(1 + A2 does not hold. For any 0 = x = 1, we define a function

Plx) = x*[m*x)]. (49)
Employing equation (42), we know that, since expression (46) does not hold,
' 1
0) = x*( ) >0, (50
Vo 1+ VA )
From expressions (41) and (27), we get
. 1
() = x"( ) << x#(1
v 1+ Ve W (51)
A

<.

AN+ 1-( -0

Hence, there is (at least one) solution to the equation () = £. Define m*(£) =
1, equations (43) and (44) are automatically satisfied by the pair £, /1.

CoroLLARY 11, I the condition stated in expression (47) for the mutual stabil-
ity of the pair 0, 1/(1 + A"2) is not satisfied, then there is at least one stable pair
of strategies, £, # for which £ > 0 and #1 > 1/(1 + A'?).

We now concentrate on the case of surplus male abortion (8 = 1), and we
assume that the condition stated in expression (47) for the evolutionary stability
of the pair 0,1(1 + A% is not satisfied. In this case, equations (43) and (44),
together with equations (29) and (41), yield

. 7108 -t 1—-2¢0) -1 (52)
MmN — ¢)
and
= ! . . " (53)
1+ vVall — 0+ ck
Let us define
y=( — x\ + cx 34)

(this is the expected investment in a potential male offspring of a mother with a
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strategy x). The system of equations (52) and (53) becomes

¥y=2c -1+ lUm (5%)
and

o= 11 + 3. (56)
Thus,

y-Vy -2 =0,

¥ o=1{l + (1 + 8)"?)/2,
and, therefore,
P=1I1+ 1+ 8)"%4 = [1 + 4¢ + (1 + 8c)"/2. (57)
From equation (57), together with equations (54) and (56), we get

h—ﬁ=2)\—[4c+l+(8c+1)”2]
AN—c 20— ©)

(58)

£ =

and
=23+ (1 + 8)"}. (59)

It is worth mentioning that once the condition ¢ < (A — A"%)/2 for positive
maternal interference (£ > 0) is satisfied, neither the primary proportion of male
offspring, #, nor the average mother’s investment in males, y (including the cost
of male abortion), depends on . Both values depend on ¢ alone (the probability
of abortion, £, does, in fact, depend on both ¢ and A\). We see, further, that the
mother’s expected investment in males, ¥, is a monotonic function of ¢, increasing
from 1 when ¢ = 0 to A when ¢ = (A — A")/2 (relative to the unit of fixed
investment in a female). The primary proportion of males, #, is a monotonic
function of ¢, decreasing from %> when ¢ = 0to 1/(1 + A3 whenc = (A — AYY),

Finally, we are interested in the real (secondary) stable proportion of males in
the population,

=01 — 5ml(l — i), ‘ (60)
namely, the proportion of males among surviving adults.

We know that for c = (A — M2, = = /(1 + A3, Asfore < (A —
A"%)/2, equations (57) through (60) yield

i = y—c¢ - 1 +2¢c+VI+ 8¢
J+A—AVF—¢c lH+r+c+(0+r—VI+ 8¢

By straightforward differentiation, it can be shown that ji is a decreasing function
of \ and an increasing function of c. It increases from 1/(1 + A} when ¢ = 0 to
/(1 + A when ¢ = (A — AV)/2.

CoroLLARY 12, (i) In the case of surplus male abortion (0 = 1), there is always
a unique pair of strategies (£,#2) that is stable against mutation in both loci. (ii)
If the cost of abortion, c, is higher than (A — A"?)/2, then nonabortion (£ = 0) is

(61)
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the only stable strategy of the mother, in which case both the primary and the
secondary stable proportions of males in the population are 1/(1 + A'?). (iii} As
the cost of abortion decreases from the critical value (A — AY){2 to zero, the
primary proportion of males increases from 1/(1 + A?) to ' and the rate
of male abortion increases from zero to (A — 1)/A; the secondary proportion
of males among surviving adults decreases from the offsprings’ determined value,
1/(1 + A", to the mother’s determined value, 1/(1 + A). The proportion of
mother's investment in males will, then, decrease from A"2/(1 + A% to .

SUMMARY, DISCUSSION, AND SOME SPECULATION ABOUT THE EVOLUTION
OF CHROMOSOMAIL DIFFERENCES

We have analyzed a two-locus model for sex determination and resource alloca-
tion in a two-sex, diploid, randomly mating population in which the cost of rearing
a male offspring is different from—say, A times higher than—the cost of rearing
a female offspring.

It has been assumed that one locus is responsible for the individual’s primary
sex determination, while the other locus affects the mother’s behavior toward
potential offspring of the two sexes. It has been shown that if the mother can
manipulate the sex ratio within her progeny without any cost, then natural selec-
tion operates to establish the genes that determine, through the mother’s manipu-
lation, a sex ratio of 1:A and, thus, a ratio of 1:1 in total expenditure incurred
for offspring of each sex. In this case, natural selection operating on the mother’s
genes tends to maximize the total number of the mother's grandoffspring (cf.
Fisher 1958, pp. 158-159). If, on the other hand, the cost of the mother’s manipu-
lation is higher than some critical value ¢* (depending on the cost, A, of rearing
a male offspring), then it has been shown that natural sclection operates to estab-
lish the genes that through their effect on the offspring determine a sex ratio of
1:2"2 (cf. Trivers 1974). It is quite interesting that this is the geometric mean
between the sex ratio 1:1 that would be expected if each individual sought to
increase its own contribution to future generations and the sex ratio 1: ) expected
if each individual sought to increase the total contribution of its family to the
future generations.

In the more general case, assuming an exact genetic model of two loci, one
being responsible for the individual's (say, offspring’s) sex determination and the
other for the mother’s interference, we have found a unique pair of values (strate-
gies) £, /1, with # being the primary proportion of males in the progeny and £ the
mother’s level of interference, that, once fixed in the population, has the property
of evolutionary genetic stability against all nonepistatic mutation. This pair of
strategies can be equivalently determined by the rules of an asymmetrical popula-
tion game in which the mother’s and offspring’s payment functions are objectively
determined by (well-known) population dynamics. The (unique) externally stable
pair of strategies, determined by the two-locus dynamics, is shown, more specifi-
cally, to be identical to the (unique) ESS of the asymmetric population game if
and only if an asymmetric ESS is defined as a pair of strategies (£, /) in which £
is a usual (symmetrical) ESS in a mother’s population game as long as #, being
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fixed among offspring, is regarded as *‘natural force’ and s is an ESS of an
offspring’s population game, given £ as a “*natural force.”’ Note that this definition
is somewhat weaker than the one suggested by Maynard Smith and Parker (1976)
and further analyzed by Selten {1980) since, according to the terminology of the
latter, the condition obtained from the two-locus dynamic system requires only
stability against mutant strategies of either the form £, m’ or the form x’, # and
(unlike the latter) not of the general form x', m'.

In a separate work, we deal with biological conditions under which dynamic
stability of the genetic population leads to the stronger ESS requirement of May-
nard Smith, Parker, and Selten.

As we show, if the cost of the mother’s manipulation is larger than zero but
smaller than the critical value ¢*, then the secondary sex ratio, established in the
adult population, lies between the mother’s determined sex ratio of 1:A and the
offspring-determined sex ratio of 1:A"2. Moreover, as the cost, ¢, of losing an
offspring increases from 0 to c*, the evolutionarily stable (secondary) sex ratio
in the adult population monotonically increases from 1: A to 1: A2, Quite interest-
ingly, it is shown that as the cost ¢ increases, the offspring’s primary sex ratio
(contrary to the secondary sex ratio) decreases from 1:1 to the value 1:A!? at
¢*, from which point and above the mother does not interfere and the two sex
ratios coincide. Not surprisingly, the mother’s rate of interference decreases from
(A — 1)/A when the cost ¢ is zero, to zero when the cost ¢ approaches c¢*.

If a mother’s manipulations can be executed only through abortion of a surplus
of males, then the critical value ¢*, above which she will not interfere, is (A —
A2 /2. If (for fixed costs of A > 1 for rearing a male offspring and ¢ > 0 for losing
it) the mother can interfere by converting the sex of a male, instead of aborting
him, (say, if © <¢ 1) then the critical value ¢* will be higher, and it will increase
as the risk 0 involved in a forced sex conversion decreases.

It seems quite obvious that the possibility of sex conversion is always prefera-
ble, both for the mother and for the offspring, to the possibility of abortion. And
in the case of sex conversion, a low value of risk is preferable to a high value of
risk. It thus seems obvious that any biological factor under natural selection that
is responsible for the success of sex conversion will be so selected as to decrease
the risk, 9, involved in it.

That differential abortion of male and female offspring is more common, by
far, than the more ‘‘economic’’ sex conversion (including in human populations;
see, e.g., Crew 1954; Bacci 1965) can possibly be explained by technical restric-
tions. Yet, in order for natural selection to operate on factors that affect the risk
of conversion, 8, one has to assume some inherited variance with respect to this
parameter among offspring primarily determined as males. Since in this work we
are not concerned with the question of how the mother should choose the candi-
dates for an altempt at sex conversion, we have adopted the simplifying working
assumption of an average chance, 1 — 0, of successful conversion. Yet, if the
individual chance of surviving a sex conversion is positively correlated with some
detectable factor, 1, of the offspring, there appears to be an obvious selective
advantage to a more subtle mother’s strategy: choosing the candidates for sex
conversion from among those male offspring whose detectable factor 1 (and thus,
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the chance of surviving a sex conversion) is relatively high. This, in turn, endows
low values of t (and thus, high values of 8) with an apparent selective advantage
in offspring affecting ioci because, in any stable situation, males have higher
reproductive values than females {notwithstanding the risk, even if small at the
beginning, involved in sex conversion). Hence, quite paradoxically, natural selec-
tion operating both on factors involving the risk of sex conversion and on a
mother’s reaction to these factors appears to favor those factors that increase
rather than decrease the risk of sex conversion. As a result, it is possible that,
under plausible conditions, the only evolutionarily stable situation will concern
the case of pure abortion of a surplus of males (6 = 1). Morcover, since the
critical cost, ¢*, is a decreasing function of 6, this in turn may increase the range
of parameters for which mother’s noninterference is the only stable strategy. In
a different work, we intend to study this possibility.

ACKNOWLEDGMENTS

We thank F. Weissing for his helpful remark on Fisher’s argument and M. W.
Feldman, U. Motro, P. Taylor, and M. Uyenoyama for their helpful remarks on
this manuscript. I.LE. wishes to. thank the Department of Mathematics and lts
Applications at the University of Naples and the Italian Council for Scientific
Research for their support and hospitality. He wishes also to thank the United
States—Israel Binational Science Foundation (grant 8500023).

LITERATURE CITED

Bacei, G. 1965. Sex determination. Pergamon, New York.

Bengtsson, B. O. 1977. Evolution of sex ratio in the wood lemming. Pages 333-343 in F. B. Christian-
sen and T. M. Fenchel, eds. Measuring selection in natural populations, Springer, New
York.

Charlesworth, B. 1977. Population genetics, demography and the sex-ratio. Pages 345-363 in F, B,
Christiansen and T. M, Fenchel, eds. Measuring sefection in natural populations. Springer,
New York.

Crew, F. A. 1954, Sex determination. 3d ed. Methuen, London.

Eshel, L. 1975, Selection on sex ratio and the evolution of sex determination. Heredity 34:351~361.

. 1983. Evolutionary and continuous stability. Journal of Theoretical Biology 103:99-111.

— . 19844. On the evolution of an intragametic conflict. Journal of Theoretical Biology 108:65-76.

— . 1984b. Are intragametic conflicts common in nature? are they important in the evolution of

natural populations? Journal of Theoretical Biology 108:159-162.
. 1985. Evolutionary genetic stability of Mendelian segregation and the role of free recombina-
tion in the chromosomal system. American Naturalist 125:412-420.
Eshel, 1., and M. W, Feldman. 1982a. On the evolutionary genetic stability of the sex ratio. Theoveti-
cal Population Biology 21:430-439.
. 19826, On the evolution of sex determination and sex ratio in haplodipleid populations.
Theoretical Population Biology 21:440-450.
. 1984. Initial increase of new mutants and some continuily properties of ESS in two locus
systems. American Naturalist 124:631-640.
Eshel, 1., and U. Motro. 1981. Kin selection and strong evolutionary stability of mutual help. Theoreti-
cal Population Biology 19:420-433,
Fisher, R. A. 1958, The genetical theory of natural selection. 2d rev, ed. Dover, New York.
Hamilton, W. D. 1967. Extraordinary sex ratios. Science (Washington, D.C.) 156:477-488.




972 THE AMERICAN NATURALIST

Karlin, 8., and 8. Lessard. 1983. On the optimal sex ratio. Proceedings of the National Academy of
Sciences of the USA 80:5931-5935.

— . '1984, On the optimal sex ratio: a stability analysis based on characterization for one-locus

multiallele viability models. Journal of Mathematical Biology 20:15~38..
. 1986, Theoretical studies on séx-ratio evolution. Princeton University Press, Prmceton N.J.
Liberman, U., M. W. Feldman, [, Eshel, and . Otto. 1990, Two-locus: autosomal sex determination.
I On the evolution of génetic stability of the even sex ratio. Proceedings of the National
Academy of Sciences of the USA 87:2013-2017.

Maynard Smith, J., and G, A, Parker. 1976. The logic of asymmemc contests Ammal Behaviour
24;159-175.

Maynard Smith, I.; and G. R. Price. 1973. The logic of animal conflict. Nature (London) 246:15-18.

Motro, U: 1991. Avoiding inbreeding and sibling competition: the evolution of sexual dimorphism for
dispersal. American Naturalist 137:108-115,

Nur, U. 1974, The expected changes in the frequency of alleles affecting the sex ratio. Theoretlcal
Population: Biology 5:143-147.

Selten, R. 1980. A note on evolutlonan]y stable strategies in asymmetnc animal conﬂlct Journal of
Theoretical Biology 83:93-101.

Taylor, P. D, 1989. Evolutionary stability in one- parameter ‘models under weak select:on Theoretical
Population Biology 36:125-143,

Thomsen, G, J., and M. W. Feldman. 1975. Population modifiers of meiotic drive. 1V. On the evolu-

~ tion of sex-ratio distortion, Theoretical Population Biology 8:202-211.

Trivers, R. L. 1974, Parent-offspring conflict. American Zoologist 14:249-264.

Uyenoyama, M. K., and B. O. Bengtsson. 1979, Toward a genetic theory for the evolution of the sex
ratio. Genetics 93:721-736.

—. 1981, Toward a genelic theory for the evoluuon of the sex ratio, [1. Haplodiploid and diploid
models with 51blmgs and parental control of the brood sex ratio and brood size. Theoretical
Population Biclogy 20:57-79, '

. 1982, Toward a genetic theory for the evolution of the sex ratio. 1II. Parental and sibling
control of brood investment ratic under partial sib-mating. Thecretical Population Biology

1 22:43-68.




