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Abstract.—A long-term selection, three-locus diploid model is developed in order to analyze
the joint evolution of the primary sex ratio among offspring, parental manipuiation, and offspring
response to parental manipulation when the cost of rearing a male offspring is different from
the cost of rearing a female offspring. It is shown that, when the mother has enough information
about the potential offspring response to manipulation, natural selection operates to increase
offspring intolerance to sex conversion up to a level at which a mother will have cither no power
of manipulation (if the cost of losing an offspring is high) or only limited power of manipulation
through, for example, seiective abortion or neglect of male offspring (if the cost of losing an
offspring is not too high). Quite paradoxically, when the information available to mothers on
offspring tolerance of manipulation is limited, long-term natural selection operates to minimize
the conflict up to the stage of full maternal control of the sex ratio,

In a previous article (Eshel and Sansone 1991), we studied a situation of parent-
offspring conflict over the sex ratio in the brood, when the cost of rearing a male
offspring is different from (say, A times) that of rearing a female offspring. In this
case, Fisher (1958) argued that natural selection, in a panmictic, diploid, fully
sexual population, should operate to adjust parents’ investment so that the total
expenditure incurred for offspring of each sex will be equal. This is so because,
if the sex ratio is 1:\’, where A’ # X, then each male in the population will have,
on the average, N’ times the number of offspring born to a female (since all males
together have exactly the same number of offspring as all females together in the
population), Hence, the expected number of grandoffspring resulting from a unit
of investment in males is A":\ times the expected number of grandoffspring re-
sulting from investing the same amount of resources in females. *“Selection would
thus raise the sex-ratio until the expenditure upon males became equal to that
upon females’ (Fisher 1958, p. 159). _

As has been established by later quantitative studies, this argument turns out
to be valid under somewhat more restrictive conditions. It proves false when
sex is determined by a sex-linked locus (Hamilton 1967: Thomson and Feldman
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1975; Bengtsson 1977; Charlesworth 1977; Uyenoyama and Bengtsson 1981, 1982;
Eshel and Feldman 19825). Yet the bulk of the quantitative studies based on the
exact dynamics of genetic models for diploid, panmictic, random-mating popula-
tions (Nur 1974; Uyenoyama and Bengtsson 1981; Eshel and Feldman 19824; see
also Charnov 1982; Karlin and Lessard 1984) validates Fisher’s argument, at least
concerning autosomal genes., Moreover, as has been suggested (Hamilton [967)
and later analyzed (Eshel 19844, 1984b), it seems likely that the possibility that
sex-linked genes substantially affect the sex ratio is minimized by the intervention
of autosomal modifier genes. Another possible source of deviation from equal
investment by parents in males and females has been suggested by Trivers and
Willard (1973) when mothers of high status in a polygynous population are con-
cerned. Indeed, a tacit assumption in Fisher’s argument, as well as in the dynamic
models following it, was that parents lack any information about the expected
status of their offspring; hence natural selection can operate only on averages.
Yet high status is crucially important for the reproductive success of males, and
much less so for the reproductive success of females in a polygynous population.
The argument of Trivers and Willard (see also Wilson and Pianka 1963; Trivers
1972) has been extended by Maynard Smith (1980) and later authors (Clutton
Brock et al. 1981, 1982; Lloyd 1983; Frank 1987; Stamps 1990) to predict devia-
tions from equal parental investment over the entire population toward higher
investment in the sex whose variance in reproductive success is higher. For
example, investment in males may be favored in polygynous populations and
females, to a lesser extent, in monogamous populations in which reproductive
success depends mainly on female fertility. That polygynous mothers do invest
more in sons is well established by a growing body of evidence (Clutton Brock
et af. 1982; Fiala and Congdon 1983; Lee and Moss 1986; Anderson and Fedak
1987; Teather and Weatherhead 1988; Wolff 1988; Boyd and McCann 1989; Le
Boeuf et al. 1989; Gomendio et al. 1990; Yasukawa et al. 1990). But this phenome-
non of extra investment in any single male offspring (relative to the investment
in any female) does, indeed, create overall bias in favor of parental investment
in males only if one assumes an even sex ratio at birth, as tacitly assumed by
Maynard Smith. Yet, if this were the case, Fisher’s argument would remain true
concerning the sex ratio at earlier stages. Hence, natural selection on the carly
stages of parental investment is likely to superimpose over the secondary sex
ratio a bias toward female offspring that balances the extra investment in males
at that stage, which keeps the average overall investment in both sexes equal.
This prediction agrees with evidence of higher rates of male abortion (Crew 1934;
Bacci 1965) and higher early mortality among male offspring in polygynous popu-
lations (Clutton-Brock et al. 1982; Burley 1986; Labov et al. 1986; Slagsvold et
al. 1986; Wolff 1988; Krakov and Hoeck 1989; I.e Bocuf et al. 1989; Teather and
Weatherhead 1989).

As total parental investment in males and females evolves toward equality, the
sex ratio in the population converges to 1: X, at which any male in the population
has, on the average, \ times the number of offspring born to any female in the
population. This outcome occurs because, repeating the argument of Fisher, all
males in the population together will have exactly the same number of offspring
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as all females in the population. Hence, natural selection, when operating on sex
determination in the offspring themselves, is likely to favor a deviation from the
1:X sex ratio in favor of the sex that produces more offspring per capita. In fact,
it can be shown (Trivers 1974; Eshel and Sansone 1991) that natural selection,
when operating on autosomal genes that affect individual sex determination, oper-
ates to establish a sex ratio of 1:Vx, which, for X # 1, is indeed different from
that favored by parental genes.

In our previous article (Eshel and Sansone 1991), we attempted to study the

possible genetic dynamics of this parent-offspring conflict by resorting to an exact
diploid, two-autosome locus, random-mating genetic model. In that model the
primary sex ratio is determined by genes carried by the offspring at one locus. At
the same time, genes carried at another locus determine parental (say, maternal)
manipulation of the sex ratio within the brood. Maternal manipulation of the sex
ratio is most commonly affected by differential abortion of the two sexes (see,
e.g., Crew 1954; Bacci 1965; Krakov and Hoeck 1989) or, quite equivalently (with
respect to the model), by a tendency to neglect or respond less to the begging
and-demands of offspring of the more costly sex (see Burley 1986; Labov et al.
1986; Slagsvold et al. 1986; Wolff 1988; Krakov and Hoeck 1989; Le Boeuf et al.
1989). Another apparently more economical, yet much less observed, mode of
.maternal manipulation may occur in a form of the forced sex conversion of indi-
~vidual offspring. In both cases we have assumed (Eshel and Sansone 1991) that
‘maternal manipulation must be of some cost to the family, otherwise the conflict
is indeed settled by parental full control of the sex ratio, a situation that has
-already been extensively studied in previous works (see, e.g., Uyenoyama and
Bengtsson 1979; Eshel and Feldman 1982b). Thus, in the case of sex conversion,
we have assumed that the viability, the sexual success, or the fertility of the
sex-converted individual is reduced by a factor | — 6. Maternal manipulation
through a differential rate of abortion (or infant mortality) can, therefore, be
treated as a special case of sex conversion with 8 = 1, The loss of maternal
investment with the death of an offspring (say, its cost) was assumed to be a
positive number ¢, less than one.

We have shown that the two-locus fixations that are stable against all nonepi-
static mutations are exactly those that determine a mother-offspring evolution-
arily stable system (ESS) in an asymmetric population game (see Maynard Smith
and Parker 1976; Maynard Smith 1977; Grafen and Sibly 1978; Selten 1980) deter-
mined by maternal and offspring payment functions that are analytically derived
from the dynamics of the genetic model. Moreover, these formally derived pay-
ment functions can be interpreted in terms of inclusive fitness or some generaliza-
tion of it (see, for comparison, Motro 1991, 1993; Matessi and Eshel 1992). We
have shown also that for any values A, 0, and ¢, a unique ESS (#, £} exists, in
which 0 < # < 1 is the primary proportion of males in the population and 0 = #
< 1 is the rate of maternal manipulation. A specific value 0 < ¢* < 1, ¢* = c*(n,
6}, has been calculated so that, as the cost ¢, incurred by the death of an offspring,
increases from 0 to ¢*, the primary sex ratio #1:(1 — #) decreases from 1:1 to
1:Vx, while the mother rate of manipulation decreases from (A — 1D(A + 6)~!
to zero. In this case the secondary sex ratio among adults increases from the
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mother-desired sex ratio of 1:\ to the offspring-desired one of 1:V\ at ¢*, from
which point and above the mother does not interfere and the secondary sex ratio
coincides with the primary one, both remaining 1: V.

A crucial question, about which we have only speculated, is why the case of
differential mortality of male and female offspring 6 = 1, though being the most
expensive both in terms of parental investment and offspring mortality, is by far
the most common in nature. Indeed, it seems quite obvious that, for both mother
and offspring, the possibility of sex conversion is preferable to abortion. More-
over, in the case of sex conversion, it seems plausible that any biological factor
that reduces mortality because of sex conversion will be favored by natural selec-
tion. Yet, in order for natural selection to operate on factors that affect the risk
8 of sex conversion, one has to assume some inherited variance with respect to
this parameter among offspring primarily determined as males. Moreover, if the
parameter 8 can be estimated with partial success by the mother (say, through
the correlation of & with some detectable feature of the offspring), there appears
to be an obvious selective advantage for maternal strategy of first manipulating
those male offspring that are likely to manifest low values of 8. This in turn
endows high values of 8 with an apparent selective advantage since male offspring
with high 0 are less likely to be manipulated. The question is, then, Under what
condition can this advantage overbalance the even more apparent disadvantage
of running a higher risk when manipulated? Under what conditions is natural
selection likely to increase rather than decrease the risk of sex conversion up to
the value 8 = 1 of differential offspring mortality?

In this work we attempt to study this question by analyzing genetic dynamics
at a third locus, determining intolerance of male offspring to maternal manipula-
tion. More specifically, we assume that the relative loss of fitness 8 due to sex
conversion is different from one individual male offspring to another. We refer
to it as to the individual ‘‘maleness’” in the sense that individual male offspring
with higher so-called maleness are those that suffer higher risk when converted
to females. The maleness of a male offspring (i.e., its specific 9 value) is deter-
mined by genes it carries in its third locus. Finally, we assume that the maleness
of the offspring is at least partly detectable by the mother. In developing the
model and studying mutual effects of natural sclection at the three loci, we follow
all the assumptions of our previous model regarding the first two loci, except that
we now assume that the proportion x of male offspring manipulated by the mother
is not just chosen at random. Instead, the mother’s choice is made according to
some probabilistic information she has about the offspring maleness 8, which is
in turn determined by genes this offspring carries at the third locus.

We see that, if maternal detection ability is sufficiently high and if the cost of
losing an offspring is not higher than the critical value ¢*, then natural selection
on the third locus will operate even to increase the level of maleness up to 0§ =
1. If maternal detection ability is high but the cost of losing an offspring is not
sufficiently low, natural selection on the third locus will operate to increase the
level of maleness to a point (less than one) above which maternal manipulation
is disfavored. If maternal detection ability is low, natural selection will operate
to decrease the level of maleness of male offspring to a level at which, paradoxi-
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caily, the mother has full control of the sex ratio in her progeny. Yet it is argued
that, under plausible (though maybe not universal) conditions, natural selection
tends to increase maternal detection ability, which thus pushes the population to
a situation in which the level of conflict is maximal and maternal control is mini-
mal. The findings of the model are discussed in light of Zahavi’s handicap princi-
ple (see Zahavi 1977a, 1977b, 1981).

As in our previous work, long-term fixation stability at the third locus can be
interpreted in terms of an ESS in a population game with a male offspring payment
function that can formally be derived from the dynamics of the genetic model,

THE MODEL

We assume a diploid, random-mating population in which the cost of rearing a
male offspring is A times the cost of rearing a female (A > 1). The sex of an
offspring is primarily determined by its own genotype, yet we assume that the
mother can change the sex ratio within her brood by either aborting or, if possible,
forcing a sex conversion on some proportion of male offspring. We assume that
maternal manipulation causes a reduction by a factor 1 — 8 in the viability of the
offspring (0 =< 6 = 1); in particular, the case § = | corresponds to differential
abortion or mortality by other means. Unlike our previous view, we assume that
0 is different from one individual male offspring to another, and we refer to it as
the individual maleness. Finally, we assume that the loss in maternal investment
upon the death of male offspring is ¢ times, 0 < ¢ < 1, that of a female offspring.

We assume that the primary sex determination depends, in a probabilistic
sense, on alleles carried by the offspring at locus A. Maternal behavior is deter-
mined by alleles she carries at locus B. Finally, the maleness 8 of a male offspring
(i.e., its intolerance to sex conversion) is determined by alleles it carries at locus
D. We assume no epistatic effects of these alleles, so that the level of manipula-
tion by a mother is not affected by alleles she carries at the 4 and D loci, and
the primary sex and maleness of an offspring is not affected by alleles it carries
in the B locus. As long as the mother can detect offspring maleness, natural
selection will indeed operate in favor of maternal strategies that minimize a loss
of offspring by manipulating only those who are estimated of lower maleness (for
a situation in which this may not be the case, however, see the Discussion). We
assume that the mother can detect the value 6 up (o a certain variance o2 > 0.
Specifically, the mother’s estimate 6 is a random variable:

8=0+0cY, n

where Y is a continuous random variable with a distribution function F(y) = p(¥
= y) and density f(y) = F'(y), a mean EY = 0, and a variance EY? = 1. The
function f may be assumed to be the normal density function or any other density
function that is positive for any y with a connected support. Also, o is referred
to as maternal estimation error.

A typical maternal strategy determined by the maternal alleles at locus B is,
therefore, to manipulate afl male offspring of an estimated maleness & lower than
a critical value 0 = u < 1. We refer to this as the maternal threshold strategy.
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If an offspring’s maleness is 8, then the chance of his being manipulated by a
mother with a threshold strategy u is

x=p(ﬁ+0'y5u)=p(ysuT_e)=F(M'—.e). @

o

Finally, we assume that each mother has a fixed amount of resources that is
the only factor limiting the size of her brood (see, e.g., Trivers 1972). Thus, if
the primary sex ratio in the brood is m:(1 - m), if all male offspring have the
same maleness 8, and if the maternal strategy is # with x = F((# — @)/o7), then
the average maternal investment in an offspring (alive or dead) in the brood is

W=(0-xymA+x0mc+{1 -0Omx+1—m. (3)

Using the notation of the previous article,

a=ir—1
4)
=g+l —-¢)0=A~1+(1-0)0,
and equation (3) becomes
W=1+[a— bx(6)lm = W, ,(6). (4a)

Assume now fixation at the A and B loci (hence fixed values for s and u) but
polymorphism at the D locus. Let different offspring in the brood carry different
combination of alleles D,D; (i, j = 1, ..., n) at the D locus, with the frequency
of the D;D; combination at the brood 2p,; = 0, if i # j, and p; > 0, if i = j (note
that, under fixation at the A locus, these frequencies are the same for male and
female offspring), 27 {ijp; = 1; and let the level of maleness, determined by this
combination, be 8;. Then the average maternal expenditure is

n

W= Wu,m(g’ 12) = Z Up.[f Wﬂ, m(eif) . (5)
1

The total number of adult D;D; male offspring emerging from the brood will
then be

R
M= W_(Q—,—,—g_)p""(l — xghm, (6)

where x; = F((u — 8;)/0) and R is the total amount of resources available for
the mother.

The total number of adult D, D, females (either originally so or successfully
converted males) will be

R
Fg= mpij[l —m + mxyl — 9(-,-)]- D
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Indeed, the total numbers of male and female offspring emerging from the brood
are proportional to

" N
M= ipyMy and F= iipyFy.
1 1

As in the previous article, we are interested in a multilocus (in this case three-
loci) fixation of the alleles A, B, and D, determining primary sex ratio m, maternal
threshold strategy #, and maleness 8, respectively, that will be simultaneously
stable against any mutation or a combination of them at the three loci.

It has been shown (Matessi and Eshel 1992) under similar conditions that, if
the effect of the mutation at each locus is weaker, in order of magnitude, than
the rate of recombination among any two loci (i.e., if we restrict our interest to
mutations of relatively small efféct in loci that are not fully linked as a supergene),
then the conditions for stability against any combination of mutations at the three
loci are equivalent to the three conditions for stability at each locus separately,
given the fixation at the other two.

More specifically, it can be shown that those cigenvalues of the matrix of local
analysis that belong to the frequencies of double or triple mutations are of the
form (1 — r)L(w), where r; is the appropriate rate of recombination, and L(w)
tends to one as the effect of a single mutation, in terms of selection forces w,
tends to zero. Hence, for nonzero rates of recombination and small-effect muta-
tions, these eigenvalues are always less than one in absolute value, and the eigen-

“values that determine stability of the three loci are those of the three matrices
of local analysis for each locus separately, taking into account the parameters
determined by fixation at the other loci,

Being interested in fixation stability in the three loci, we start by assuming
fixation of alleles A4, B, and D, respectively, at the appropriate three loci, such
that DD determines a level of maleness 0 = 8 < 1, while AA and BB, respectively,
determine a primary sex ratio m*: (1 - m*) and a maternal threshold strategy u*
(m* = m*©0), u* = u*(9)), which, given 8, are stable against any nonepistatic
mutation A — aand B — b. We then look for a specific value 8, for which the
triplet 2 = u*(8), 1 = m*(6), 6 is stable. Note that, in the case of fixation at the
third locus (on whatever value of 8), the maternal threshold strategy u, determin-
ing a rate of maternal manipulation

x= F(-” - e) , ®)

a

is equivalent to a maternal strategy of just manipulating a proportion x of the
male offspring, chosen at random. We can, therefore, restrict our attention to
such triplets (m*, u*, 8) in which, for the given value of ¢, the values m* = m*(0)
for the primary frequency of males and x* = x*(0) = F([u*(0) — 8]o~") for the
maternal strategy satisfy the mutual stability conditions analyzed in the previous
article.

While the primary frequency of males (m*) and maternal manipulation level
(x*) are determined entirely by A and ¢ per a given value of 6, the maternal
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threshold strategy u* = #¥(8) must adjust itself to the error o and to the distribu-

tion F, in order to satisfy
#B) —
x*(8) = F(ﬂ-—(-%—-—g) . ®)

OFFSPRING’S RESPONSE TO PARENTS' MANIPULATION: THE EVOLUTION
OF A STABLE LEVEL OF MALENESS

We start from any fixation A, B, D at the three loci, determining strategies m,
u, and 0, respectively. We then introduce a mutation D — d at the third locus,
assuming that the maleness of Dd is 0' close to 9.

Let ¢ > 0 and 8 > 0 be the proportions of the mutant Dd among adult males
and females, respectively, with €' and 3’ the proportions of this genotype among
males and females of the next generation. By straightforward calculations, one
can verity

E'+3'~_ W 1-—x 1—m+(1-—0')mx’ - )
€+8“W+W'[1—x+1—m+(1—9)mx]HK(e’e)’ ©
where
W=1+(@@=bm W =1+(@-bx)m (10)
and
" u—0
I—F( po ), (11)

which is the probability of maternal manipulation of mutant offspring. For the
proof of equations (9)—(11), refer to Appendix A.

Note that the representation at the right side of equation (9} is possible since
x and x', W and W' are given by equations (2) and (11) as functions of m, u, 0,
and 9'.

The fixation of the allele D is stable against the specific mutation D — d if
(' + 8" < (e + 8) or equivalently if, given # and m,

K@,0H<l (12)
and only if
K@,9=1, (12%)

where K(8', 8) is given by equation (9).
But, from equations (9)—(11), it follows that

K®,0) =1. (13)

Hence, a necessary condition for a third locus fixation stabﬂlty on an allele D,
determining a value 8 of carrier’s maleness, is that, for all-6’ # 0,
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K@®,) =K@, b (14)

{a sufficient condition is that eq. [14] will hold as a strict inequality). In other
words, @ is the best reply against itself in a two-player symmetric game in which
K(0', 8) = K,, (0", 0), as given by equation (9), is the individual payment function
to be maximized by each player. ' A

One can thus interpret K,,.(0', 8) as the male offspring’s payment function,
determined by natural selection (see, for comparison, Eshel and Feldman 1991;
Eshel and Sansone 1991; Motro 1991, 1993; Matessi and Eshel 1992}, Note that
the term (1 — x')(1 ~ x)~', in the definition (9) of K,,.(8', 8), is proportional to
the expected number of grandoffspring born to sons of a mutant of maleness 6,
different from 6, which thus determines a value x* different from x (m and u being
fixed). The term (1 — m + [1 — @']mx’ )1 ~ m + {1 — 0]lmx)! is proportional
to the number of grandoffspring born to daughters of such a mutant. The factor
2W/(W + W), multiplying the sum of this term in equation (9) and which we
refer to as the Kin selection factor, measures the amount by which a mutant
individual, with a single, normal sib, increases (or decreases) the expected par-
ents’ investment. In this sense, K,,.(8', 0) can be freely interpreted in terms of
inclusive fitness (Hamilton 1964, 1972), Note that, not surprisingly, the payment
function K of a male offspring changing his level of maleness as given by equation
(9) is equivalent, in this biological interpretation, to the payment function G(m';
m, x} of a newborn offspring changing its probability of being a male as given in
our previous article (see eq, [B11] of App. B). The difference between the formu-
las 1s, indeed, due to the parameters being changed.

From equation (9) it follows, moreover, that (given m and u), if (8K/90")g .y >
0, natural selection will operate in favor of smali-effect mutations that increase
the maleness and against those that decrease it. The opposite is true if (3K/
69')‘,::9 < Q. '

In order to check this, we now distinguish between two cases:

. Case I: c<%\/X(\/X — 1) = e*(1)

(note that this case is characterized by the sharp inequalities x*(8) > 0 and B*(9)
<0, forall0 =6 =1)and

Case 2: ca%\/X(\/X - 1) = e¥(1).

Obviously case 1, which may be typical of early, low-cost maternal manipula-
tion, is more relevant to the biological problem with which this article is con-
cerned, and we start from it.

Proposition 1

With_the assumption of the model one can prove proposition 1: If ¢ < 1/2
VMVA - 1) = c*(1) then two positive values o, and oy exist, oy > oy > 0,
such that (i) if o < oy (i.e., if the maternal estimation error is sufficiently low),
then, for all 0 < & < 1, the triplet m*(8), x*(0), 0 is unstable to the mutation § —
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6’ when 6’ is slightly larger than 8. Then (ii), if o > oy, the triplet m*(9),
x*(8), 0, where 6 > 0, is unstable to the mutation 8 — 8’ when 8’ is slightly lower
than 0. ,

Proposition 1 states that, under the assumption ¢ < ¢*(1) of case 1, long-term
natural selection pushes the male offspring maleness all the way to one if the
maternal estimation error is low and ail the way to zero if the maternal estimation
error is high. Here long-term selection means the slow process in which new
mutations, favored by natural sclection, repeatedly replace each other at the third
locus, at least as long as 6 has not yet reached its extreme value favored by
natural selection (se¢ Discussion). This in turn allows for adjustment, because of
mutation and selection at the first two loci as well as at the third locus (see
Eshel 1991). In these two cases, the triplets m*(1), x*(1), 1 and m*(0}, x*(0), 0,
respectively, have the property of global evolutionary genetic stability (EGS;
Eshel and Feldman 19824, 1984).

We thus see that, in case 1 (early maternal manipulation and low cost ¢ of
losing an offspring), if the maternal error is small, long-term natural selection
stabilizes the value 6§ = 1 of pure abortion. If the maternal error is large, long-term
natural selection will stabilize the value 8 = 0 of full maternal control over the
sex ratio in her brood. In neither of these two cases will actual sex conversion
evolve,

For the sake of completeness we now extend our analysis to the range

ca%\/i(\/x — 1) = ¢*(1).

This case is characterized by a restriction of the range of conflict to the interval
0 <6 =0, where 6, < 1. As the offspring maleness reaches the critical value
8, and above, maternal manipulation becomes disadvantageous and the sex ratio
comes to be determined by the offspring alone. Since F([u*(8,) — 0. Jo™ 1) =
x*(0.) = 0, it is possible that ff — 0 as 8 — 0, and a result somewhat weaker
than the previous one can be proved for this case.

Proposition 2

If ¢ = c*(1) and hence x*(8) = Oforall8, =8 = 1, 8, = 1, then for any level
of maleness 0 < 6 = 0, there are two positive values ¢® and oy, 0® > oy > 0,
such that, if ¢ < o, the triplet m*(08), x*(0), 0 is unstable to the third-locus
mutation 6§ — 6’, where 0’ is slightly larger than 8; and if o > o, the triplet
m*(0), x*(9), 6 is unstable to the third-locus mutation § — 8’, where 0’ is slightly
lower than 6. ‘

Appendix B contains the proofs of propositions 1 and 2.

Proposition 2 asserts only that, for any € > 0, there exists a value o, such that,
if o < o, long-term natural selection will bring 0 to a value within an e range
from 6, with maternal manipulation restricted to any low level; yet rare cases of
sex conversions cannot be precluded by the model. On the other hand, large
enough values of o only guarantee that long-term selection will decrease 6 as



PARENT-OFFSPRING CONFLICT 997

long as the level of maternal manipulation is not too low (say, 0 close to 8, and
x*[0] close to zero).

This, indeed, may apply only to the case of prenatal manipulation, with a very
small difference between the costs of rearing a male and female offspring.

It is worth mentioning that our analysis of either the case ¢ < c*()orec =
c*(1} is not complete since we do not know the behavior of the system for interme-
diate values of o. It seems likely that natural selection on the other loci will
operate to decrease o (i.e., to increase maternal estimation ability), although in
some cases one cannot preclude the possibility that it works the other way round
(see Discussion).

DISCUSSION

This article, like our previous one (Eshel and Sansone 1991), studies long-term
evolution of parent-offspring conflict over the sex ratio when the cost of rearing
a male offspring is different from the cost of rearing a female. More specifically,
by long-term evolution (see Eshel 1991) we mean the process of so-called trial
and error in which the population is repeatedly shifting from the vicinity of one
internally stable equilibrium (or fixation) to another, because of the selective
establishment of new mutations periodically introduced into the population. As-
suming availability of all sorts of relevant mutations during the long course of
evolution (to be distinguished from the presence of mutations in the population
at any given time), the long-term process has the potential to continue as long as
the population has not yet reached the state of EGS (see Eshel and Feldman
19824, 1984), say, a state that is stable against all possible mutations. As has
been established in several previous works {Eshel and Feldman 19824, 1984,
1991; Eshel 1991; Eshel and Sansone 1991; Matessi and Eshel 1992), the dynamics
of this long-term process may be qualitatively different from that of the exten-
sively studied process of changes in genotype frequencies within a given set of
genotypes.

One crucial difference between the two is that an EGS equilibrium of the
long-term process is never genetically unique (i.e., different sets of mutations
may bring the population to different genetic set-ups of the EGS). Instead, the
EGS, in contrast to the usual internal (say, short-term) genetic equilibrium, is
characterized by a typical phenotype or a distribution of phenotypes that, once
determined by any distribution of genotypes, is stable against any nonepistatic
mutation that may affect the phenotype in question. Moreover, in many cases
(as in Eshel and Sansone 1991 as well as in this work), the EGS distribution of
phenotypes can be formally interpreted in terms of an ESS of a population game
in which the payment function is analytically drawn from the (long-term) dynam-
ics rather than assumed, as is the case in traditional ESS models. :

Another important difference, with respect to the biological aspects of the two
processes, has to do with their different predictions concerning the immediate
population response to a direct selection pressure. Indeed, any attempt to explain
an evolutionary phenomenon on the basis of changes of frequencies within a
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given set of genotypes represented in the population must be based on the as-
sumption that this set of genotypes is rich and varied enough as to allow for a
direct response to selection pressure imposed on the population at any given
time. In some cases, though, empirical results supporting the opposite prove
rather problematic to evolutionary arguments based on this sort of model. This
is the case with the observation (brought to our attention by an anonymous ref-
eree) that attempts to modify the sex ratio by animal breeders have been almost
entirely unsuccessful (Clutton-Brock and Iason 1986). This, on the other hand,
is quite expected if one tends to assume that the long-term evolution of a phenom-
enon like the sex ratio is more likely to take place because of the successive
introduction of mutations, cach quite likely of small effect, that shift the popula-
tion from one nearly monomorphic state to another.

Moreover, a factor that may contribute to the stability of the sex ratio in real
populations is the apparently harmful pleiotropic effects concerning sex conver-
sions. Indeed, in considering the evolution of sex ratio, one should not overlook
technical and structural restrictions of this sort, even though they may be less
crucial in long-term evolution, during which mutations with weaker pleiotropic
effects may appear. Perhaps more important is the possibility, analyzed in the
present work, that these very structural restrictions that govern selection at one
locus are likely to result in turn from mutual adjustment and long-term selection
at another locus. Indeed, the evolution of what we have referred to as maleness
may account for the manifestation of some structural restrictions of this sort.

The results of this work indicate two apparent paradoxes. First, under the
assumption that the mother has sufficiently high estimation ability of (or that she
reacts accordingly to) some detectable feature of her male offspring that affects
their ability to survive her manipulation, natural selection operates to decrease
rather than increase the survival ability of manipulated offspring. Second, as the
accuracy of the mother’s estimation increases, the level of her conflict with her
male offspring increases and, more surprisingly, her ability to manipulate the sex
ratio decreases either up to a level of full offspring control of the sex ratio (if the
cost of the offspring’s death is sufficiently high) or at least to a level at which
maternal manipulation is minimal and can be executed only in the way that is the
most costly for both her and the manipulated offspring: abortion of a certain
quota of male offspring. On the other hand, only when maternal estimation error
is sufficiently high will natural selection on offspring intolerance to manipulation
operate to decrease the intensity of the conflict to a fevel at which it is the mother
who gains full control over the sex ratio in her brood.

Both of these seeming paradoxes can be resolved by appeal to Zahavi’s handi-
cap principle (1977a, 1977h; 1981). In both cases some advantages are shown to
follow from an apparent handicap, on the part of cither male offspring (higher
mortality rate under parental manipulation) or the parents (low detection ability).
Yet the analysis of the model indicates a crucial difference between the two.
While the advantage of male offspring with higher detectable intolerance to mater-
nal manipulation (higher maleness) is shown to be directly favored by natural
selection, no such selection mechanism has been demonstrated with respect to
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low maternal detection ability. Indeed, the fact that such a shortcoming (handi-
cap) on the part of mothers would endow them, in the long course of evolution,
with some advantages over their offspring does not guarantee a selection mecha-
nism in its favor (in fact, we believe that this sort of distinction should be made
also in respect to other arguments concerning the handicap principle). The differ-
ence between the two cases stems from the assumption that a mother may (and,
in fact, is likely to) have some ability to detect certain features of her male
offspring that affect their intolerance to manipulation. As long as this is the case,
a discriminating maternal manipulation of those male offspring that appear more
able to withstand it, indeed, creates a selection force in favor of high offspring
intolerance to manipulation (maleness). Under the condition analyzed in this
work, this selection force is shown to be sufficient to overcome the apparent
advantage of low maleness in manipulated males.

‘On the other hand, no similar ability has been assumed on the part of the
offspring. We believe that, under plausible conditions, one can safely assume that
offspring, especially in the prenatal stage, are most unlikely to detect variations in
maternal estimation ability, and they are even less likely to have at their disposal
the phenotypic flexibility required to adjust their own maleness in response to
the specific detection abilities of their mothers. We therefore did not assume such
flexibility on the part of the offspring.
~ The situation may be different at later, say, postnatal, stages of the conflict,
when offspring detection ability appears more feasible. Yet it seems that sex
conversion at this stage is not feasible because of obvious biological restrictions,
Note, however, that with the appropriate choice of A, ¢, and 6 = 1, the dynamics
of possible postnatal parental manipulation of the sex ratio becomes quantita-
tively equivalent to selective abortion of males (Eshel and Sansone 1991). More-
over, in this connection, the expected failure of a male offspring to find a future
mate, as a result of inadequate parental investment, is indeed equivalent to a
genetic death (Maynard Smith 1980). Thus, with the relatively high value of ¢
involved in such a sort of genetic death, our model, in agreement with that of
Maynard Smith, predicts full offspring control of the sex ratio (provided, of
course, that parental manipulation did not occur before). This, however, may not
be the case when parental manipulation is limited to discrimination against the
more costly male offspring at times of starvation (see many references above),
In such a situation, the relevant cost ¢ of the death of a male offspring must not
be measured in terms of parental resources already invested, since those are most
likely to be lost in any case. Instead, it must be measured in terms of the differ-
ence between the loss of resources expected in this way and the loss expected
under a perhaps more optimal allocation of parental resources (Dawkins 1976).
Thus, ¢ may be quite small and parental allocation of resources may be much
closer to 1:1.

The possibility that, under certain conditions, natural selection would operate
in favor of low detection ability of one participant, to his own advantage, has
already been suggested by Trivers (1985). While Zahavi (19774, 19776} empha-
sizes mainly the role of selection in improving the ability of participants to esti-
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mate the situation (at lcast in a case of commonly repeating conflict), it seems to
us that natural selection in favor of low detection ability, under certain conditions,
may also be a typical manifestation of Zahavi's handicap principle. For example,
a parental tendency to be absent at certajn times, thus to avoid some crucial
information about the offspring, can be encouraged by natural selection if the
offspring are able to react accordingly and thus to reduce their own handicaps.

It is worth mentioning, though, that the process we are dealing with is likely
to be multidimensional in the sense that, at least initially, the maternal tendency
to selectively manipulate specific features of male offspring may be manifested
in various stages and means of manipulation, corresponding to various detectable
features of the offspring. We thus expect evolution to increase maternal estima-
tion ability with respect to specific features of their male offspring that reduce its
reproductive success if sex converted, are not phenotypically flexible, and are
not determined by loci tightly linked to those responsible for maternal detection
ability. A perfect candidate for such a feature may be the suppression of much
of the Y chromosome, which makes a male-to-female conversion rather inefficient
(in XY though not in OX systems, in which female-to-male conversion is more
difficult to carry out; for a different explanation of the suppression of the Y
chromosome, see Hamilton 1967). It is possible, though, that in some cases, when
the above prerequisites are not satisfied, natural selection will operate just to
reduce maternal estimation ability or, equivalently, maternal discrimination.

Note that in neither of the two cases (selection for high and, possibly, low
maternal detection ability) is the establishment of a substantial rate of sex conver-
sion to be expected, a finding that provides an answer to the question raised in
our previous article. Instead, we see complete control by the mother (in the case
of selection for low maternal detection ability); or, more likely, complete offspring
control of the sex ratio (in the case of selection for high maternal detection ability
and high enough cost ¢ of losing an offspring); or, possibly, an “‘in-between’’ sex
ratio with maternal manipulation through selective abortion or neglect of male
offspring (in the case of selection for high detection ability of the mother and
relatively low cost ¢ of losing an offspring).
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APPENDIX A
ProOF OF EQUATION (9)

Assuming random mating, the frequency of the mating Dd X DD or its reciprocal is
(e + 8) + ole, 8), whereas that of other matings involving the allele d is of the negligible
order of o{e, 8). Hence, the conditional probability that a Dd offspring, ¢ither male or
female, will come from a Dd X DD mating or its reciprocal is 1 + o(e, 8), in which case
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half of the sibs in the brood will be of genotype Dd and half will be of the common
genotype DD. As a special case of equation (5), we therefore know that the average
maternal expenditure for an offspring at this brood is

W11 1 :
“/u,m(a’e :2= 2) - 2(W+ W): (AI)
where
W=1+(a~- bx)m, W =1+(a- b'xYm (A2)
and .
p U — @
X = F( p ), (A3)

which is the probability of maternal manipulation of mutant offspring.
From equations (6) and (7), the average numbers of adult male and female Dd offspring
emerging from such a brood are

. ol —x"m
M =R W+ W
and (Ad4)
F;=R1——m+(1-ﬂ)mx

W+ wr ’

respectively,
Using the same formula, we see that the average numbers of adult male and female
offspring (all of genotype DD) emerging from a common, DD x DD brood are

_pld-=xm
M=R W

and (A5)

l—m+{1-0mx

F,=R &

Hence,
. M_ W 1-x
R VAR i gt
F _ _ at '
8 = (e + 8) % = W 1-m+{-0)mx

==
Fopb W+ W 1l—-m+U-0)mx’

and

tEY W+WW' [11 = 11 —n?;‘t-i-_l-((ll _eefﬁfﬁ ] = Knu@.0). a7
APPENDIX B
PROOF OF PROPOSITIONS 1 AND 2
In order to calculate (6K/30")g g, we define
_1-x q)___I—m+(1—-9‘)r;»u:’
1-x’° l~m+(1-0mx’

(B1)
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and get . .
' K = W[¥(0") + ®@NW + W)~ ' (B2)
We now use equation (11) to establish

ax’ ] u—@ _iofu—8
&), (=), o (=), o
¥=8 8'=0

Employing equations (10) and (B3}, we get

el S =—~@wW)y | —
A \W+ W ot a0 bep
e[ - om0
_4W{|:am89' + (1 c)m(ﬂ 78 +x)]}o,ﬂ0 (B4)

il

Z-I-W—[*am£+ {a- c)m(x - Bg)il ,
where f = f((u — 6)/a).

In the same way we calculate at 8’ = 0

a1 f
0 1-xo (B3)
and
P x+ (1= 0)fo! _
o Tl m+d-0mx (B6)
Finally, from equations (B3)—(B6) we get, by straightforward calculations,
(g) =Afe~! + B, (B7)
GL
0'=0
where
_ 1t m(l — 0) _m _
A=A(m,x8) = 2[1 el R B)mx] @+l —al  (BY)
and
B = B(m, x,0) = 2| 1€ _ ! (B9)
T2l W l-m+ (- 8mx]

Equalities (B7)~(B9) hold for any values of x and m, that is, for any fixation of the
triplet m, x, 9. In considering the conditions for the mutual stability of the triplet m*, x¥%,
9*, one must first concentrate on the values m* = m*(@) and x* = x*(8), which, given 8,
are mutually stable against each other. We shall then ask about the selection forces op-
erating on 08, namely about the behavior of K,,,.;,,,@(ﬂ', ) at the vicinity of ' = 6. We
shall be interested in such a value 6 = 0* that, given x* = x*(0), m* = m*(0), will be
the best reply against itself, that, say, maximizes K« ,+(9’, 8). Concerning the mutnally
stable pair x* = x*(§), m* = m*(#), we already know (Eshel and Sansone 1991} that, for
any 0 < 8 = 1, there is such a unique pair. Moreover, m*, x* is the (unique) ESS of the
asymmetric mother-offspring population game, determined by the payment functions

11+am—bmx|1—-x 1—m+(1—0)mx
21 +am—bmx'1 1 —x 1 —-—m+(1—-8mx

H(x'ym, x) = (B10)
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and
1w
G(m';m, x) = W T W’[
of a mother that chooses a strategy x’ and an offspring that chooses a strategy m’, respec-
tively, in a population in which the others choose the pair of strategies (x, m), where
W=1+i(a—-5bxmW=1+(a— bm'.
We know (Eshel and Sanscne 1991) that a necessary and sufficient condition for no
maternal interference (x* = 0) to be an ESS is

m 1 —m+ (1 —El)m'x],. (B11)

m 1-m+d—8)mx

CE%(\/X—I)(\/X+1—8)=C*, B12)
which in the case 8 = | becomes
ca%\/ﬂ\/{ — 1) = eX(1). (B13)

When equation (B12) is not satisfied, x* is positive, and we know (Eshel and Sansone
1991} that

(1 — B)m* o1
—m*+ (1 - 0x*m* 1 — x*

2%,;[a+e(1—c)]+1 =0, (B14)

where W* = W,’i&.;,,.(ﬁ) = 1 + (a — bx*)m*, u* = u*(9), as given by equation (4a) above.
Finally, from our previous article (Eshel and Sansone 1991), we know that
(1 - -8)x*Im*=[2+ (a— bx*)m*]" = [1 + W*]!, (B15)

Employing equations (B14) and (B15), we get

]
A* = A%(8) = A[m*(8), x*(9), 0] = 2?1/* [a +8(1 — )] >0 (B16)
and
B* = B¥(8) = B[m*(8), x*(0), 9] ®B17
B
_ et ey (W o _mrxt
= el = ) = (W + D] = — T (W* + o) =<0,
Strict inequality holds if x*(8) > 0,
Equality (B7) thus becomes
EJ ®, r ! r
[Kr0rO000) i g
=8

where f* = f{[u*(8) — 0lo ']}, A* = A%(0) > 0 and B* = B¥(@) = 0, with B¥0) = 0 if
and only if x*(0) = 0. We know that this is true if and only if equation (B12) holds. It is
true for some nonempty interval 6, = 8 < 1, b, = 1, if equation (B13) holds. But, under
the condition ¢ < c*(1), one can easily verify that A*(8) > 0 > B%(0)} for all 8 on the closed
interval [0, 1]. Since #*(8) is the solution of x*(8) = Fi ([*(®) — 8]0, we already know
that the value [#*(8) — 8]0, and, therefore, f = f*(u*[0] — 8)o~!, depends on 6 alone
and is independent on o. Moreover, since x*(8) > 0 forall 0 = 8 < [ and J{») is a positive
density, on the support {y:0 < F(y) < 1} of the distribution F (indeed x*(8) < 1 for all
8}, we know f* = f§ > 0forall 0 < 0 = 1. Hence A*f* has a positive minimum on ¢ <
6 = 1. From equation (BI7} one can easily see that —B* < 1 for all 0 (indeed, ¢ < W*,
x*, m* < 1). Hence, we define oy = min{f*A* 0 <0 < 1} and (i} follows immediately
from equation (B18).
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In the same way, (i) immediately follows from the choice oy = max{—-A*f*B*~1,0 =
§ = 1} > oy. This completes the proof of proposition 1.

The proof of proposition 2 is immediate from equation (B18) and the fact that A*f* >
0, B* < Oforall 0 < 0 < 0, (indeed, for 8 = 8., A*f* = B*¥ = 0 and natural selection does
not affect 8, which is, then, without any effect in the absence of maternal manipulation).
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