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An owner-intruder conflict is analysed. While the Evolutionary Stable Strategies of both owner and
intruder depend on the reproductive value of holding a territory or on the chance of getting one
(Grafen, 1987), the values (and, therefore, the relevant payment functions of the relevant population
game) depend on the population strategy. Conditions for observed, evolutionarily stable, mixed

strategies are analysed,

1. Introduction

As fitst noted by Maynard-Smith & Parker (1976),
there is a qualitative difference betwen Evolutionary
Stable Strategies (ESSs) in symmetric and asymmetric
population games. The first important example, was
that of the ‘well-known hawk-dove population game
in which a player, when confronted with a random
opponent, has to chose one of two possible strategies,
that is whether to play a hawk or a dove
(Maynard-Smith & Parker, 1976). While dove always

yields to hawk and-while two doves peacefully share'

the property, an encounter between two hawks is
equally harmful to both. It is easy to see that in
such a population game there is only one ESS and,
with the high cost of a conflict, this ESS is always
mixed. ‘

As shown by Maynard-Smith & Parker, the
situation is qualitatively different in the asymmetric
case, in which encounters are held between opponents
of two different status, one of which has a higher
chance to win. An example of such an encounter is
that of an owner-intruder conflict, in which it is
supposed that the one who already holds the property
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shown by Maynard Smith & Parker, no mixed ESSs
are possible in this type population game. In extreme
cases, when the penalty for the loser is low relative to
the value of the property in question, the only ESS
solution is that of a pure hawk strategy. This is
followed by both owner and intruder. Under a more
plausible assumption there is, instead, a pure ESS in
which one always plays hawk if owner, and dove if
intruder. If this strategy is accepted by a large ¢nough
majority in the population, it is easy to see that any
single player, either owner or intruder will lose if he
plays differently. This ESS was called The Bourgeois
ESS by Maynard-Smith & Parker, Surprisingly, if the
asymmetry between owner and intruder is not too
high, there is another pure ESS, namely the
Paradoxical ESS, in which it is the intruder that plays
hawk while the owner always yields. In any case, no
mixed ESS exists in the owner-intruder conflict,
however small the difference between the two. Even
more surprising is that this remains true even if there
is no difference at all between owner and intruder
(except for their recognized identity as owner and
intruder), a case in which the payment matrix of the
asymmetric game is identical to that of the svmmetric
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As was later proved, more generally, no mixed ESS
can possibly exist in any asymmetric, linear
population game (Selten, 1930). This is one of the
most fundamental and yet embarrassing results of
population game theory. It will be dealt with in the
second part of this work.

Concentrating on the special case of the owner-
intruder conflict, it was further maintained by
Maynard-Smith & Parker that the paradoxical ESS,
when it exists, i$ not likely to be widely accepted in
the population. They called the existence, under
suitable conditions, of only one plausible ESS in
which ownership is always respected without any
aggressive conflict . the Bourgeois Principle, This
principle has been suggestéd as a theoretical basis for
the general analysis of animal behaviour in cases of
territorial conflicts. As such, the Bourgeois Principle
. has been challenged by Grafen (1987) both on an
empirical and a theoretical basis. :

On the empirical level, it has been maintained by
Grafen that Maynard-Smith & Parker based their

theory on rather naive observations ‘of "territorial

conflicts. Such observations, Grafen argued, tended
to yield biased estimations of the level of aggressive-
ness. This is because, in contrast to the Grafen’s
interpretation, most observed encounters end up in a
peaceful manner purely because they did not
represent any real conflict to start with. Instead, they
correspond to a situation in which a non-territorial
individual (a potential intruder) is looking for an
unoccupied territory. In doing so it shows himself,
expecting the owner to do the same, if it exists. A real
conflict occurs only when the non-territorial individ-
ual fails to locate an empty territory. But in this case,
Grafen argues, the Bourgeois Principle, as suggested
by Maynard-Smith & Parker, cannot possibly be
applicable to the real situation because of a very
simple theoretical reason: as long as the Bourgeois
Principle is accepted by the potential intruder, it has
virtually no chance whatsoever to ever get any
territory of its own. In most real situations this means
that it will have no chance to pass its genes to the next
generation. A rebel non-territorial individual which
refuses to accept the Bourgeois Principle, on the other
hand, will have some chance, Hence natural selection
must operate against acceptance of the Bourgeois
Principle by non-territorial individuals.

Opposing the Bourgeois Principle of:Maynard-
Smith and Parker, Grafen - (1987) suggested a
contradictory principle, the Vagabond Principle,
based on the observation that a: non-territorial
individual, when it comes to real conflict, has much
less to lose in terms of potential fitness and it is,

What is a reasonable risk to be take
a non-territorial individual in its contest |
territory? Grafen’s criticism of the Bou
Principle was based on the claim that the
payment function of a non-territorial individual
be different from that of the territorial one
therefore, the two (or at least one of them) mn
different - from the standard payment fur
suggested by Maynard-Smith & Parker. But wh
the relevant payment functions to be used i
analysis of this case? The most reasonable ar
suggested by Grafen, is the very chance to h
territory in the future or, better still (both for
and for intruder), the total length of time ¢
expected to hold a terrltory in the futur
maintained by Grafen, this is, indéed, higher f
one which already holds a territory (the owner
for the one which does not and who, thereft
willing to take a higher risk i in order to get on
the specific values of these two expectations, s:
relevant payment functions of the two p
involved in a specific encounter depend, in tus

" the very strategy followed by other individuals

population, either owners or. intruders (the
depend on many other fixed parameters thal
from one conflict to another). It is hard to fin
fault in Grafen’s claim that, once the Bou
Principle is accepted in the population, the lif
potential intruder must be valued low, relative
value of the territory in contest. However,
another strategy becomes established in the
lation (as suggested by Grafen), this may not
any more.

This apparent paradox results from the
linearity of the population-game structure, in -
as already maintained by Grafen, the pa
function itself depends on the population strat
this article we analyse such a nonlinear, asym
population game -in which each player sec
maximize the expected future time in which it
a territory until death. We see that, although S

theorem - is not applicable to this sort

population—game, the results obtained are, qu
ively, not very much different from the ones pre
by Maynard-Smith & Parker. The situati
different, as we see later, if we further assume, |
more realistically, that individuals have some |
information about their own physical situation
moment .of the conflict and .they. can 1
accordingly. In -this case, although some. w
probabilistic version of the Bourgeois Princip
holds - under certain conditions, there are
conditions that allow for a fully symmetric ]
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2.. Owner—-Intruder Conflict: The General Model

- We assume a large population in which each
individual may be either an owner or a potential
intruder. Potential intruders and owners are con-
fronted at random, confrontation can occur at any
infinitesimal time (dr), regardless of past history. As
a result of a confrontation, owner and intruder can
either switch roles, depart peacefully, in which case
each remains in its previous role, or else one or two
of them may die or be injured depending, at least
statistically, on their strategies. Also, within this
infinitesimal period of time, there is generally a
positive probability that a potential intruder will
obtain an unoccupied territory, or that it will die or
that an owner will lose 'its property because of
different reasons. In the most general case A,dt and
Bydt are assigned to the probability that a potential
intruder will get hold of a property and to the
probability it will die, respectively, within the period
of time dt. A,dt and B,dt are assigned to the
" probability that an owner will lose its property,
staying alive or dying, respectively, during this time.
Indeed, 4, 4., B, and B, depend on the strategies of
both owners and intruders, although the way they
depend on them are different from one ecological
situation to another, In general we assume continuous
ranges of variability for the strategies x and y assigned
to intruders and owners respectively. We may
interpret x and y as probability of acting hawk but
they can have somchow different meanings. In any
case, let # and j be an intruder’s and an owner’s
strategy, respectively, adopted by the population, and
let x and y be the appropriate strategies adopted by
a mutant player, (employed within their possible
interchanging roles). For a mutant, 4, and B, depend
only on x and § and not on £ or 'y, because an
(x, y)-intruder will never use the y-component of its
strategy as long as it is not an owner and will never
confront an f-intruder during this period. By the
same argument A4, and B; depend on £ and y alone,
Intruders and owners may interchange roles during
their lives and we assume that each of them seeks to
maximize the time it holds a property, until death.
This is the case when a property (say a territory or
a mate} is the only means for reproduction. Denote
by I\ = Ti(x, y; £, §) and T, = Tu(x, y; %, ), respect-
ively, the expected future ownership times (EFOT) for
an -(x, y)-individual - which is, at the moment, a
potential intruder and for one which is, at the
moment, the owner of a property, when the
population strategy is (%, 7).
- The EFOT of an individual at time ¢ is equal to the

period (¢, £ + dr) plus the sum of its probabilities tc
be an owner and a surviving potential intruder at the
end of this period, each muitiplied by the appropriate
EFOT T, and 7. .

For small dt, the expected ownership time withir
the period (¢, t + dt) will be 0 + o(d?) for a potential
intruder and ‘dt + o(dt) for an owner.

Hence, ' D

Ty = (1 — Aydt ~ BdDT, + AdeT; + oldr) (1)
Ts=dt + (1 — Aydt — Bydt)Ty + Ayt Ty + o(dl)  (2)

as dt goes towards zero, one immediately gets:'

(A + B)T, = AT, ©)

(42 + BTy = 1 + AT 4)

Therefore, .
Ti=Af/(AB:+ B4, + B By) (5)

Ty = (41 + B)}/(A1B; + Bid: + B\ B,). (6)

Note that the ratio between the loss of EFOT T,
with the intruder’s death and the value (7> — T}) in
EFOT of winning a contest is T\/(T> — T\) = 4, B7".

As mentioned by Grafen (1987, see also
Hammerstein and Richert, 1988), this value is not a
constant as in the case of a Hawk-Dove game.
Instead, both A4, and B, depend on the mutant
intruder’s strategy x and on the population owner’s
strategy J. o C

The situation can only be approximated by an
asymmetric hawk-dove game if both the intruder’s
probability of death and its chance of gaining a new
property, in a given time, are not affected much by
either the intruder’s or the common owner’s strategy.
This is the case when most properties are not occupied
and, on the other hand, natural death, for example
predation of potential intruders, is more common
than owner-intruder confrontations (i.e. when those
confrontations are not essential for the potential
intruders’ fitness; Grafen, 1987).

Howevet, contrary to what is claimed by Grafen,
this does not necessarily mean that in such cases (for
example in the Maynard-Smith & Parker.situation)
fights will always be avoided when high .risk. It is
possibie to think of a situation when predation of
potential intruders is high and territories are hard to
find. Assume that most territories are empty, hence
confrontations are rare and A4,B;" does not change
much with x and p. In this case, the asymmetric
hawk-dove model of Maynard-Smith & Parker is
valid. Yet in the rare situation of a confrontation,
both intruder and owner are likely to take high risks,
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new territory even though such territory, if found, is
likely to be empty.

Alternatively; the ‘Bourgeois Principle’ can hold
even when drastic changes of 4,B7' with x and §
occur. ‘

PAYMENT FUNCTIONS_AND SUPERIORITY OF
INDIVIDUAL STRATEGIES

Suppose the population strategy is (£, y). Strategy
(x’, y) is superior, for the intruder mutant, over
strategy (x, y) if, assigned its future strategy y as an
owner, _

Tl(x’: ¥, ﬁ’ﬁ) > Tl(xsy! J?I,ﬁ)
Rewriting (5) as
=[B; + (42 + B)Bi[A]! (59

and recalling that A,, B, do not depend on x, it
follows that the intruder’s strategy x’ is superior over
x if and only if

A, B, P)' > Aix, PBix, P) (D)
regardless of y. Then rewriting (6) as
Ty =[1 + Ai//Bil[Az + By + Bo(A4/B)]',  (6)

and recalling that 4,, B, >0, it follows that, for
any value of y (that is for any 4., B,), T: is increasing
with A]/B].

In the same way we say that a strategy (x, y’) is
superior over (x, ), given (%, ), for the owner if

j‘:, ﬁ) > T2(xs Y, Jeij})

From (6) it follows that (x, y’) is superior for the
mutant owner over (x, y) if and only if

BiA:(y, £) + (A + BBy, £) < BiAx{y, %)
' + (4 + BBy, £) (8)

where A,, B, depend on x (and #) but not on y.
But,

TZ(xa y’s

T] = T2A1(A| + B])#]

therefore the ratio between T, and 73 is independent
of y (since 4, and B, depend on x alone), hence a
strategy (x, y’), which is superior for the owner over
(x,7), is also superior for the intruder.

Note that while the superiority of (x, y) over (x, ¥)
(for both owner and intruder) does not depend on y
(but depends on £ and p), the superiority of (x, y’)
over (x, ¥) may depend on x. As a corollary we get:

Proposition 1. For any £ and §, both Ti(x, y, £, )
and Tu(x, y, %, §) are maximized at the same pair of
values (x, y) = (x*, ¥*).

Proof. The optimal value (or values) x = x* is

Moreover, even if this optimal value is not uniq
determines a unique (maximal) ratio 4,/B,. Giver
value, any change of y which increases T7,
increases T, and vice versa, therefore, the opl
value y = y* is also the same for T) and-T.
Without loss of generality we can, therefore, s
of Ti(x, y, £, ) as the payment function sought 1
maximized by any individual in the population
We are now looking for the ESS of the
necessarily - linear) population game determine:
the payment function 7,. Recall that a pau‘ (
is an BSS if and only if:
(£, 7
Ti(%, J; -

@) Ti(x,y, %, §) is maximized at (x, jz) =
(ll) If: fOl' some (f! .j;)s Tl(i’ ﬁ: 5“:, ﬁ) =
then Tl(x"s j;a f’ j;) < Tl(jé! ﬁ, x~s j;):

(see Maynard-Smith & Price, 1973; Maynard St
1974).

Finally, we assume that A; and B, (i=1, 2,
differentiable. We know from (5")

 sign 0T, /ox = sign{B.04,/0B,/0x}.
From (6') we know '

sign 6T./6y = —sign{Bl 6A2/ay + (Al + B])@B;/w

Using these equalities, we attempt to charact
corner and mixed equilibria, if they exist, in. diff
ecological situations of owner-intruder conflict.

3. The Maynard-Smith-Parker-Grafen Mod

In this model it is assumed that, in any infinite:
period of time d¢, a potential intruder has a ct
Adt to find a property, ¢ither occupied or emp
proportion 0 € v < 1 of the territories are empf
which case the intruder becomes an owner wil
any conflict. At the same time an owner has a ct
pdt to be confronted by a potential intruder (ui
necessarily equal to A since the number of ocet
territories is not likely to be equal to the numb
individuals seeking a territory). Both intruder’s
owner’s strategies are their probabilities, x ar
respectively, of ﬁghting for a territory in ca:
confrontation, 0 < x, ¥ < 1. If they fight, the o
wins with probability 0 ¢ <1, (I —g=p).
winner of the conflict holds the territory. The
dies with probability # and becomes a pots
intruder if it survives.

If only cne of the contenders is willing to fig
retains the property. If both are unwilling to
then each of the contenders has a chance 0.5 to
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infinitesimal period dt, both owner and intruder have,
respectively, a chance p.df and p.dr of dying of
natural reasons. We denote r, = pyfppand ry = p,/A. If
p2 > 0, v must be positive. In fact v 2 pyf (p, + ) =
raf(r2 + 1). Note that r,/(r» + 1) is the proportion of
time in which a territory will be empty under the
assumption of no new territories being available. We
refer to the case’ v = raf(r, + 1) as the case of a
“saturated environment”.
One easily calculates:

A=A (= = 9+ pP) + (1 — x)
x(1 =92l =Av+27'0 - v)[1 -
+(1 +{p—gP)xl} - (11)
Bi=pi+ M1 — v)gxp = AMri + (1 — v)0gxp}  (12)
Ay = p{&[1 — y(g + Op)] + 27'1 — D)1 = »)} (13)
By = plrs + OpRy). (14)
From (9), it follows that:
sign 0T,/0x = sign{ri[1 + (p — q)$1/2 — OqP[2v
(=)= =), (15)

and we may prove:

Proposition 2, Neither ESS of the form (£, ), nor
of the form (0, ), where £, ¥ <1, exist in the
owner-intruder game with payment function 7 (or
T). '

Proof. For § =0, sign 3T,/0x = sign in(l — v}/
2 > 0 and, indeed, x = 1 is always the best intruder’s
reply against the owner’s sure retreat. In the same way
[from (10)] on¢ can see that y = 1 is always the best
reply against the intruder’s strategy % = 0.

then x =10 is the best reply against j= 1. If the
reverse of (16) holds, then x =1 is the best reply
against § = 1. It is easy 1o sce that, in this case, it is
the best reply against any owner’s strategy 0 < § < |
(indeed, if fighting is always advantageous for the
intruder even when the owner is surely going to
defend its property, then it will be more advantageous
to the intruder if the owner is going to defend its
property only with probability # < ).

Although T (the potential intruder’s EFOT) at
a random moment of no confrontation is not
symmetrical in x and y (or in £ and ), the situation
at a moment of decision making, say at the moment
of confrontation, is absolutely symmetrical for owner
and intruder, except for an exchange between p and
g (if they are actually different). We therefore
conclude that if

gr < pvl o an

then y = 0 is the best reply against £ = 1 and, if the
reverse of (17) holds, then y =1 is the best reply
against £ =1, In this case it is also the best reply
against any other intruder’s population strategy.

Concentrating now on the four pure pairs of
strategies (0, 0), (0, 1), (1, 0) and (1, 1}, we conclude

Proposition 3.

The pure ESSs of the model depend only on the
relationship between the value r,/vé and the ratio p/g
of the chances of the two opponents winning:

@) if g/p > ri/v8 > p/g, then (0, 1) is the only ESS;

(ii) if g/p < r/v8 < p/q, then (1, 0) is the only pure
ESS;

(ii) if g/p > r/v8 < p/gq, then both (0, 1) and (1, 0)
are ESS;

(iv) if g¢fp < r/v0 > p/q, then (1, 1) is the only pure
ESS.

Qualitatively, parts (i) and (ii) of Proposition 3 are

For j} =1 we get Sign aTI (xa ¥, f: I)Iax =
sign(pr, — gv8). Thus if
< gl - (16
Casel. ,‘% >1
vi
0 r
ESS (0,1)

Plq

(1,1) (1,0}

se I FL
Case II. 76 <1

0

plq

(0,1) and (1,0) (1,0

ESS (0,1)
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not surprising.-As shown in - Fig 1, they only
demonstrate that if one opponent (either the owner or
the intruder) has a sufficiently. larger chance of
winning a fight; the other’s best strategy is to always
yield. More interesting is the dependence of the results
on the value r/fv8.

Recall that 1 = pif4, where p, is the mtens:ty of
natural death events among nomads. Av, on the other
hand, is the intensity of nomad’ encounters with
empty territories. The ratio ri/v = p/v4, is, therefore,
the expected number of natural death events per any
new colonization of an empty territory. It is called the
cost of peaceful colonization, then

the cost of peaceful colonization
- the cost of losing a fight

- Pl _
ve FAve T

Now, having a chance p to win a fight, the expected
gain of an intruder, if choosing to fight, is pr/v, while
its. expected loss is #g. In agreement with the verbal
argument of Grafen (1987), it is expected that the
intruder will always be willing to fight if, in doing so,
its expected gain will be larger than its expected loss,
namely pr/v > g or rfvd > q/p.

. From the symmetry of the situation at the mo-
ment of the encounter, it follows that the condition
r/ve > p/q means that the expected gain of the
owner, if .choosing to. fight, is larger. than its ex-
pected loss in this case (here, gain and loss are
measured in respect to the alternative of yleidlng and
bécoming a‘nomad).

“Thus, not surprisingly, if both conditions are
satisfied, say g/p < ri/v8 < p/q (which is possible only
in the case where r/v0 > 1), both opponents will
always choose to fight and (1, 1) is the only ESS.

“ If only one of the two conditions is satisfied, then
the strongest opponent (for which, inevitably, the
condition is satisfied) will always choose to fight and
the other will always yield. ‘

Finally, if none of the two conditions is satisfied,
say if ¢/p > r/v® < p/q (which is indeed possible only
if r/v8 < 1), both the Bourgeois solution (0, 1) and
the Desperado solution (1,0) will be ESSs: no
opponent will be choosing to fight if the other one
does.

In this case, what remains to be considered is the
possibility of a fully mixed ESS (£, #} in which no
opponent is fully bound to fight.

Note that the payment function T (or T3) is not a
bilinear form of x, y, £ and », hence Selten’s Theorem
precluding any mixed strategy does not apply here
Nevertheless, we get, in this model:

Pronosition 4. No mixed ESS exists in the

Proof. A necessary condition for- the ESS pro
of (%, #), when 0 < (%, ) < L,-is" :

[6Ti(x, i %, y)/ax]x.=.:={aTl(ﬁ;_J.‘,_ -2’ y)/ay])'=ﬁ

Employmg (9) and (10), this’ becomes
B AT = (0B, [ox) (84, /ox)™!

at (xs ya %, y)
and '

o

(BiA)o( A2 & By)/Oy + 0B,[0y = 0 at (%, y; X

Because A; and B, are linear functions of x a
independent of £ and y, from. (19), it; follows
By Ar" is a function of y alone, 4, and B, are |
functions of £ and y, independent of x and
follows from (20) and (19) that, for (£, §) 1
satisfics (18), BiA7 (42 + B:) + B, is independe
either x ot y. Using (5) we conclude that, for |
which satisfies (18},

Ti(x, y; 55 P = [BlAl WA + Bz) + Bz] = Tl(

(independently of x and y).
This means that for any (x, y) # (%, §):

Ti(x, y; £, ) = Tv(%, §; %, §)-

But from Proposition 3, we know that, for at
of parameters , 8, p, v at least one of the pairs
(1, 0y and (1, 1) is a strict ESS, therefore if we cl
(x, ») to be specific ESS, we get:

£, < T(x, yix, ),

which, together with (22), means that (x, y) is n
ESS (see, for example Maynard-Smith, 1974
conclusion we get:

Proposition 5. The pairs (0; 1) (1,0) and (1, |
the only possible candidates for ESS. Proposit
gives the condition for the existence of all po
ESS of the system.

Note that in the proof of Proposition 4 we use
(9), (10), and the fact that 4, and B, are ]
functions of x, independent on y, while 4, and
linear function of y, independent on x.

In the symmetric case p = g, originally treat
Maynard-Smith & Parker, conditions (16) and
become identical and we get:

Proposition 6. In the symmetric owner-int
conflict, if

Ti(x, y; £

njiv <1

then the Bourgeois settlement (0, 1) and, theoreti
the alternative settlement (1, 0) are the only E
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+ If the reverse of (24) holds then the only ESS is the
total hawk solution (1, 1).

An unsurprising result, much in agreement wnth the
verbal argument of Grafen (1987), is that in an
unsaturated environment, when the availability v of
free habitats is high, the Bourgeois Principle is most
likely to be obeyed.

In case of saturatéd environment, where v = raf
(r= + 1), condition (24) becomes

r < Brf(r, + 1). (25)

If the death rate r, of owner is small, then this
condition can be well approximated by

njr < 0. (26)

Thus, a necessary and sufficient condition for
the Bourgeois Principle (o be maintained in the
population is, in this case, that the ratio between the
death rates of the potential intruder and the owner
will be less than the death probability of the loser.

An apparent discrepancy between the predlctlon of
this model and what seems to be observed in natural
situations is the failure of the model to predict any
mixture of strategies. Con31der1ng Selten’s theorem
(1980), this is a ‘general difficulty of population game
theory when applied to asymmetric situations.

We therefore suggest two allernative models,
within the general framework represented in Section
2, The ﬁrst ecogenetical model, presenied in
Section 4, takes into consideration the effect of the
populatron strategy on the population density and,
therefore, on the patameters # and v, It sometimes
allows for a mixed sirategy to be adopted by one
player (either intruder or owner). Yet the proof of
Proposition 6 can be extended to this case and it
does not allow for a fully mixed ESS.

In the second model we assume that individuals,
elther owners or 1ntruders are continually affected by
many random factors, partly known to them but not
'to their opponents nor to the observer. The strategy
‘of each individual is pure in the sense that it takes a
probability-1 decision on the basis of many random
factors, known only to it; to an observer, as well as
to the opponent, it seems it takes a mixed strategy.
Following Harsanyi (1973), we refer to such a strategy
as a:purified mixed strategy.

Following Maynard-Smith & Parker (1976) and
Grafen (1987) we have assumed a so-called sym-
metrized model, that is one that becomes symmetrical
with p = 1/2, at least at the moment of confrontation
(a symmetrical version of the hawk-dove game). For
this we have assumed, quite arbitrarily, that, in case

confrontations, the goods of the property (namely the
probability of ownership) are shared equally.

. If we assume that, in this case, the property re-
mains under the control of the owner, the structure
analysed in Section 2 remains intact, and so do the
death probabilities B, and B,, as given by .(12) and
(14). However: the probabilities 4, and A, of status
change, given by (11) and (13), respectrvely, should
be replaced by

A= A+ (1~ - V)X(1 = § — pP)} (11"
,Zz pR(1— py—ﬂqy) . (137)
Smce Al remams a linear functlon of X,

mdependent of y, and A, remains a linear function of
¥, mdependent of x, the proof of Proposition 4
remains true. No mixed ESS (£, 7) is allowed by this
model. It is also easy toshow that, as in‘'the previous
model, if § =0, #T,/6x > 0 and, if £ = 0, oT /oy > 0,

no ESS of the form (0, y) or (£, 0) is possible. This
leaves us with the cases in which either £ =1, =1
or both. From (11), (13} and (117) and (13} it follows
that, in the specific cases 4, = 4, and 4, = A, the two
models become identical in respect to the predicted
ESSs.

4. Ecogenetlcal Model

Dealing with the orrgma.l Maynard-Smith-Parker-
Grafen model (wrthout self-assessment), we have seen
that the structure of the population game depends on
the parameters p,’8, p, ps, Aand’ u. In our analysis
of the model we have assumed that these parameters
are fixed, that they may affect’ 'the opponents
strategics x and p but they are not affected by them.
This is true by definition, for the natural death
intensities p, and p,. It is a most reasonable
assumptioni for ‘4, the probability that a single
wanderer finds a property, either occupied or empty,
a factor ‘'which is not likely to be affected by the
behavior of other individuals in the population. This
assumption is more questionable when concerning y,
the intensity of potential invasions of a given habitat.
This factor is likely to be proportional to the density
of the potential intruder population. This density may
decrease with the frequency of aggressive conflicts,
which may end with death. However as p decreases,
v =py(p; + )" increases and the higher avail-
ability.of empty habitats may decrease the incentive
to resort to an .aggressive solution.

The assumption that u is a constant, mdependent
of the population strategy is plausible in the situation
of a large enough surplus of fertility. when the actual
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intruders is the carrying capacity of the land outside
the main habitats under conflict.

In many cases it is more reasonable to assume a
fixed flux of new recruits, say Adt individuvals per
habitat per an infinitesimal time interval dr. We
assume that all new recruits start as potential in-
truders. At the same.time interval d4¢, [(1 — v)p+
pA~'pi)dt individuals per habitat in the population
(either potential intruders or owners) die of natural
causes, A ! being the number of potential intruders
per habitat. Finally (1 — v)xyfdt individuals per
habitat die as a result of an aggressive conflict,
u(l —v) being the frequency of encounters per
habitat, xy the relative frequency of aggressive
conflict among them, # the proportion of cases ending
with death. Hence, in a stable situation

C=(—v)pr+ ph~'pr + (1 — V)xyd . (27)
where - '
(1 —=vy=ulpa+ )"
Denoting o
¢=Cp;', (28)
v = v(x, y) is the solution of
e=(1L—vy[rn+v+(—vbxy] 29
At (0, 1), or at (1, 0) (29) becomes
c=(1—-vw'irn+v). (30)

The right side of (30) is a decreasing function of v.
Using eqns (16) and (30), we know that a necessary
and sufficient condition for the evolutionary stability
of (0,1) is

e < (pf — gr)(pf + )(Opg)~' = é(r, p. 0). (1)

If p8 < gri, (0, 1) is never evolutionarily stable (in
this case it is worthwhile to attack rather than to wait
for another encounter within a new habitat, even
empty). If pé > gr,, a low enough flux of new recruits
guarantees the evolutionary stability of (0, 1}. In the
case p = ¢, cond. (31) becomes

c<(®—r)@+ 1) (32)
At (1, 1), on the other hand, eqn (29) becomes
e={1—=vI[rn+{1—-v)8+v] (33)

Again the right hand side is an increasing function
of v and the cond. (24) for the evolutionary stability
of (1,1) is

¢ = (p8 — qr)[n0(p — g} + ng + pt*l(ri8pg)~"

One can readily verify that for.all 0 <, 8, ;
c* > &, hence for ¢* > ¢ > é none of the corner
(0, 1) and (1, 1) are evolutionarily stable.

For example, if p=¢ =1/2, 8 =1 then

e*(r, 1/2, 1) = (1 — iyt
éri, 1,1/2) =20t — 1)

with the ratio ¢*/é =(1'+ r)(2r)"'
By straightforward calculations one can she
this case, if

20 —ny<e<(l — ! )
then both (£, 1) and (1, £), where
£=nle—2(1 — r)I(1 = DI = )7,

are ESSs.

It is easy to see that in this case 0 < £ < 1 at
get a semi-mixed ESS in which one opponent (
the owner or the intruder) always tends to fight
th other fights occasionally. Thus, if owners a
fight and intruders sometimes ﬁ'ght,' intruder
indifferent towards fighting or not. Yet the sit
is stable because if intruders fought more there 1
be more deaths, a higher fraction of territories y
be empty and so it would be advantageous not tc
but to wait for an empty territory. Converse
intruders fought less than at ESS, there wou
fewer deaths, a smaller proportion of terri
would be empty, and so it would be advantage
fight. By symmetry we get another ESS in -
intruders always fight and owners sometime do.
be shown, however:

Proposition. No fully mixed ESS (£, §) in -
both 0 <£<1 and 0 <P <1 can exist i
ecogenetical model.

Proof Since we accept the structure of Sect
and since Ay, B, are linear functions of x indepe
on. y, since A., B, are linear functions
independent on x, the proof of Proposition 3 r¢
true.

5, Self-Assessment and Purified Mixed Strate

Natural conflicts are rarely fully symmetrics
for examples Hammerstein, 1981). A careful ob
is likely to almost always find some, at least 1
asymmetry known to the contenders. The anal
the population game structure indicates that,
quite wide conditions, even the most minor
metry renders a mixed ESS impossible: for exar
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game (Selten, 1980). It is also shown to be impossible
in the nonlinear owner-intruder conflict analysed
here. Yet what appears to be a mixed strategy is
commonly observed in nature: it is rarely true that the
owner always fights to defend its property {although
it most often will) and it is even less common that the
intruder either always yields or always fights.

Following Harsanyi (1973) in a different connota-
tion, we believe that a common reason for the
observed polymorphic behaviour is not the ubiquity
of symmetric conflicts in nature but, on the contrary,
the ubiquity of additional asymmetry, based on
private information of each of the players. For
example each player is likely to possess, at the
moment of the conflict, some private information
about its own resources or about other factors that
affect its chance to win.

" In this case it is reasonable that an individual
decision to play hawk will not be random but will be
based on its ‘private information. Yet, since this
information is hidden from either the opponent and
from any observer, even a pure strategy as “to play
hawk if own resources.are above a given level” may
be observed as a mixed strategy.

- It would be preferable to speak in this case of an
“observed-mixed: strategy” but when there is no risk
of confusion we speak simply of a “mixed sirategy™.
A question raised by Harsanyi (1973) is what will be
the limit-behaviour of this kind of mixed strategy (in
his terminology of a “purified mixed strategy’’) when
the effect of the private information on the actual
outcome of the conflict tends towards zero.

Applying the assumption of private information to
the case of owner-intruder conflict, we choose the
simpler structure in which the time dependent
“aptitude” ¢ of the intruder and that, #, of the owner
are each known to the player in question alone, 0 < ¢,
1 < 1. A player’s pure strategy, in this case, is to play
hawk if and only if its aptitude is above a certain
critical value (including the values 0,1 which
determine the players’ observed “pure” strategics).
Note that in this model we deal with a situation in
which all players are of the same type. An individual’s
aptitude at the moment of any specific encounter is
assumed to depend on temporal factors such as thirst,
exhaustion and levels of energy which change from
one encounter to the next. ‘

Because of techmical reasons we find it more
convenient to deal with the values X =1—¢,
Y =1—1y. A typical pure intruder’s strategy x and a
typical owner’s pure strategy y is to play hawk if their
private values X and Y at the time of confrontation
are below x and y, respectively. In a way consistent

¥ =0) means “to never play hawk” while x = 1 (or
y=1) means “to always play hawk”. ,

We assume that the chance that an opponent
{either intruder or owner) with a private “weakness”
value x will win a conflict with an opponent with a
“weakness” value y is ¢(x — ), where ¢’(s) < 0 for
all 0 < s <1 and ¢(—s5) =1 — ¢(s). In the general
case one of the two opponents (probably the owner)
is likely to be of higher aptitude and more likely to
win. In this case, the distribution of the private
information value X of the intruder, say 5, and that
of the private information value ¥ of the owner,
say £, may be different. Following both Maynard-
Smith & Parker and Grafen models, we concentrate
only on the interesting case of a symmetrical dis-
tribution Fy = F, = F, that is the case in which, using
the notation of Hammerstein {1981), ownership is
“payment and outcome irrelevant”. ‘ ‘

It is not surprising that in this model one is likely
to find so-called observed-mixed strategies. What
remains to be considered, though, is the more cru-
cial question of how much will the ESSs of the
model still depend on ownership. ‘ ‘

.More specifically, assume that (£, ) is an
observed-mixed ESS (that is such that 0 < F(£) < 1,
0 <F(P)<1). We say that it follows the Weak
Bourgeois Principle if £ < $ (if the owner is more
willing to play hawk). S

‘We now show that, under quite plausible
conditions, in addition to the weak Bourgeois ESS,
there always exists a symmetric ESS (2, #) in which
ownership plays no role in the decision of the players.

Assuming the case F| = F, in which_ ownership is
payment-irrelevant, it is convenient to map the
“individual aptitude” parameters, in a monotone
way, on the interval [0, 1] such that X will be
uniformly distributed on this interval. Hence, without
loss of generality, one can assume S

0,ifu<0
Fu)=Jdu,iffO0gusgl
1l,ifu>1.

67

With this assumption, for any 0 < x, y<l, we
denote by

A(x, y) = j ’ f " $lu— ) dF@) dFL)  (39)

the probability that, in a confrontation between an
x-strategist and a v-strategict an actital cantact will
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chance of an actual contest m which the y strategist
wins is ‘

| . A(j, x) = f .J‘x ¢(v _ w) dF(u) dF(v) =

x f j [l — $(u — v)] dF () dF(v)

=xy—4(cy) (39)
and it follows from ¢quality (38) and (39) that
A(x,x)—x/ Lo - (40)

Usmg the notatlon of equal (38) one readlly gets
A= v+ A1 = A+ 00 =92+ A(x, L. @)

This is so because at any infinitesimal time-interval
of length df, a potential intruder has a chance Avdt to
find an empty property and to become an owner
without any conflict. It has a chance A(l — v)d¢ to
find an occupied territory, in which case it may still
become owner either with or without a real contest.
First there is a probability x(1 — 7) that the owner
(which must be a conservative f-strategist) will not
play hawk but the intruder will, in which case the
intruder gets the property without a fight. Then there
is the probability (1 — x)(1'— 7) that neither are
willing to fight, in which case it has been assumed that
each has a probability 1/2 to get hold of the property,
regardless of previous ownership. The general chance
of getting hold of an occupied territory without a fight
is ‘

(1 =P+ 1 =)0 = Y2 =1 +x)(1 =72

The chance of getting the property as a result of a
fight is, by definition, A(x, } and we get the (41).

In the same way, a potential intruder has a chance
A to die naturally during a time-period of length dt
and has a chance A(1 —v)4(p, x)dr to find an
occupied territory, to fight and to lose during this time
period, in which case it has a chance 8 to die. Using
equality {39) we get

B, = Ar, + A(1 — v)B[x) — A(x, P}]. (42)
In the same way one can easily calculate
= (1 — )1+ 2)/2 + p(1 — DA, y), (43)

and

~ Denote
. v Lo
g(x,y) = 04(x, y)fox = J ¢(x — v) dF(v),
) ) 0
we readily get from (39) and (45)

dd(x, y)lay = J 'dJ‘(u — »)dF(u) = x — g(y, x).

Using this notation, it follows from equahtle
and (42) that ‘ i

04, fox = M1 — VA — P2+ g(x, M,
C 8B, [ox == 10(1 — I[P — g(x; P
From (43) and (44) it follows 'that . .
04afy = —p{(1 + £)2 — (1 = O)I% — g0, D)
By =R —g(n A

Now, for any population: strategy (£, 7),
interested in the - “reply strategy” . (%, )
maximizes the individual - payment T\(x,»
against this population strategy.- We are speci
interested in those population strategies (£, §)
are strictly the best replies against themselves,
in the strict ESSs of the population game.

More specifically we are interested in st
(£, ) which; at x = £, y = J satisfy the followi
conditions:

_%;;%_0
2Tico
%@<0

and

PTET, _(FTY .,
axt ay* dxdy '

" Recalling (see Section 2) that 4, and
functions of x and j alone and that 4, and
functions of £ and y alone we employ conds. |
(10) to get

sign aa;; = sign 66 (%:) = sign{B0A4,/0x
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sngn % = sngh{ - B, (6A2/6y + aleay)

—AlaBz/aJ’} (57

We are: ﬁrst lookmg fora symmetnc ESS £=7p,if

1t exlsts Thus, at x = y= 2=,
84 ox = A1 — (1 — x)/2 + gx],‘ _
where g, = =g(n,x) Ny
2sf0y + 0BofOy = —pI(1 — X)/2 + g,
thus .
A(L = v)(04:/0y + DB,By) = — udA,]0x,
' OB jox = 20(I = Vi(x — g,).
dBx/0y = pb(x — g),
heﬁce | ‘
A(l — v)3B,/dy = udBjox .,
and we get:
ﬂ{BlaA./a;é — Ai0B,/3x)} - Al —-v)
X {— By(34:/3y + 3B,[dy) ~ A:0B,[dy}. (58)

| Thus, from cquality (56)-(58) it follows that, at
x= y—x 9,

sxgn T, /6x = sign 6T. /ay = sign L(x) (59)
where -
L(x) = p(B10A,/0x — 4,88, /(')‘x)/ﬂ.(l — v)

= {lri + (1~ v)Ox20(1 — x)/2 + 2]

. —(v + DO(x — g,,)/2}/?.u (59°)

! From def (45) it follows that g, = g(0, 0) = 0 hence
immediately it yields

L©0) = r/2 > 0. : (60)

On the other hand, since
it I: : . .
ga=g(,1)= f ¢(1 —v)dF(v) >0, (6])
. 0

we get _
LA) = Ap[-0(1 + M2+ (n + O] (62)

Hence
Proposition 7. If

AT 1 Wy

or, equivalently, if

01 + v —2g)
23'1
then L(1) < 0 and it follows from (60) and (62) that

the equation L(x)=0 has .at least one solutlon
x = x* at which

o, @;'
ax 0,

CR< =¥, (64)

at x=y=3i=p=x*
In this case equahtles & 1) and (52) are snmultaneously
satisfied.

Note that, from (61) g1 is the chance that an
individual in its weakest possible situation x=1
(according to its personal knowledge) will win a ﬁght
against a random opponent. We have 0 < g, < 1/2,
where g, =1/2 is possible only in the extreme
situation in which the personal knowledge x of the
individual’s state does not have any effect on the
outcome of the fight. .On the other hand, g, =0
represents the othei extreme situation, namely that of
the strongest possible dependence of the outcome of
the fight on the personally known state x. In this
situation, being at the state x = 1, the individual has
no chance to win a fight against any opponent.

More generally, a small value of g can be
interpreted as a strong dependence of the outcome of
the fight on personal knowledge of one’s own
situation. Thus the condition (63) for the simul-
taneous satisfaction of equalities (51) and (52)
requires strong dependence of the outcome of the
fight on private personal knowledge.

The equivalent condition (64) requires that the
natural death rate r, among potential intruders will be
sufficiently low, depending on g,. But the critical vaiue
#¥, as given by cond (64), is a decreasing function of
& and, as g < 1/2 (being equal to 1/2 only if the
winning chance of the weakest is equal 1/2 as that of
any other individual), we get

rl*--rl ©@,v, 1) > r¥@,v,1/) =v8.  (65)

“Thus, a sufficient condition for the simultaneous
satisfaction of (51) and (52) is ry < v#.

Quite surptisingly, this is exactly the condition (24)
for the Bourgeois pair of strategies (0, 1) to be an ESS
in the Maynard-Smith-Parker-Grafen model.

We now prove the main result of this section,
namely that, at x =y = £ = § = x* a simultancous
satisfaction of equalities (51) and (52) implies the
inequality (53-55). Thus, if x = x* is the solution of
L(x) = 0, the pair (x; ) = (x*, £*), at least locally,
maximizes the value of T {x. v. ¥* v*Y and it e
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First we employ (5) to show

&1\ _ 5B, . B0,
o (T.) = (1 + ) oy Td o 9
(éincgi A; and B, are independent on y).
But, from (49), it follows that '
9°4 d
S (- o %S (67
while, from (50) we get
& @B, ag o, %)
| S~ R (68)
From conds (66) and (68) we get
(1Y . 0g(y, %)
sign =— o7 ( ).— sign =5~
-z j b — u) dF ()
6)_1 X -
. ,
- [ ¢ -warw
0
=¢(y)—¢(—%)>0 (667)

(since ¢(w) is 2 decreasing function of u}).
“Hence from (52) and (66") it follows that at
x=p=~i=7=x*% as

we get:

T, »
T = Tigp ( )<0

which completes the proof of inequality (54).

Now (53) is proved by symmetry: we know that,
given £ and $, T; and T obtain their maximum (either
as a function of x or of y) at the same values, thus,
as a result of (54), we know that T:(x, y; x*, y*} and
Ti(x, y; x*, y*) obtain a strict local maximum at
y = x*. This means that at any encounter between an
intruder and an owner, when the population strategy
is (x*, x*), y = x* is the best owner’s strategy, at least
in the vicinity of x*, assuming that it is also the
strategy of its random opponent. But at the moment
of the encounter, the situation is symmetrical in the
sense that the future payment function of each is not

(provided cach keeps its original strategy). The:
at least locally, x = x* is also the best intr
strategy, given it is encountering a random ow
an (x*, x*) population. Thus, T1(x, y; x*, y*) 0
a local strict maximum at x = x*; a condition
is (53). But from (59) and (59°) it follows tl
x =y =% = J, (54) is equivalent to (53) and on
remains to be proved. In order to prove this, 1
the fact that since x=y=%£=p, T >
(3T/0x) = (8T /dy) = O, we have (9T '/0x) =
dy) = '
But

#n _ o (1N e (12 1
dxdy  dxdy\T) 'ox\T.} oy \ T
1 ik
sy (1) |7 = ~ T

Employing (5) we get, then,

T

Ea—; [B: + (A2 + By)(B A1 )

‘66

=. . (Az + By = x (Bl)

since A, and B, are independent on x and 4,
are independent on y. But from (9) we kno
sign{dT,/0x) = sign 8(B.47")/0x, so, at the
x=p=£f=p=x*0(BAT)ox=0. It |
from (69) that 2°7,/oxdy =0 and (55) f
immediately from (53) and (54).

In this way we have proved that, at a st
x = x* of L(x) = 0, conds (51-55) are satisfied
(x*, x*) is a local strict ESS, that is whe:
established in' the population it is stable a
against small enough deviations from: it (see
1982).

From this and from Proposition 7 we get:

Proposition 8. Under the condition (63) o
with any value of 0 < g < 1, there is a local
symmetric ESS (x*, x*) in which the infor
about previous ownership becomes irrelevant

We refer to such an ESS as an observed
non-Bourgeois ESS and we have proved its ex
under the condition (64) which, except for tl

= 1/2, is strictly weaker than (24). If, on th
hand, the reverse of (64) is satisfied, then we
that L(1) > 0 or

ﬁ>0_ foaralld < vy < 1
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Inequality (70) means that, in this case, the total
hawk strategy (£, ) = (1, 1) is, at least locally, a strict
ESS. It occurs, when r, is large enough (in fact larger
than the requirement for such a solution without
private information) and it is less likely to occur as £
becomes substantially smaller than 1/2 (that is as the
private information becomes more important to the
result of the fight). It never happens, regardless of r,,
if o= 0.

In this case we get

Proposition 9. If a non-symmetric (non-Bourgeois)
mixed ESS exists [that is if the reverse of (64) holds]
then the total hawk strategy (1, 1) is a strict, local,
ESS.

We can summarize that, in the case of private
information (regardless of how important it is to the
outcome of the actual conflict), a symmetric
non-Bourgeois ESS, cither “observed-mixed” or
“pure” (total hawk) always exists. -

6. Non-symmetric ESS’s of the Purified Model

'We now show that the symmetric, non-Bourgeois
ESS, when it exists, is not necessarily the only ESS
allowed by the conflict. We first study the condition
for the existence of a (pure) Bourgeois ESS
(£, ) = (0, ). (Note, however, that when such an
ESS exists then by symmetry the Desperado ESS
(1,0) exists as well). More specifically we are
interested in the condition under which, for all

(x, ) # (0, 1) .
T[(O, 1;0, 1) - T.(x, ». 0, 1) (71)

First, if £=0 it follows immediately from (39)
that A(%, y) = 4(0, y) = 0. In this case, (43) and
(44) become

Az = u(l — y)2
Bg, = L.

43)
(44')
Hence:
Ti(x, 7,0, §) = [B: + (Az + B)(Bi A ']}
=[urs + p(r2 + (1 ~ p)/2)(BL AT
This is an increasing function of y regardless of x
and y (which, in turn, determines A, and B,). As a
special case it is true for = 1. Thus, for all x and y,
we obtain
Ti(x, 1;0,1) > T(x, »;0, 1) (72)

But, for j = 1, (38) becomes

Ax)=A(x, ) = ['1 rq&(u—v)du dov. (73)

Employing (45} we get
1
A'(x) = f p(x—v)dF@) =g(x,1)  (74)
: ‘ X _
and (since ¢ is a decreasing function)

") =g'tx, 1) = f ¢'(x —v) dF(v) = p(x)

—plx—1) <0 (75)

which means g'(x, 1) < 0.
Thus for 9 = 1, (41) and (42) yield:

v+ (1 —v)A(x) .
n+ (1 —v)x— Ax)]’

A B = (76)

from (9) and (76) we then get:

an T _gign LA _ o o
sign 3x_81gn6x31_{r'+(1 v)

x O0x — A())g(x, 1)
— 601 —g(x, DI+ —A®];  (77)

o § N TR
'a‘lgn-(?zl = s1gn-;c—2§: =[r+v8

(1 = v)xlg'(x, ) < 0; (78)

this is true for $ = 1 and for any value of x, y and %.

As a special case it is true for £=10, y =9 =1,
Thus, from the concavity property (78) of
Ti(x, 1;0, 1) it follows that if 87;/0x <0 at x =0,
it is mnegative for all % In this case
Ti(x,1;0,1) < I1(0,1;0,1) for all x and from
cond (66) it follows that, for all (x, y) + (0, 1),
Ti(x, 1;0,1) > Ti(x,»;0,1) which is exactly the
requirement for the ESS property of (0, 1).

If, on the other hand, [0T\(x, 1;0, 1)/8x)}i=0 > O,
then for some values of x, close to 0 and for y=1,
(71) cannot possibly be satisfied. A necessary and
sufficient condition for (71) is

6T|(x, 1; 0, 1)
l:__—ﬁx l_o < 0. (79

But, at x = 0 it follows from (73) that



354 o I. ESHEL AND E. SANSONE -

Employing the notation (45) and using:the symmetry

of F we get:

g, 1)=J'¢(1 —_v) dF(@)= —j’qﬁ(l ) dF(l )
Loopy e
- —f 6(0) dF ),

hence, because of the requirement ¢(—u) =1 — $(u),
we get:

g(0, 1)-[ $(—v) dF(v) = I [1 —¢(v)] dF(v)

=1 —'[ d)(l—v)dF(v)-* 1 —g(l D

= l—gl. ‘ _ ‘ . ) .
Inserting equalities (80) and (81) in (77) we get

[M] | =,;,(1_gl)_vejg.. 82)

(81)

ox
The condition (79) for the evolutionary stability of
the pure Bourgeois settlement (0, 1) is, therefore

n < gvef(1 — gi1). (83)

We get
~ Proposition 10. The inequality (83) is a necessary
and sufficient condition for the evolutionary stability
of the pure Bourgems pair of strategies (%, ¥) = (0, 1).
By symmetry it is also a necessary and sufficient
condition for the ESS property of the Desperado
solution (1, 0.

Recall that g = |§ ¢(1 — u) dF(u) is the chance
that an individual in. its weakest possible condition
x =1 will win a contest with a random opponent,
thus 0 < g < 1/2. The condition (83) for the pure
Bourgeois ESS (0, 1), given private information to
the opponent, is not surprisingly stronger than:the
condition (24) for such an ESS in the case of no
private information. This, in turn, is stronger. than
the condition (64) for the existence of a mixed,
non-Bourgeois ESS (or of the non-existence of the
pure aggressive ESS). The three conditions coincide
if g = 1/2, which is the case if, and only if, the
private information bears no consequence for the
outcome of actual fights.

The condition (83) is never satisfied in the other
extreme case £, = 0 in which the result of an actual

private state of one contestant (indeed in this c:
intruder in a state close to 0 has no reason not t
haWk) T ’ .

By: stralghtforward calculatlons one can r
verify that :

ST, 1 %, 1)
dx?

for any value of £. This means, that if the reve
(83) holds but # is sufficiently close to g v9/(1
(i.e. if 8Ti(x, 1,0, 1)/@x is below zero) then av
exists, £ as close as we wish to 0 (depending «
choice of 1) such that

6T|(x,1 0,1)
: 6

0x.

~0 for x>%
<0 for x<%

But, since sign 47:(x, 1; %, 1)/dx) is indep
on £, #=F% is the best-answer to the ov
population strategy § = 1. On the other hand,
arguments of continuity, for # close enough
dT\(%, y; 1, %, 1)/dy is still negative, for all 0 <
and we get

Proposition | 11, If  gvé/(l — gl) <<
- gl) + 46 for a value >0 suﬂicxently
then in addition to the symmetric ESS (0
there is an ESS (%, 1) where 0< x <1 (&
closé to 0).

This ESS represents a situation in which the
always defends its property while the intruder (
to yield most of the time) tends to fight under t
situation of extiemely favourable conditions.

We refer to such an ESS as a quasi-Bourgeo

Out of symmetry, in such a situation, there
also-the quasi-Desperado ESS (1, X).

' ‘What remains to be considered is the p
existence of asymmetric ESS (£, ) and (% >
addition to (x*, x*), in general intermediate
of parameters o -

Cav8/(1 — £) <r < (= v 22)008)

We refer (o an ESS £, ), &>, if it exis
Weak-Bourgems-ESS It corresponds to a sit
commonly observed in nature, which the Mz
Smith-Parker-Grafen model failed to predict,
a situation in which both owner and intrud
occasionally play hawk, but it is the intruder
does it less often. B

Out of continuity arguments we may speculs
such an ESS exists at least for a partial ra
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7. Conclusions

- The models suggested in this work attempt to
analyse the situation of an owner-intruder conflict as
suggested by Maynard-Smith & Parker (1976) when,
as. suggested by. . Grafen (1987), each of the two
opponents takes into. consideration its chance of

finding another property and the expected time it is.

supposed to hold either this specific property or any.
other one, if obtained. As mentioned by Grafen, both
the chance of getting hold of a new property. and the
expected time one is supposed to hold a property once
obtained, -depend not only on the specific, :local

strategy chosen by the two opponents at the time of.

the conflict, but also on the strategy each of them
intends to choose in the future when in the other role,
and on.the strategy (£, 7) played by other individuals
in the population. In addition, these two critical
values: of the population game depend on given
ecological factors such as the availability 1 of
properties (either empty or occupied), on the chance
v that a given property is empty; on the intensities p;.
and p, of natural death events among individuals
(with and without property) and on the expected
damage inflicted on. a loser of a fight.

Given these parameters, the expected future time of
ownership T of an individual now without property
and that, T,, of:.a present-time owner, have been
calculated as functions. of the individual strategy
(x, ), determining its action in either of the two roles,
and of the population strategy. Under the assump-
tions that both owner and intruder each seeks to
maximize its own expected future ownership time, the
population game has been analysed and, despite its
nonlinear structure, it has been shown that like in the
simpler, linear model studied by Maynard-Smith &
Price, all ESSs of the model are pure. When p, A" is
sufficiently large then the only ESS is (1, 1), that is
total aggression. If it is below some critical level then
the only ESSs are either (1, 0, (0, 1), or both. In the
symmetric case, studied by Maynard-Smith & Parker,
‘the critical condition is p, = A0v.

If p, falls below this value, there are always two
other ESSs, the Bourgeois ESS (0,1) and the
Desperado ESS (1, 0).

The situation is different if, for the same model, we
assume that each individual has some information
about its personal aptitude at the time of the conflict.
In this case an individual choice of strategy, even if
it appears to be random while observed by its
opponent or by any outside observer, is rather
determined by its own private information.

We have restricted our analvsis. in this model. to

intruder :is outcome and payment. irrelevant. It has
been shown that, in this case, for any choice of
parameters, a symmetric, non-Bourgeois ESS .exists,
in' which any information:. about ownership is
irrelevant to the behaviour of the opponents. Under
a condition strictly stronger than the one required by:
the previous model, this symmetric ESS is (1, 1), that
is to always play hawk. The two conditions only
coincide if the private information of the opponent is
irrelevant to :the: outcome of an actual fight, if it
occurs. If p is smaller than a critical value,
determined by the ESS condition of (1, 1) a mixed
non-Bourgeois ESS (x*, x*), 0 < x* < 1, exists. Yet
it is shown that, in this case, this ESS may not be the
only one allowed by the model. Other non-symmetric
pairs of ESS (%, 7)) and (#, £) can also be maintained
in which. # < §. The ESS (£, 7), in this case, is: thus.
interpreted .as a Weak Bourgeois ESS in which the
owner more often tends to play hawk,

- Moreover,; when p; falls below a second critical:
value, lower than the one determined by the condition
p1 < A0v, required in the previous model, the: pure
Bourgeois pair of strategies (0, 1) [but also (1, 0)] is a
strict local ESS. The condition for this is strictly
stronger than p, < A0v except for the limit case in
which the private information is irrelevant to the
outcome of an actual fight, if it takes place.

REFERENCES

EsHeL I, (1982). Evolutionary and continuous stabifity. J. Theor.
Biol. 108, 99-111.

GRAFEN A. (1987). The logic of divisively asymmetric contests:
respect for ownership and the desperado effect. Anim. Behav. 35,
462-467.

HAMMERSTEIN P, (1981). The role of asymmetries in animal contests:
Anim. Behav. 28, 193-205.

HAMMERSTEN, P. & RICHERT S. E. (1988). Payoffs and strategies in
territorial contests: Ess analyses of twe ecotypes of the spider
Agelenopsis Aperta: Evel, Eeol. 2, 115-138.

Harsawvyi I. (1973). Games with randomly disturbed payoffs: A new
rational approach for mixed strategy equifibrium points. Int. J.
Game Theory, 2, 1-23,

MAYNARD-SMITH, I, (1974). The theory of games and the evolution
of animal conflicts. J. Theor. Biol, 47, 209-221.

Maynarp-Smitit J. & Pricg, G. R. (1973). The logic of animal
confiicts. Natwre, Lond, 246, 15-18,

MAYNARD-SMITH, J. & PARKER, J (1976). The logic of asymmetric
contests. Anim. Behav, 25, 1-9,

SeLten R, (1980). A note on evolutionary stable strategies in
asymmetric animal conflicts, J, theor. Biol. 84, 93-101,

APPENDIX

In this paper we followed, in a quantitative way,
the argument of Grafen (1987) that the population
game <toeected By Mavnard-Qmith & Parler cannat
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must depend, in turn, on the very population strategy.
More specifically it has: been maintained by Grafen
that, once the Bourgeois Principle is accepted by the
population, the value of the intruder’s life must be
regarded less valuable than that of the owner, in sense
that its expected future ownershlp time (say, EFOT)
must be smaller.

" In the terminology of this article: -

710,1;0,1) < 7:(0, 1,0, 1) - (A
As one expects, this is, indeed, true.

Another statement of Grafen, which also sounds
true, is that the acceptance of the Bourgeois Principle,
although advantageous for the owners in the
population, is obviously disadvantageous for the
potential intruders as a group so it is not clear why
they should accept it to start with (even though it is,
indeed, to the advantage of both owners and intruders
to keep to it; once it ‘has been accepted as a rule in
the population). )

In the terminoclogy of the article:

7.(1,0;1,0) < (0, 1,0, 1) (A.2)

- Ti(1,0; 1,0 > {0, 1; 0, 1). (A.3)

A surprising result, mentioned to us by Yoram
Hamo, is that only the first of these two formulas is
true. Employing equalities (5) and (11-14} from this

paper, and assuming a saturated environmen
easily gets the equality:

TI(]-! 0; l’ 0) = T1(05 1;0, l)

This means -that, at least in terms of BFO
potential intruder is impartial to the Bou
equilibrium and the paradoxical one. It seems.g
counterintuitive result if one keeps in mind the ¢
of the potential intruder to ever become an «
before its natural death. Obviously this cha:
lower at the Bourgeois equilibrium than a
paradoxical one. Yet, becoming an owner, the ]
is; indeed, larger at the Bourgeois equilibrium.
calculation indicates that from the point of vi
the potential intruder, these two factors ¢
compensate for each other. (It is shown, mor
that in ‘the case of unsaturated environmen
reverse of (A.3) holds. This corresponds to a sit:
in which the population is ever increasing and |
EFOT of the owner, in case of the Bou
equilibrium, even overcompensates for the
chance -of a potential intruder to ever becot
owner),

An intuitive argument for equality (A.3) is
by Hamo in a different article {(1995). He en
this equality 'to show why is it likely that a
rational playets, either owners or potential intr
will converge in choosing the Bourgeois st
which is the only ESS to which no playér s
opposes.



