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Abstract. Eighteen different terms, currently employed to define various con-
cepts of evolutionary stability in population dynamics are mentioned in this
paper. Most of these terms are used in different connotations and even
different meanings by different authors. On the other hand, different terms are
often employed by different authors to define quite the same concept. Twenty-
five years ago there was only one, well-defined, concept of stability, universally
recognized in the field. In this paper I will try to relate the recent confusion,
concerning concepts of population stability, with a more serious, though not
that well-recognized, confusion in the modern analytic approach to popula-
tion dynamics and quantitative evolution. Concepts of population stability
will be examined in relation to each other on the one hand and, on the
other hand, in relation to two dichotomies regarding the dynamic processes
to which they correspond: Short-term versus long-term processes and pro-
cesses concerning phenotypic changes versus process concerning genotypic
changes. A hopefully more consistent use of the current terminology is
suggested.

Key words: Dynarrﬁc stability — ESS — Short-term stability — Long-term
stability

1 Introduction

This paper is based on a talk given at the ESF workshop on population
dynamics, held in Trento, December 1992. Tts first goal is to clarify some
confusion concerning the repeated introduction, over the last few years, of
ever new terminology concerning different sorts of population stability.
Speaking of internal and external stability, unbeatable strategies, evolu-
tionarily stable strategies (ESS) and continuously stable strategies (CSS),
evolutionary genetic stability (EGS), m-stability, d-stability, converging



stability, PEAST and MEAST, to mention only some of the terms frequently
used now in current literature of population biology, there is no question that
at least part of the confusion stems from the deplorable fact that no unique,
unambiguous terminology has yet been accepted in the field. In many cases,
virtually identical concepts are defined and re-defined in a different way by
different authors while, at the same time, the same terminology is employed,
somehow in a different connotation and, sometimes even with different
meanings, by different authors. It is, therefore, desirable at this stage to make
an cffort to arrive at some agreement about the different notations and to
reach a consistent terminology, necessary for any further discussion and
communication within the field.

Yet it appears that at least part of the unclearness concerning the various
terminologies and notations of population stability reflects an even more
substantial unclearness about the very dynamics of what we refer to as the
process of Neo-Darwinian evolution. It, therefore, seems to me impossible to
have this note without taking the opportunity to express my opinion about
what I believe to be the chronic confusion concerning our traditional quanti-
tative modeling of the evolutionary process itself.

To make this peint clear, I will start by first comparing two very basic
concepts of stability, namely those of stability with respect to changes in
genotype frequencies within a given finite set of genotypes on the one hand,
and stability of that finite set-of genotypes against any new mutation within
a given, rich (usually infinite) set of potential mutations on the other hand. We
see that, despite their close structural relatedness, these two sorts of stability
correspond to two, qualitatively different dynamical processes, varying from
each other both in structure and in time-scale. For reasons which will be
obvious from the text I shall refer to them as shori-term and long-term
evolution. We see that, contrary to the common belief held till ten years ago,
these two evolutionary processes are governed by radically different rules.
And we shall see, further, that any concept of stability, currently in use in
population biology can be characterized as corresponding either to the
process of short-term or to that of long-term evolution. This demarcation,
together with some recent analytic results concerning short-term and long-
term evolutionary dynamics is shown to be responsible for many apparent
contradictions found among results obtained for short-term stability or
Liapunov stability and those obtained for long-term stability such as ESS, for
example.

Another sort of distinction must be made between concepts of stability,
corresponding to the genotypic space, and those corresponding to the
phenotypic space. While both internal and external stability belong to the first
category, unbeatable strategy, ESS and many related concepts belong to the
second category. We see that some basic topological difference between the
genotypic space, which is always discrete, and the phenotypic space which
may, sometimes, be continuous, calls for absolutely new criteria for stability,
as Continuous Stability (CSS), converging or m-stability and Evolutionary
Genetic Stability (EGS).
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2 Internal and external stability: short-term versus long-term evolution

It is quite indicative that the only concepts of stability in use in theoretical
population biology till about twenty yeats ago were those corresponding to
the classic, so-called rigorous mode! of population dynamics. More specifi-
cally, they correspond to a model in which a population is determined by
a finite list of, say, » given types and a corresponding list of non-negative
frequencies, summing up to one. These frequencies change from one genera-
tion to the next according to biological forces such as natural selection,
mating pressure, etc.,, which we, hopefully, can analyze. By analyzing the
biological forces we mean that, given the distribution of genotypes in the
population at a given time (say, a given generation), and knowing the biolog-
ical forces that operate on the population, we can calculate the distribution of
these same genotypes after a given time (say, in the next generation). When
this is the case, the rule by which the distribution of types is changing from one
generation to the next defines a transformation from the space of all possible
n-dimensional frequency vectors, the n-dimensional simplex, to itself. The
process of evolution, according to this model, is defined by the sequence of
iterations of such a transformation. If it converges, it generally converges to
a fixed point of this transformation, say an equilibrium. An equilibrium is said
to be stable if it is Liapunov-stable according to the classic definition of
stability in dynamical systems.

Thus, the only concept of stability within this classic model of evolutionary
dynamics is that of stability against small perturbations from a given fre-
quency distribution over a finite, well defined set of types. These may be all
types presently existing in the population. In this case all the corresponding
frequencies should be strictly positive and one can speak, then, about internal
stability. Alternatively, though, one can think of an n-dimensional frequency
vector (P, Paeo s Pa-isOivos 0) corresponding to the genotypes
Gy, . . . » G, of which only the first n — k really exist in the population. It may
be internally stable with respect to perturbations in the frequencies of the
n — k types existing in the population, namely in the corresponding n — k
dimensional simplex. Yet it may be cither stable or unstable in the n-dimen-
sional space of frequency vectors. In this case, it has been suggested by
Feldman, Christiansen and others (e.g. Feldman et al. 1991 and references
therein) to say it is, respectively, either externally stable or externally unstable
with respect to the k potential invading types Gu—x+15- + - » G

The concept of external stability, though, has already been used by several
authors in somewhat different meanings. As suggested by Lessard (1990),
a given (internally stable) distribution of genotypes is said to be externally
stable (say, in the wide sense) if it is stable against an invasion by any possible
mutant ot, maybe, a finite set of mutants) from some large enough set of all
“relevant mutants” to be implicitly determined by the biological problem in
question. In general, one keeps in mind a speculative, infinite set of all
mutations that can, theoretically, afiect a specific biological feature. To distin-
guish between the two definitions, I find it constructive to refer to the more



restrictive concept, suggested by Feldman and Christiansen, as limited ex-
ternal stability. Thus, a frequency vector over a finite set of types is said to be
externally stable (in the wide sense, suggested by Lessard) if it is externally
stable in the limited sense with respect to any finite subset of mutations,
potentially affecting a given biological feature. '

We see, though, that this new concept of external stability presents theo-
retical difficulties at various levels. One difficulty it shares with older concepts
such as unbeatable strategy and ESS (to be discussed in the next two sections)
involves resorting to a speculative, not always well-defined set of all possible
mutations, relevant to a given biological problem. This is possible only at the
expense of abandoning the long cherished hope of attributing the evolution-
ary model to specific, empirically observable, types and to thereby draw
observable (thus refutable) predictions about the future dynamics of the
population. Yet it should be noticed that a direct application of the theoretical
population-genetic model to any real situation of non-trivial evolutionary
interest has been rarely, if ever, executed. This shortcoming has already for
a long time been a source of frustration for empirically-oriented population
biologist (e.g. Lewontin, 1972, 1974). Like Lewontin, I do believe this failure is
not coincidental. However, I tend to attribute it to a reason different from the
one he is looking for. Since this point may have some bearing on the meaning
of some basic concepts of stability within the context of the evolutionary
theory, I want to use the opportunity of making a short remark on it here,

No doubt the main subject of the theory of evolution is the long-term
changes in populations of living organisms on earth, changes whose mor-
phological components are partly documented in fossil records. These chang-
es; however, seem most unlikely to be characterized by mere modifications in
the relative frequencies within a given set of genotypes, the way one can,
hopefully, see when exposing a population to a short, direct selection force.
More likely, radical morphological changes during the course of evolution are
mabnifested by either a total or a partial replacement of one set of genes by
another. As being maintained by the Neo-Darwinian theory of evolution, this
replacement becomes possible due to the exposure of the population to new
mutations. The role of natural selection in this process of successive gene
replacements is to determine which of the numerous mutations to which the
population is exposed during the long course of evolution, may have a sub-
stantial chance to become established in it. The occurrence of a successful
mutation may, though, be a relatively rare event in the course of evolution and
the chance of even the most keen observer locating it is, unfortunately, small
{yet, the very existence of such a mutation in a bacterial population, has been
at least indirectly manifested in one ingenious experiment, see Luria and
Delbruck, 1943). It is, therefore, possible that the laborious effort to empiri-
cally base the Darwinian theory of evolution on the foundations of accumu-
lated data about relevant genetic variance in populations observed in present
time, is irrelevant to this long-term process of evolution.

Indeed, once a new mutation becomes established in a population, the
frequency vector of genotypes represented in the population will shift to
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a higher-dimensional simplex, within which natural selection will operate, in
the short run, to change the genotype frequencics toward a new internally
stable equilibrium (maybe on the surface of the new simplex, which means
extinction of at least some of the old types). Itis this stage, repeated anew after
the establishment of any new mutation in the long course of evolution, to
which the rigorous model of changes in genotype frequencies is directly
applicable. In a different place (Eshel 1991; see also Hammerstein and Selten,
1993; Hammerstein and Waeissing in this volume) I have suggested referring to
it as to short-term evolution. This is, to distinguish it from the process of
long-term evoluiion, characterized by the repeated introduction of new muta-
tions into the population and in between periods of changes of genotype
frequencies (say, short-term evolution) within the new simplex of genotypes.
Thus, while the concepts of internal stability, limited external stability and
protected polymorphism correspond to the process of short-term evolution,
external stability (in the wide sense) corresponds to the process of long-term
evolution,

There are two rcasons why for a long time all quantitative rescarch of
evolution has concentrated on this stage we now refer to as short-term
evolution (and hence, all concepts of stability employed in this research were
those connected with the short-term stage):

(i) Tt'is only within the short-term stages of the process that one can
make exact analytic predictions about future behaviour of a population.
This is impossible when regarding the long-term pProcess. Although one
can analyze external (long-term) stabilities, one cannot possibly predict,
even in theory, which route a fong-term process would choose. This
is so because it is impossible to tell when and in which order the various
rare, potentially advantageous, mutations will appear in the population.
(Quite undeniably, though, this is the paticrn of the real process of
evolution as we know it, a fact that convinced Popper (1972) to preclude
the Darwinian theory from his restrictive definition of a scientific theory.
The analytic theory of short-term evolution might well have passed his
criterion.)

(if) 1t is only the short-term process of evolution which may be subject to
empirical manipulations. Indeed one can expose a population to many sorts of
artificial selection. It is very difficult to manipulate its exposure to new
mutation. And it is absolutely impossible to control (or even observe) the
introduction of a specific, advantageous mutation into it, an event which
seems to be rather spontaneous.

It seems, thus, that the repeated failure to apply empirically the results of
population genetic models to non-trivial evolutionary problems (see e.g.
Lewontin, 1974) stems from an attempt to predict one process (say, long-term
evolution) on the basis of a model, corresponding to another process (say,
short-term evolution). This long-persisting attempt was based on the postu-
late, tacitly accepted by most in the field (the author of this note included),
that, at least qualitatively, the behaviour of the long-term precess can be
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fully understood by extrapolation of the analytically well-defined short-term
process.

We see that this postulate is mathematically wrong.

3 Phenotypic versus genotypic stability — the problematics of phenotypic
equilibria in the short-term model of evolution

While for long-time, as we see, theoretical population biologists were gener-
ally not bothered much by the discrepancy between results obtained for the
short-term model on the one hand, and predictions made about the long-term
process of evolution on the other hand, they were very much aware of another
crucial difficulty, concerning the applicability of the rigorous genotype-
frequency model to the real, so to say, observed process of evolution, as
it is expressed in phenotypic terms.

Indeed, it is the phenotypic changes in living organisms with which the
Darwinian theory of natural selection, from its very beginning, has been
concerned. And it is the differences between survival probabilities of pheno-
types that provides the basis for natural selection. Yet natural selection can
operate to change only those components of the observed phenotypic vari-
ance, which are genetically inherited. And, no less important, even in this case,
the way the population reacts to a given selection pressure depends crucially
on the structure of genes, affecting the phenotype in question.

A crucial problem is that although we know a lot about genes in general
and although we surely know they are there, affecting the individual’s pheno-
type, it is only in rare situations that we can really recognize the genetic basis
for a specific phenotypic change we are confronted with. As mentioned by
Lewontin (1974), the very fact that the same two or three very famous
examples repeat themselves for more than seventy years in almost all text-
books on evolution, only emphasizes this deplorable shortcoming.

In the more general case, though, we only see the phenotypes which are
represented in the population, say L,, L,,. .., L, and, at best, we can find
indirect evidence {e.g. heritability of the phenotype) for a genetic factor
affecting phenotypic differences within the population. In this case one can
assume that the population is divided into n different genotypes, say
By, B,,..., B, each of them being represented by a different phenotypic
expression or, more generally, by a different distribution of phenotypic expres-
sions (say, using the terminology of population-game theory, by a different
mixed strategy). More specifically, given the distribution P = (p1, ps,. . ., p)
of genotypes in the population (p, = 0,i=1,2,..., 1 Z:; i = 1) and given
the probabilities x;, (i = 1,2,...,m k= 1,2,.. ., m) that the genotype B; will
have the phenotypic expression L, one can deduce the distribution
x ={Xg, X2,. .., Xy = R(P), say, of phenotypes in the population where
X = Z::l Xy k=1,2,...,m This gives us a mapping

R: Gen —» Phen 3.1)
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of the space of genotypic distributions onto the space of their (observed)
phenotypic expressions. Thus, given the distribution of genotypes, p, among
newborn offspring in the population, one can calculate the distribution
x = R(P) of phenotypes in this population. This, in turn, determines the
distribution of phenotypic interactions and, therefore, the selection forces
operating on the phenotypes in this population. For example, in the case of
viability selection it determines the survival probability v, (k = 1,2,.. ., m) of
each of the phenotypes in the population. The average survival probability (or
fitness) of the genotype B;(i = 1,2,...,n)is, in this case, w; = Z;:; Xin Uk {P)
and its frequency in the adult population is given by the frequency

poo_Mn Wb
! 23=1ijj W(P)

of B; survivors among all W (p) surviving adults.

Given the distribution j of genotypes in the adult population and knowing
the genetic structure and mode of reproduction in the population, one can,
then, calculate the distribution of genotypes in the population of newborn
offspring of the next generation.

This, as we have seen, can be formalized in terms of a transformation

T: Gen—r Gen (3.2)

from the genotypic space to itself so that if P is any distribution vector of
genotypes in a population at a given time, T(P) is the distribution vector of
genotypes in this same population after one generation. The iteration of the
transformation T determines what we have called a short-term process of
evolution. Note that this process is defined over the genotypic space. As such,
it leaves no direct fossil record available to the student of evolution, nor can it
be traced through direct observations of natural history. Yet, the mapping
(3.1) of genotypes onto their phenotypic expressions can also map the one-step
change P — T(P) within the genotypic space onto an image change

R(P) ~ R(T(P}) (3.3)

within the phenotypic space. In the same way, the iteration of the transforma-
tion T over the genotypic space is mapped into an image-process of observed
sequence of changes within the phenotypic space. Thus, the phenotypic image
of a stable equilibrium in the genotypic space (for this matter, a stable
equilibrium of the short-term process) is a distribution of phenotypes which
for the specific distribution of genotypes represented in the population, can be
referred to as a phenotypically stable equilibrium, PSE (see Fig, 1).

Studies of (phenotypic) evolutionary featutes, based on what are called
exact genetic models (inevitably, till about ten years ago, models of short-term
evolution) were all concerned at least tacitly with this sort of phenotypically
stable equilibria. Unfortunately, the phenotypic change (3.3) is not uniquely
determined by the parameters of the phenotypic space alone. The same
distribution of phenotypes may represent, in two different populations, an
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Fig. 1. Genotypic and phenotypic mapping of the distribution of types from one generation
to the next. Here § stands for selection, sexual preference etc., operating on phenotypes, and
thereby, affecting the transformation T from genotype distribution p at time ¢ into genotype
distribution T(p) at time £ + 1, The transformation R stands for the phenotypic expression
of the distribution of genotypes. Given the genotype distribution p at time ¢, U thus maps
the phenotype distribution x = R(p) at time ¢ onto the phenotype distribution R(T(p)) at
time ¢ + 1. Yet, a crucial difficulty in the phenotypic theory of evolution stems from the fact
that the same transformation R maps as well other genotype distributions ', different from
p on the same phenotype distribution x = R(p) = R{(p"). In this case, the phenotypic shadow
U of the well defined transformation T from genotype distributions to genotype distribu-
tions, will map the same phenotype distribution x at time ¢ onto a phenotype distribution
R(T(p')) different from R(T'(p)) at time ¢ + 1. The dashed arrow U, therefore, does not really
determine a transformation from phenotype distributions to phenotype distributions. In
still other words, the phenotype distribution dees not describe the state of the population
system.

image of two different distributions of genotypes. In this case it is not difficult
to verify that the reactions of the two populations to the same selection
pressure will be different. Moreover, at least where the extensively studied
process of short-term evolution is concerned, it is possible that in one popula-
tion, a distribution of phenotypes will be an image of an internally stable
equilibrium, thus a ‘PSE, while at the same time, in another population,
exposed to the same selection forces, the same distribution of phenotypes will
be the image of a transient distribution of genotypes.

Assume, for example, a population of white, pink and red flowers, in which
white and red are equally fit, while pink is somehow fitter. A distribution of
i 3, 1) of these colours may well represent a stable equilibrium of a one locus
two allele sexual population in which the heterozygote is pink. But it may as
well represent {among other possibilitics) a transient state in a one locus
3-allele population (with random mating) at which the allele A, for red
is dominant over all the other and the allele A, for pink is dominant only
over the allele A; for white, p(d;) = 4, p(4,) = \/5 —1/2 and p(4,) =
1 — p(As) — p(4;). In the latter case we know, morcover, that natural selec-
tion will operate to eventually fix the pink colour. This means that observing
a given distribution of phenotypes in a natural population, one cannot even
tell whether it is stable or not on the mere basis of information one has about
the selection forces, operating on it. In order to do so, one should further
assume full knowledge about the hidden world of genotypes, namely about
both the genetic structure of the population and its exact mapping over the
phenotypic space. Such knowledge, as we know, is rarely available to us.

This might well be the reason why the main stream of population-genetic
research in the last fifty years or so has followed two almost parallel lines,
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rarely intersecting each other. On onc hand there is the theoretical study of
exact genetic models which overcomes the methodological difficulties
concerning our lack of knowledge about genotype-phenotype mapping in
real populations by just ignoring these difficulties. Assuming, for the sake
of research, we are in possession of full knowledge about the genetic
structure and the genetic basis of phenotypic changes in a population, this
sort of research has enabled us to understand- the finest modes by which
complicated genetic structures can possibly react to various sorts of
selection. T am convinced, and 1 will later try to convince the reader as well,
that this sort of theoretically obtained knowledge is indispensable for the
further understanding of the quantitative process of evolution. Yet the direct
application of such models to real data, quite generally requiring empirical
knowledge we are not in possession of, can be summed up as somehow
disappointing.

" No doubt, it is this sort of disappointment that has encouraged more
empirically oriented population geneticists to concentrate on the other direc-
tion of accumulating more and more data about genetic structures, genetic
variances within natural populations and genetic distances between them,
thus challenging theoretical population geneticists to cope with, so to say, the
teal data. Certainly one can ask whether genetic variances within loci whose
phenotypic functioning is unclear and genetic distances related to inactive
components of enzymes is, indeed, the relevant data, as far as the theory of
evolution is concerned.

Yet evolutionary-oriented population biologists have never fully aban-
doned the long-cherished Neo-Darwinian hope of using our theoretical know-
ledge about the genetic basis of evolutionary change in order to draw at least
some general, robust, conclusions about the possible nature of phenotypic
changes in a population, subject to natural selection. In a way, as mentioned
by Maynard-Smith (1982), the very Darwinian theoty {or at least its Neo-
Darwinian version) can, indeed, be interpreted as an attempt of this sort.
Within this section I will concentrate on two more restrictive yet still
very important attempts of the sort. These arc Fisher’s suggestion of
The Fundamental Law of Natural Selection (Fisher 1930), and Maynard-
Smith and Price’s attempt to characterize a dynamic stability by the
whole phenotypic concept of an Evolutionarily Stable Strategy, ESS
(Maynard-Smith and Price 1973). We see that these two attempts are more
related to cach other than people use to think and, at least within the
framework of the short-term process of evolution, they share the same difficul-
ties. A previous, somewhat less structured attempt made by Hamilton (1967)
to establish a concept of phenotypic stability, avoiding the shortcomings of
the short-term process from the very beginning will be discussed in the next
section.

Fisher’s Fundamental Law of Natural Selection, in its qualitative, fully
phenotypic version, maintains that under fixed environmental conditions of
natural selection and with random mating, the average survival probability of
an individual, taken from the population at random, is ever increasing from



one generation to the next, being fixed only at equilibrium, In other words,
formalized as a mathematical theorem, based on the general structure of
inheritance in Mendelian populations, Fisher’s law maintains that natural
selection must result in adaptation to the environment under which it takes
place. '

This is, indeed, an example of the desirable sort of Neo-Darwinian robust
phenotypic statement, based on a hopefully general enough analysis of pos-
sible changes within the genotypic space. The only problem with Fisher’s
fundamental law is that, surprisingly enough, it is mathematically wrong, As
proved by Kingman (1961), it is true for the one-locus genetic model. It is also
true for the special case of the two-locus additive model (Ewens 1969). Yet,
concerning the more general, multi-locus or even the two-locus case, a surpris-
ing counter-example was first suggested by Moran (1964) and others followed
by Kojima and Lewontine (1970). An extensive research made by Karlin,
Feldman and several collaborators (Karlin 1975 and references there) has
shown that these counter-examples were not isolated exceptions. On the
contrary, except for a degenerate set of parameters of measure zero, a multi-
locus model, allowing for recombination, quite generally does not obey
Fisher's fundamental law. This surprising finding, as we see, has proved to
have crucial bearings also on the other important attempt to deal directly with
the evolution of phenotypic traits, namely the one concerning Maynard-Smith
and Price’s concept of ESS.

4 ESS and short-term evolution

Arriving, finally, at the concept of ESS, I believe I can safely assume all readers
of this note are well familiar with it. It can be much less taken for granted that
each of the readers is, indeed, familiar with the same concept of ESS (sce for
example Lessard 1990). Following literature, written on the subject during the
last twenty years, one cannot but be amazed by the variety of connotations to
which the concept of ESS has been applied and, moreover, by the different
meanings, attributed to it. In fact, part of the ambiguity and, thus, of the
problematics concerning the concept, can be traced back to the original
definitions given, and, more so, examples used by Maynard-Smith and Price
(1973) and then, again, by Maynard-Smith (1974, 1982). Even in these works,
the concept of ESS was defined in two different ways and a tacit assumption
has been made that under some evolutionarily-plausible conditions, these two
definitions must, inevitably, coincide, Tt appears that since then, questions
about the exact nature of these, supposed plausible conditions, can be found,
hidden in any controversy about the applicability of the concept of ESS and in
any of the numerous attempts to re-define it.

Thus, on the one hand, ESS has been defined, very much following
Hamilton’s definition (1967) of an unbeatable strategy, as a strategy that, once
fixed in the population, becomes immune to (or, say, stable against) any single
mutant strategy that is introduced inte the population in small enough
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frequency (the critical value, regarded “small enough” for this matter, may be
different from one mutation to another; see, Hammerstein 1994), This defini-
tion, at least in some of its various, later connotations and interpretations, is
somehow vague as it requires stability against new mutation while, at the
same time, attempting to be free of assumptions about the genetic structure of
the population. In many cases, though, such tacit assumptions are hidden in
the model.

On the other hand, a more restrictive definition of ESS (Maynard-Smith
1974, Bishop and Cannings 1976) has the advantage of being given in exact
mathematical terms of population-game theory and as such, it surely can be
dealt with in fully phenotypic terms. What remains to be considered, though,
is under what condition and in what sense it, indeed, represents stability as
one understands this concept with regard to dynamic evolutionary changes
within real populations. According to this definition, a strategy (say, a distri-
bution of phenotypes) can be called BSS only with respect to a given payoff
function v(x, y), accrued to an individual (say a player) who chooses strategy x,
when confronted with a population strategy ). Usually 2(x, y) is chosen to be
either the fitness or the inclusive fitness of the individual player (Hamilton
1964, 1972) but, as we see in the next section, other, related payoff functions
may serve as natural candidates under appropriate conditions. Once such
a payofi-function is chosen, a strategy X is said to be an ESS if for any
alternative strategy v, the following two requirements are satisfied:

v(x, x) Z v(y, x) (4.5)
and in the case were (3.5) is satisfied as an equality:
v(x,y) > v(y, ) - (4.6)

Requirement (4.5) is in fact the Nash-requirement for the population-
game, it requires that no single individual can possibly gain by exclusively
changing strategy from the population strategy x to y. Under the further
assumption of a linear population-game structure, one can easily verify that
the combination of the requirements (4.5) and (4.6) is equivalent to the
requirement that for any alternative strategy y there is a critical positive value
such that if the frequency of the y-mutant strategists is lower than this value
(while the rest of the population sticks to the strategy x), it is better for
everyone to stick to majority strategy X, better being defined in terms of
individual maximization of the payoff function v.

To distinguish between the two and, thus, to avoid confusion, I will, from
now on, stick to the second, more restrictive definition of ESS, as a concept of
population-game theory. Dealing, on the other hand, with immunity to
mutation within the framework of a dynamic system, [ find no reason why not
to return to the original notation of Hamilton, calling it an unbeatable
strategy.

Indeed ESS and unbeatable strategy, the way they are defined above, are
equivalent only if one assumes that natural selection, at any stage, necessarily
operates to increase the frequency of those strategies that, at that stage,



provide the individual with a relatively higher value of the payoff function,
namely, in most contexts, with higher fitness or inclusive fitness. This is the
case in asexual populations and, as we know, also in sexual, random-mating
populations, in which an individual’s phenotype is determined by cone locus
(or, say, by several loci with additive effect) and when the payoff-function is the
individual’s survival probability. Yet even in the simplest, most extensively
studied system of asexual reproduction and selection, short-term convergence
of the population dynamics to ESS requires some further assumptions (e.g.
Hofbauver and Sigmund 1988 and references therein),

Results, obtained for the asexual dynamics, have been generalized to
sexual populationsin which the relevant phenotypic trait is determined by one
locus, provided there is, indeed, encugh genetic variation available to render
the value of the ESS accessible under the structural restrictions of the genetic
system. In an attempt to justify the use of ESS as a working-criterion for
stability in genotype dynamic systems, most of these results have further been
proved, more generally, for any, so to say, locally adaptive dynamic system, i.c.,
a system (either genetic or cultural) which, in the face of frequency-independent
selection, obeys Fisher’s fundamental law of natural selection (Eshel 1982. For
the application of these findings to the general theory of ESS, see also
Maynard-Smith 1982.) Unfortunately, local adaptivity has been proved to be
not only a sufficient but also a necessary condition for the dynamic stability of
ESSs. It may, thus, be shown that even in a random mating sexual system, if
the phenotype is determined by more than one locus with some recombina-
tion between loci, an ESS (or, more precisely, a distribution of genotypes
determining the ESS phenotypic value), quite generally, is not even an equilib-
rium. Neither must it be even approximately close to any stable equilibrium!
Yet we believe that the interesting part of evolution has taken place in sexual
populations. Moreover, it appears that most phenotypic traits, concerning
animal conflict, are determined by rather complex genetic systems of several
loci, with interaction and recombination among them.

Thus, as has been demonstrated {e.g. Feldman and Cavalli Sforza 1981),
results obtained by using simplifying phenotypic criteria as ESS (and, in this
context, also inclusive fitness) may well lead to false results as they stand in
conflict with the more accurate results, drawn from exact genetic models, say
(in this context) models which follow exact changes in genotype frequencies.
While this uncomfortable finding cannot but be admitted, it is not easy, on the
other hand, to reject the unfortunate claim that exact genetic analysis has
hardly, if ever, proved applicable to real data about animal conflict. It has
been, thus, maintained by Maynard-Smith {1980, 1982) that, at least at the
present state of our knowledge of population dynamics, the population-game
model is the one which can be applied to real field-data; and the tacit
assumption of local adaptation which stands at the basis of out application of
the ESS criterion to real data, is the only working hypothesis available to
us at the moment. What remains to be considered is the question, raised by
Feldman and Cavalli-Sforza, whether a hypothesis, proved to be wrong to
start with, can be adopted even as a working hypothesis, As mentioned by
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Maynard-Smith, though, the same sort of criticism, as Feldman and Cavalli-
Sforza's, could well be applied not only to his concept of ESS but, also, to the
most fundamental Darwinian idea of causal relation between natural selection
and adaptation. Overwhelming data, based on a hundred years of direct
observations, though, provides us with quite convincing evidence that natural
selection does, in fact, as a general rule, result in adaptation of natural
populations to their environment. Hence, it i suggested that deviations from
this rule, analytically proved to be cansed by the effect of sex and recombina-
tion, should better be regarded, for most aspects of evolutionary change, more
ot less as a sort of noise, superimposed on the nicely behaving asexual system.
But can one believe there is any evolutionary context in which sex can be
treated, indeed, as an evolutionarily meaningless noise? The ubiquity of the
sexual mode of reproduction in so many, quite unrelated biological systems,
despite the apparently high cost of sex (e.g. Maynard-Smith 1989), renders this
approach most questionable. Moreover, as I have suggested elsewhere (Eshel
1991), the failure of sexual, recombinant populations to respond directly to an
immediate selection pressure may appear less surprising, nowadays, in light of
more recent theoties about the evolution of sex and its function in maintaining
population variance even at the expense of slowing the rate of adaptation (e.g.
Maynard-Smith 1978; Hamilton 1980; Hamilton et al. 1981 and references
there). .
Returning now to the old controversy, with the perspective of time, one
cannot but notice that the two parties to the debate might have tacitly referred
to two distinct dynamic processes. While the failure of optimization criteria,
based on Fisher’s fundamental law, has been demonstrated in the genotype
frequency (short-term) model of natural selection, the ESS (or, more gencrally,
unbeatable strategy) property of:stability against any new mutation does, in
fact, correspond to a different process which we here refer to as the long-term
ptocess of evolution. A crucial question to be asked is whether a criticism,
based on the analysis of the short-term model, is really relevant to the concept
of ESS, when applied to long-term evolution. (It is surely relevant, though, to
various attempts to apply the ESS criterion to short-term population dynam-
ics.) Moreover, it is quite productive, as we see, to ask first about a possible
long-term counterpart of Fisher's law, say, about what could have been
referred to, repeating Fisher’s terminology, as the (fundamental) hypothesis of
long-term natural selection. This is the hypothesis that a new mutation,
introduced into a random-mating population of any genetic structure, €x-
posed to viability-selection forces, will become established in the population if
and only if it increases the average fitness of the population, at least when rare.
The reason why these questions were not asked at the time is very simple.
Although it was quite clear then, as it is now, that jong-term evolutionary
changes do not, in fact, reflect just changes in the frequencies of the same set of
genotypes, we have already seen that it was an unquestionable dogma, tacitly
accepted by any student of population biclogy at the time, that the quantita-
tive rules, governing the long-term process of evolution can be fully under-
stood on the basis of extrapolation of the well-analyzed, short-term process of



changes in genotype frequencies. Thus, as Fisher's fundamental law has
proved wrong for the short-term model, so, it was believed, must be its
counterpart, concerning the long-term process of evolutionary changes.

As we see now, this taken-for-granted conclusion is false; unlike Fisher’s
short-term fundamental law, its long-term counterpart has been proved to
hold for all Mendelian populations, regardless of the number of loci involved
in the process. We see also that this finding has a crucial bearing on the
long-term convergence to ESS.

5 Unbeatable strategies, ESS and long-term evolution

Before representing some mathematical results which I believe relevant to the
subject, let me be more specific about what I have referred to as the hypothesis
of long-term selection. Indeed, a new mutant allele, introduced into a multi-
locus system which is already in a polymorphic stable equilibrium, cannot
possibly be characterized by a single selection coefficient, hence it may not
always be that easily judged as either advantageous or disadvantageous. This
is so because, in the general case, it may be advantageous when associated
with certain wild-type alleles and disadvantageous when associated with
others. Thus, in the general two-locus model, when there are already, say,
n wild-type alieles segregating at the same locus with the mutant allele and
m alleles represented at the other locus, one can easily verify that this mutant
allele has altogether mn(m + 1)/2 different phenotypic expressions even as
heterozygote, depending on all possible combinations of wild-type alleles with
which it may be associated, either on the same locus or on the other one.
Hence, the initial (short-term) dynamics of the mutant and, as a special case,
its initial success, are determined by that number of selection coefficients and
by the frequencies of genotypes in the original, wild type population which, in
turn, determine the relative frequencies of the various phenotypic expressions
of the mutant.

Yet it has been shown (Eshel and Feldman 1984) that in the case of a fixed
environment, frequency-independent selection, starting from any internally
stable two-locus equilibrium with any number of alleles at each locus and with
any rate of recombination between them, a new mutant allele, introduced at
any of the two loci, will become established in the population if and only if
a specifically-weighed average of the viabilities of all genotypes carrying the
mutant allele, is higher, when rare, than the average viability of the population
at equilibrium, prior to being invaded by the mutant allele. This is true, more
specifically, if the average viability of all mutant genotypes is weighed accord-
ing to the values of the leading right eigenvector of the linear approximation
of the dynamics of these mutant genotypes when rare. From the Frobenius
theorem it follows that there is such a unique, strictly positive vector. More-
over, it is not difficult to show that as long as one starts with low enough
frequencies of all mutant genotypes, their relative frequencies in the popula-
tion approach in time a distribution as close as one wishes to the appropriate
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values of the leading right eigenvector in question. This justifies the weighing
of the different mutant viabilities according to the values of this vector.

One can, thus, summarize that in a random-mating two-locus population
with frequency-independent viability selection, a new mutant allele will suc-
cessfully become established in the population if and only if it initially
increases the average viability of the population at least in the sense, precisely
mentioned above, This finding was generalized by Liberman (1988) to genetic
systems with any number of loci. It can well be interpreted as the long-term
counterpart of Fisher’s fundamental law of natural selection. More important
to our discussion here and, maybe, not very surprising, one can use this result,
obtained for the case of frequency-independent selection, to justify the use of
the ESS property as a criterion for a long-term stability within frequency-
dependent systems. More specifically, one can prove the following (Eshel and
Feldman 1984; see also Hammerstein and Selten 1993):

In any two-locus diploid genetic system with random mating, if the
viability of an individual is determined by a linear population-game structure,
then:

i) Any externally stable equilibrium determines an ESS distribution of
phenotypes in the population.

ii) Any internally stable equilibrium which determines an ESS distribution
of phenotypes in the population is also externally stable.

iii) I an internally stable equilibrium determines a distribution of pheno-
types close enough to the ESS but different from it, a new mutation will
become successfully established in the population if it initially shifts the
population strategy within a cone, in the direction of the ESS. In the case of
a two-strategy population game, a necessary and sufficient condition for the
successful establishment of the new mutant allele is simply that it will render
the population strategy initially closer to the ESS.

I will deal with the third property in the next section, in relation to the
somewhat stronger concept of Evolutionary Genetic Stability, EGS. Proper-
ties (i) and (ii), however, characterize ESS as the phenotypic image, so to say, of
externally stable cquilibria (though generally not, as we have seen, of inter-
nally stable equilibria) in the general multi-locus, random-mating genetic
system with linear frequency-dependent viability-selection. This has been one
in a sequence of robust results, characterizing externally stable genetic equilib-
ria under various structures of long-term dynamics of their phenotypic im-
ages, thus enabling one to deal directly with the evolution of phenotypic
phenomena on the basis of exact genetic models (and not, as has been
modestly suggested by Maynard-Smith, as a working-approximation in case
where the supposedly more accurate, exact genetic model, turns out to be too
cumbersome to be fully applicable). Among the quantitative phenomena
whose long-term stability was studied this way were sex-ratio, as it is deter-
mined by either the parents or the offspring {(Eshe! and Feldman 1982;
Liberman et al 1990), parents’ and offspring’s quantitative parameters of
behavior in a conflict over the sex-ratio in case of different parent investments
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in male and in female offspring (Eshel and Sansone 1991, 1993), workers and
queen’s quantitative parameters of behavior in such a conflict within a haplo-
diploid population {Matessi and Eshel 1992), resources allocated to sexual
versus asexual reproduction (Eshel and Weinshall 1987; Weinshall and Eshel
1987), resources allocated by parents of different sexes in the care of their
common offspring (Motro 1991, 1993), offspring’s and parents’ parameters of
behavior in a conflict over the parents’ allocation of resources within the
brood (Eshel and Feldman 1991).

In all these examples, a necessary and sufficient condition for external
stability of a given internally stable genetic equilibrium, was shown to be that
this genetic equilibrium will determine a specific distribution of phenotypes
which, under guite a general assumption (as, ¢.g., random mating, diploidy,
restriction to non-autosomal gene effect etc.), is independent of the specific
genetic parameters of the dynamic process in question. Such a distribution of
phenotypes is exactly what has been called by Hamilton {1967) an unbeatable
strategy.

As is suggested above, I do not see any reason why not to stick to this most
useful definition which requires no phenotypic game-structure, as is the case,
for example, with resource allocation to sexual versus asexual reproduction
{Eshel and Weinshall 1987, Weinshall and Eshel 1987) as well as with some
other quantitative traits to be dealt with in the next section. In most cases,
however, the unbeatable strategy analysed can be represented as an ESS of
a specific population game, determined by the population dynamics. This is
straightforwardly the case, as we have seen, in the situation where a given
population game directly determines viability selection over 2 random mating
population (in which case, the results given above maintain that the ESS of
that superimposed game is, in fact, an unbeatable strategy of any associated
genotype dynamics). In other cases (e.g. Matessi and Eshel 1992; Eshel and
Sansone 1991,1993; Motro 1991,1993), a special technique has been de-
veloped in order to formally demonstrate a payoff function, analytically
determined by the dynamics of the genetic model, for which the unbeatable
strategy obtained can be represented as an ESS. In some cases, this payoff
function turns out to be the inclusive fitness. In others, one gets necessary
modifications of it. In other cases still (Eshel and Feldman 1991), it is shown
that no such genetic-free payoff function can be obtained, and thus, the
unbeatable strategy obtained cannot be represented in terms of an BSS of
a population game.

Note that while in the short-term process of evolution, the internally stable
equilibria are well predicted by the rules of the population-dynamics, the
long-term process of evolution does not make it possible to predict a specific
externally stable equilibrivm in the genotypic space. Instead, it is the
phenotypic image of the externally stable equilibria, say the unbeatable
strategy (or, at most, few isolated unbeatable strategies) which is determined
by the long-term process. In all cases studied, though, the characterization
of externally stable genetic equilibria by their phenotypic unbeatable-
strategy image leaves the long-term model with several degrees of freedom
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guaranteeing the existence of a continuum of externally stable genetic equilib-
ria. Thus, the long-term process, if it converges, may well converge to any one
of the infinitely many, theoretically possible externally stable equilibria, de-
pending on the erratic order in which potentially advantageous mutations are
introduced into, and become established in the population.

Thus, while the well-studied process of short-term evolution enables
one, at least in theory, to make predictions about the genotypic space,
predictions of the long-term process seem to be inevitably all restricted to the
phenotypic space. Nor can 1 see how any hypothesis, concerning the long-
term, process of evolution, can be tested, not to say refuted, on the basis of
current population-genetic data. This is, doubitlessly, one reason for why the
theory of evolutionary population biclogy, dominated by population geneti-
cists, has, till not long ago, developed exclusively in respect to the short-term
process of changes in genotype-frequencies. Most relevant questions and
hypotheses within the Darwinian theory of evolution, on the other hand,
concern the long-term process of large-scale morphological and, maybe,
behavioral changes in populations, & process which, as we know now, is
qualitatively different from the short-term one. Such questions were always
there; at least in the background of the quantitative genetic theory of evolu-
tionary changes.

At this point I allow myself to speculate that maybe it is for this reason

that, as pointed out by Lewontin (1974), the quantitative theory of evolution

has till now disappointingly failed to adjust itself to become testable on the
basis of the huge amount of data, accumulated by field population geneticists.
I-think one cannot but fully share the reservations of Lewontin with regard to
the relevance of the current quantitative theory to the observed, empirical
data, now at our disposal. For theoretical reasons which I have tried to clarify
above, however, I only doubt whether a theory, so exclusively adjusted to
genetic data in current populations, especially to estimations of genetic poly-
morphism in various loci, can possibly provide us with the appropriate tool to
cope with an important class of problems concerning phenomena which
1 have tried to specify as belonging to the process of long-term evolution. For
this class of problems, I believe, one should start looking for a different theory
as well as for different data.

To avoid misunderstanding, though, I want to make myself perfectly clear
at this point, if I have not done so up till now, that I have no doubt about the
crucial importance of a genetical-data-oriented theory, based on the analysis
of exact genetic models. Moreover, 1 believe that any further development of
such a theory is most desirable not only for a large number of applications and
short-term goals. In this, as well as in other works, I have tried to express my
opinion that one cannot possibly develop a sound quantitative theory of
long-term evolution without resorting to theoretical knowledge, accumulated
by the analysis of short-term, exact genetic models which one may still hope to
test more thoroughly against empirical genetic data. Yet I maintain that these
models should not be regarded as the only correct tool to deal with quantita-
tive problems in the theory of evolution.
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6 Continuous-stability, evolutionary-genetic-stability, convergence-stability
and Related Concepts

In the previous section I maintained that a meaningful discussion of long-term
stability within the evolutionary context requires a transformation from the
genotypic to the phenotypic space; and that such a transformation brings
forth the concepts of Unbeatable Strategy and ESS as the natural criteria for
long-term stability. We see, however, that in a wide class of situations, these
criteria, just because they reflect the topology of the genotypic space, prove
insufficient (though, as we see, still necessary) to cope with some essential
aspects of evolutionary stability within the richer topology of the phenotypic
space. :

To represent the problem in a non-mathematical way, let us first return to
the situation in which a potentially continuous phenotypic trait, say the length
of a tail, is observed to be changing during the long course of evelution. In this
case, to say that having a given length of a tail, say exactly 53.2 cm, is an
Unbeatable Strategy or, for this matter, an ESS, means only that if the entire
population, except for small enough mutant minority within it, is fixed on
exactly this length of a tail, it is individually advantageous to stick to the
majority. This criterion of stability, being a phenotypic reflection of
{genotypic) external stability, thus deals with the only sort of small deviations,
allowed by the discrete topology of the genotypic space, say, deviations by
a small enough minority of mutant strategists. But in reality, even in the case
of fixation (or say, almost fixation), can one expect nature to be so accurate as
to allow for a population which consists mainly of individuals with exactly the
unbeatable phenotypic value, when a continuous parameter like the length of
a tail is involved? In this case, another sort of small deviation from fixation on
a specific, exact value, should be taken into consideration. Indeed, two
populations, each fixed (or almost fixed) on a different strategy, are regarded
as close to each other as one wishes in the natural topology of the phenotypic
space, if only the two strategies in question are sufficiently close to each other
in this topology. Yet, in the topology of the genotypic space, these very same
two populations, inevitably consisting on different genotypes, must be as far
apari from each other as possible.

A crucial question to be asked, then, is whether and under what considera-
tion, does the requirement of the Unbeatable Strategy guarantee that
long-term selection will operate further to diminish deviations by the entire
population as it does with deviations (either small or large) by a small
minority within it.

Before dealing with this general problem, let us concentrate first on the
much simpler, special case of a random-mating genetic population, subject to
viability-selection due to a linear population-game. Recall that in this case we
know, quite generally, that the unbeatable strategies of the population, if they
exist, are just the ESSs of the population game, and this remains true in the
case in which there is a continuity of pure strategies. A more restrictive, yet
easier-to-deal-with question than the one being asked above, is the following:
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When a population is fixed on a value, close to the ESS, is the ESS condition
then sufficient for natural selection to favor mutation in the direction of the
ESS? Quite surprisingly, even in this case, the answer to this question is
negative (Eshel and Motro 1981; Bshel 1982).

In order to see this, assume a linear population game with a continuity of
pure strategies and assume, for example, that if +and s are such pure strategies,
then the payoff for a t-strategist when encountering an s-strategist is:

Vit,s)=t(2cs —1)+w {6.1)

. In saying that the population game is linear I mean, indeed, that if x and
y are mixed strategies, then the value V (x, y) of the payoff function is given by
the integration of all the values of V(t, 5) over all pairs (¢, s) of relevant pure
strategies according to the probability measure (x, y). It is easy to see that for
any value of 5, V(t, s), as a function of , assumes a global, strict maximum at
t = cs. This means that the pure strategy t = 0 is a strict BSS because it is
strictly better against itself than any alternative pure strategy and, hence, than
any linear combination of such strategics. But let us assume ¢ > 1. In this case,
if the entire population is fixed on any value s > 0, as close to 0 as we wish,
then, for any individual in the population it is advantageous to increase
slightly its own t-value (at least up to the value cs) and it is disadvantageous to
decrease it. The opposite is true if the population is fixed on a value s <0.
Thus, in ‘both cases it is in the advantage of each individual in the population
to shift its own strategy slightly away from the (strict!) ESS.

The opposite is true, however, when ¢ < 1. In this case, it is not only true
that the exact BSS value 0, once fixed in the population, is strictly advantage-
ous against any alternative mutant value (this is true, surprising enough, also
in the case where ¢ > 1). Unlike in the case ¢ > 1, it is, furthermore, true then
that if the entire population is fixed on a value close to 0, but not exactly 0,
natural selection will favour individual changes in the direction of 0. One can,
thus, see that the condition ¢ <1 guarantees a stability condition, stronger
than ESS, even in its strict form.

Definition (Eshel and Motro 1981). A real value ¢ is said to be a Continuously
Stable Strategy (CSS) of a continuous-state population game if it satisfies the
following two conditions: ‘

(i) tis an ESS of the game, namely, once it is fixed in the population, it is
advantageous relative to any mutant strategy, introduced into the population
in small enough frequency.

(i) If the populationis fixed on any value, sufficiently close to t, then there
is selective advantage to those mutations that render the individual’s strategy
at least slightly closer to it and selective disadvantage to those that render the
individual’s strategy further apart from it.

The second, additional condition (ii) of CSS has been given a special name,
m-stability, by Taylor (1989). This has been recently replaced by the term
convergence-stability, suggested by Christiansen (1991). Although, as we shall
see, this term is, somehow misleading, 1 have been convinced by Taylor



(personal communication, see also Taylor 1994, this volume) to adopt it here,
as it is already widespread. For biological examples of continuously stable and
unstable cases of an ESS see Eshel and Motro 1981; Eshel 1982. For a recent
attempt to generalize the concept of CSS to a multidimensional dynamic, see
Matessi and Di Pasquale (this volume).

As we have already seen, the convergence-stability condition (ii) does not
follow from the ESS condition (i). It is not difficult to show, moreover (e.g.
Taylor 1989, Christiansen 1990), that neither does it imply the ESS condition.
Employing a quite general result of Hofbauer et al. (1979), oné can verify,
however, that the two are equivalent whenever ¥ {t, s} is linear, at least as
a function of t. It should be noted, therefore, that the CSS criterion does not
carry further information when applied to the (apparently continuous) change
in the frequency in which a given pure strategy is employed in the population.
(Such an attempt has been followed, however, in several occastons, always
ending, not surprisingly, with the demonstration of the continuocus-stability
property of the ESS in question.)

The concept of continuous stability is naturally applicable to situations in
which each mutation is of small effect. In this case, the CSS condition can be
characterized by the second derivatives of the payoff function V. More
specifically one can prove (Eshel 1982):

The value t¥* is CSS of the continuous-state population-game V (t, s) if and
almost only if at ¢ = s = t*, the following three conditions are satisfied:
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(A necessary condition for the CSS property of £* is obtained by replacing the
strict inequalities (6.3) and (6.4) by weak inequalities. This is why the “almost”
was used above.) Thus, the CSS, like the ESS criterion of stability, being fully
determined in terms of the payoff function V, may well be employed even in
cases where no population dynamics is involved, e.g. as a solution to rational
behaviour of individuals within a population. It is easy to see that with the
assumption of small-effect mutation, (6.2) together with (6.3) guarantee the
ESS requirement (i), while (6.2) and (6.4) guarantee the convergence-stability
requirement (ii). Quite similar conditions have already been used by Chris-
tiansen and Fenchel (1977) and by Fenchel and Christiansen (1977) in & study
of the evolution of characters involved in exploitative competition.
Returning, however, to the more general structure of an Unbeatable
Strategy within any long-term population dynamics, further analysis indicates
that no simple phenotypic criterion (as the one given in (6.2)-(6.4)) can be
generally applied to the question of stability against small deviations of the
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entire population from the exact unbeatable value. Instead, the result of the
analysis, even though most often given in observable phenotypic terms,
appears to depend, in each case separately, on the genetic structure of the
problem (even though, generally, not on the specific genetic parameters
involved). We therefore need, in this case, a definition different from the
population-game CS8 criterion.

Definition (Eshel and Feldman 1982,1984). A real value —00 < § < 00,
measuring a phenotypic trait is said to have the property of Evolutionary
Genetic Stability (EGS) within the framework of a given genetical structure if
and only if the following two conditions are satisfied:
o (i) s is an unbeatable strategy, ie. it is the phenotypic image of an ex-
ternally stable equilibrium.

(iiy Any internal equilibrium, determining 2 phenotypic value close
enough to s, is unstable with respect to mutation that initially renders the
population value closer to s, while it is stable with respect to mutation that

renders the population value further away from it.

As follows from the result, given at the beginning of the previous section,
any ESS of a two-strategy linear population game has the EGS property in
respect to any (possibly multi-locus) random-mating genetic population, sub-
ject to frequency-dependent viability selection according to the rules of the
population game in question. Furthermore, in most works referred to in the
previous section concerning Unbeatable Strategies, the additional EGS prop-
erty has been proved under quite genetically-robust conditions. Note, how-
ever, that unlike the genetic-free concepts of ESS and CSS, the EGS property
of a given phenotypic trait, by definition, although sometimes robustly proved
for a rather wide class of genetic structures, cannot be shown to hold for all
possible structures. Thus, for example, allocation of equal resources to male
and to female offspring (Fisher 1930) has proved to be EGS when determined
by any set of alleles at an autosomal locus (Eshe! and Feldman 1982a) or at
any number of loci (Liberman et al 1990) but not when affected by sex-linked
loci (Eshel and Feldman 1982b. See also Hamilton 1967).

Moreover, the definition of EGS may well be applied to any quantitative
trait, not necessarily a phenotypic one, which is genetically determined within
a given dynamic structure. Thus, as a special case of what they call the
reduction principle, it has been shown by Liberman and Feldman (1986} that
under the assumption of fixed environmental conditions, any regulating
mutation that decreases the rate of recombination between two other loci, will
become established in the population. This finding demonstrates the value
zero as the only EGS rate of recombination between any two loci under fixed
environmental conditions (EGS in respect to any third, modifying locus, to be
more precise). In the same way it has been shown (Eshel 1985) that the only
EGS rate of meiotic segregation among two alleles, when regulated by
modifiers in another, unlinked locus, is the one given by Mendel’s rules. Quite
surprisingly, this is not true for linked modifiers, as indicated by previous
results, proved by Liberman (1975). In these cases, as well as in the case of



resource allocation between sexual and asexual modes of reproduction (Eshel
and Weinshall 1987; Weinshall and Eshel 1987), the EGS value cannot be
interpreted as an ESS (or, indeed, a CS88) of whatsoever population-game
structure. In many other cases, mentioned in the previous section, a special
technique enables one to find a special payoff function for which the EGS
value can be interpreted as an ESS and, in most cases, a CSS. Yet even this
remains true only in respect to a specific, though may be wide, domain of
genetic structures.

An emphasis on the close relation between the concepts of CSS and EGS
was made by a unified terminology, suggested by Taylor (1989). More impor-
tantly, the use of the same term, convergence-stability, for both the population
game structure and for the phenotypic image of a population dynamics, has
been further justified by a crucially important analytical result, proved by
Taylor (1989). This result indicates that in the most general one-locus, ran-
dommating, diploid genetic system with the most general family-structure of
viability selection, convergence-stability in the dynamic system is mathemat-
ically equivalent to covergence-stability at the image population game, pro-
vided the payoff function of the game is chosen to be the inclusive fitness.

This result, surprising as it is, has undoubtedly fitted well into the general
feeling, already diffused among those who first studied the properties of
continuous stability and related concepts, that in the case of continuous traits,
it is the second requirement, namely convergence-stability, that virtually
proves the more essential one for the (long-term) convergence to a specific
phenotypic value. This view has been more specifically expressed by Chris-
tiansen (1991), who was the first to suggest a biologically sound example of
a convergence-stable value which is not an unbeatable strategy, a possibility
which, in a more general way, has already been studied by Taylor (1989). The
rather intuitive argument goes that, once the population is sufficiently close to
an convergence-stable value, regardless of whether it is an unbeatable strategy
or not, the forces of natural selection should not possibly allow the population
to deviate too far away from it. Yet, if the convergence-stable value is not an
unbeatable strategy, it cannot either be maintained as a monomorphic equi-
librium, thus, so the argument goes, some small phenotypic variance is
expected to always be maintained around the convergence-stable value. Such
a value has been referred to by Christiansen as a Polymorphic Evolutionary
Attainable Stable Trait (PEAST), to be distinguished from a Monomorphic
Evolutionary Attainable Stable Trait (MEAST) which is, in fact, either a CSS
or an EGS (Christiansen 1991).

A somewhat more direct analysis of the specific dynamics in the simplest
case of either an asexual or a one locus, randem mating population (Eshel and
Motro, unpublished), indicates, in agreement with Christiansen, that indeed, if
the population starts at one side of a convergence-stable value, but close to it,
the combined effect of small-effect mutation and selection will always push the
population closer to the vicinity of the m-stable value, until it assumes
a small-variance distribution around it. Moreover, this can happen only in the
case of convergence-stability, regardless of whether the value in question is
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unbeatable or not. Also in agreement with Christiansen it can be shown that,
once a small-variance phenotypic distribution around the convergence-stable
value is cstablished, a necessary and sufficient condition for convergence to
a monomorphic fixation is that this value will also be an Unbeatable Strategy
(namely that it will be either CSS or EGS). Yet it is shown that if the
convergence-stable value is not unbeatable (in this case, not an ESS), then no
stable, small-variance polymorphic djstribution around the convergence-
stable value can possibly be maintained by the forces of long-term selection.
Instead, a new mutation will become successfuily established in the popula-
tion if and only if they increase the population phenotypic variance. It is
further shown that in this case, the process will always end up with a situation
where all phenotypic values, expressed in the population, will finally be found
outside the basis of attraction of the convergence-stable value.

More generally one should note that, contrary to the first intuition,
convergence-stability by itself does not really imply convergence. It requires
only that if the entire population is fixed ona value, sufficiently close to it, then
natural selection will initially favor mutations which determine values closer
to it. Still, quite generally, one can show that this remains true in the case of
a small-variance phenotypic distribution at one side of the convergence-stable
value and close to it. But it is not true for small-variance distributions around
the convergence-stable value, on two sides of it. In this case, the additional
properties of the ESS and the Unbeatable Strategy (say CSS or EGS} prove
essential for convergence. In this sense, the term convergence-stability is
somehow misleading. I have nevertheless been convinced by Peter Taylor to
adopt it because it is now too widely accepted to be ignored. Yet, it appears
that the essential concepts of long-term stability in a continuous phenotypic
state situation are, after all, those of CSS and ESS.

7 Some open problems

The concepts of CSS, EGS and convergence-stability were suggested in order
to formalize a new sort of stability in a continuous phenotypic space. Thus in
addition to stability against deviation by small minority of mutants, we can
talk also about stability against small deviations of the entire population from
a given phenotypic value. Yet, in natural populations one observes, generally,
a more or less continuous distribution of all sorts of deviations from a given
central value. Thus, speaking of the most general concept of convergence-
stability in a general continuous phenotypic space, the central question to be
asked is the following: -

Is there a general, natural metric, defined on the space of all phenotypic
distributions, such that one can meaningfully define long-term stability by
requiring that if the population is close enough to a given distribution in this
metric, then the long-term forces of natural selection will operate eventually to
even decrease this distance? Or else {in population-game terms), higher payoff
will then be applied to distributions, closer to that specific one?



It is easy to sce that for all L, metrics, the CS8 condition is indeed
necessary for this sort of general convergence-stability but I do not know
whether, or under what auxiliary conditions it is also sufficient.

A quite closely connected question is that of extending the concept of
CS8S to a multidimensional phenotypic situation. It is quite clear that this
sort of extension is somehow problematic and that it must, inevitably, concern
_ either some weakening of the requirements or additional assumptions because
of one qualitative difference between the general process of trial and error
in a one dimensional and in multidimensional spaces. While in the first
case, even though the introduction of the mutation is necessarily erratic,
the direction of the process, though not its pace, can be defined in a
deterministic way, by the forces of selection, this is generally not so in
a multidimensional case and the question of which sort of change occurs
first, appears to -be crucial. Nevertheless one can find quite general and
satisfactory sufficient conditions to guarantee long-term convergence to
the vicinity of a given two-dimensional value (Motro 1993). The problem is
quite extensively studied in a recent article by Matessi and Di Pasquale (1994
this volume} which, with some additional, still quite general, assumptions
suggests a quite robust analysis of two dimensional long-term continuous
stability.
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