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Absh'act The paper prov1des an explanatlon for altrmstlc behavior based on
- the matching and learning technology in the population.

In a infinite structured population, in which individuals meet and interact -

with. their. neighbors, individuals learn by imitating their more successful
nelghbors ‘We ask which strategies are robust against invasion of mutants: A
strategy is unbeatable if when-all p]ay it and a finite group of identical mutants
enters then the learning process eliminates the mutants with’ probability 1. We
find that such an unbeatable strategy is necessarily one in which each indi-
vidual behaves as'if he is related to his neighbors and takes into account their
welfare as well as his. The degree to whlch he cares depends on the radii of his
neighborhoads. :

Key wdrdsﬁ Population dynamics, Local interaction, altruism, inclusive fitness

1. Inlfroducﬁon '
, Kmshlp has been suggested as a plaus1ble explanation of altruism and coop-
erative behavlor between blood reldtmns When mdmduals are related and
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share some common genes then cooperation increases the fitness of their
common genes and altruistic behavior is Likely to be selected (Hamilton
Hamilton [9)). -~ - = : :

~ Kinship arguments are not suitable for explaining cooperation in human
society at large: Two randomly chosen individuals are not likely to be related.
Vet humans very often behave as if the well being of others enters their con-
siderations and influences their actions. Many explanations have been offered
for this seeming paradox: Recently some models have calculated the degree of
altruism which is in some sense stable given that altruistic behavior exists and
can be identified as such by others (see e.g. Fershtman and Weiss [7]).7¢ ¢

It is likely that humans learned to behave altruistically . in sitluations in. .

which this type of behavior was called for and was justified e.g. within a
family, and later have extended this behavior to other situations (Axelrod and
Hamilton [1]). In this paper we suggest that (seemingly) altruistic behatvior
may have also originated in situations in which individuals were not related
but met oftén.with a subset of the population: their neighbors, We show how
the matching and the learning technology in an infinite population causes in-
dividuals to behave as if they are altruistic and care about their neighbor’s
welfare. It is assumed that the population has a local interaction structure:
Fach individual meets and interacts only with individuals in his interaction
neighborhood. The interaction takes the form of a game, payoffs are obtained
as a result of these interactions. Occasionally, an individual is permitted to
learn and change bis strategy. He will then imitate at random one of the in-
dividuals il his learning neighborhood and he is more likely to imitate a more
successful individual. The learning neighborhood may differ from the inter-
action neighborhood. We.also assume that individuals aré consérvative and
are reluctant to introduce a new strategy 10 thejr envitonment. This assump-
- tion is only: suitable for cultural evolution. In a biological setiip] replacing a
dead individual-is analogous to learning. However, a dead individual can be
replaced by the seed of any of his neighbors irrespective of whether the dead
individual was identical to his neighbors. Hesitation and fear of novelty are
cultura! rather than biological features. Thus, thie results of this model should
not be directly applied to biological models. - s
‘In the spirit of the Evolutionarily Stable Strategies (ESS) we look for an
unbeatable strategy: A strategy, that if all individuals play it and a finite group
of identical mutants enters, the dynamic process defined by the interaction and
learning procedure will eliminate the mutants with probability 1. We find that
if such an unbeatable strategy exists it is one in which individuals behave as if
they care about their neighbors: “The unbeatable strategy is an ESS in a game
derived from the original interaction game by changing the payofis so that the
new payoffs take account of the inclusive fitness as defined by Hamilton. The
player cares about the welfare of his opponents to a degree which is deter-
mined by the sizes (radii) of the relevant neighbors. When taking the ESS of
this, new derived game we no longer take account of the local interaction
structure, this is taken care of by the inclusive fitness. o
The intuition for this result is straightforward. The learning process con-

gists of imitation. The individuals in a player’s learning neighborhood are -

jikely to play the same strategy that he does, since he is likely to imitate them
and they him. However, an individual interacts with players ib his interac-
tion neighborhood, who may or may not have imitated him. A strategy is
likely to be unbeatable if it earns a higher payoff than others in these changing
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environment {else a player of this strategy is likely to switch to another that
does better). To do better than others; a strategy- has to strike a balance
between cooperating with identical strategies and beating other strategies.
Players are not assumed to have the sophistication required for this calcula-

. tion, circumstances lead them to behave as if they do. Balancing between the
two aims depends on the ratio between the two radii of the interacting and
learning neighborhoods. If n, the radius of the learning neighborhood is

much greater than k (the radius of the interaction neighborhood) then a player
is likely to interact with identical individuals and under these circumstances .
a strategy that takes into account the opponents welfare will do well. While
if £ n then a player will face mostly other strategies and in this case he
will do better by bemg selfish and not ta.kmg 1nto account his opponent’
welfare. : :

2. The model .

' 2.1. Interaction and learning on a lfﬁe:'i -

* Three components aré Iiee_de_d to describe the model: -

* How do mdmduals interact?
« When is an individual allowed to change his strategy? o
* How does he change Ius strategy (leamlng) '

Denumerable mdnnduals are located at the: 1nteger pomts (0 +1 +2...) -
of an infinite line. Each individual affects and is affectéd by his unmechate 2k
ne1ghbors the intgraction takes the form of a game. Each individual chdoses a
strategy in a symmetric finite game £, this strategy interacts with the strategies
of all his immediate 2k neighbors and produces his payofl. The:payoft:is the
sum of the payoffs-he gets from his interaction with all his neighbors. Time is
continuous and interaction takes place at each time 2. We assume that all
payoffs in £2 are strictly positive. :

Occasionally, an individual is allowed to change. his strategy Each indi-
vidual waits an exponential time, mdependent of others and independent of
past events, and with'the same intensity parameter as others, which, without
loss of generalxty, we take to be 1. 'When called upon to revise his strategy an
individual ‘will: not: necessarily be keen to do so. Ours is not a model of in: ..
spiring inniovations but rather of sluggish imitation. A pIayer will start looking
around for a new strategy to adopt, but umforrmty and homogenexty are the
enernies of change. If he sees no new strategies in his nearest environment he is
very likely to stop his search for a new strategy. Very few players will continue
despite this discouragement to search for inspiration in a wider neighborhood.
In this paper we assume extreme conservatism of learning: An individual will
learn only if at least one of his two immediate neighbors plays a strategy dif-.
ferent to the.one:he currently plays, That is, we assume that if the immedi-
ate neighborhood does: not encourage change then the player will look no
further. '

However, when an mdiwdual is- actlvated to learn and when the above
condition is satisfied then he will consider his learning neighborhood: 2n + 1
individuals, including himself and his immediate 2n neighbors. Individual ¢
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- will switch to the strategy! used by individual j with a rate given by the rela- , strate
tive success of j in ¢’s learning neighborhood. Thus, the momsgtarj('prbﬁﬁbi] L prob
ity p;; of i switching tof's strategy at time ¢ (for / in s learning neiglibor: o
hood) is given by: - e Lo R T
Y o . R N . latte
Pi,j?zn @ e SR P R \ ) SR proc
C Lk P B AR S S S I
" -where @y, is player A's current payoff (the sum total of all ‘his interactions). strat
- Note that our assumption that all. payoffs afe positive inplies that a player 1nter
- who is permitted to learn has a positive probability to'switch to a different — - . vant
© strategy.®? R s o that,
-~ This dynamic system is a special case of an Interacting Particle System in unaf
- which particles can be in-one of a finite aumber of states and in which the shuix
' momentary transition rates at each Jocation are uniformly bounded and de- unbe
: ' termined by the state of particles within a finite radius. The derived evolu- _ cons
i _ tionary dynamics of such a system is uniquely determined and is a:Markov-. - egie:
- process in the space of all population states (see Ligget 1985, Ligget 1985, [11], - of tz
" The dynamic process is thus fully defined by the game (2 and the radii of cert:
the two neighborhoads: k,n. We denote the dynamic process defined in this side
way by {2,k n). ' S state
The conservative learning assumption, that an individual may learn only® - - thei
when at least one of his immediate neighbors is different, ensures that-only- wall
players directly on the border of clusters between two strategies may cliange ' ‘ play
their strategies. The continuous ‘time’ of the dynamics ensures that no two . twee
(close) individuals. learn simultaneously (a zero probability’ event). -Hence : o
" Twex

borders .only shift but no -new borders and no ‘new clusters are formed, al-
though clusters may shrink and_*clli‘sappear._ﬂFQr a discussion 0f ‘coheervative . - . tary
assumiption see section 3. F e R S EE ' Thi

& | r R ‘| tiEI."
T i A ‘ Tan
2.2. Unbeatable Strategies . o AT I :
SRR : L L : rest
We shall look for strategies which are in some sense robust against i;nv;asion_iof o Py-
mutants. Our definition of robustness, like the Evolutionarily Stablé Strategies - _Teve
(ESS) tests the robustness of a strategy against a single type.of mutant.ata ... the
time. We assume that alt individuals on the line"play the same strategy: and Py
that a finite pumber of identical mutants fhas entered. The indigenous strategy . . no
is stable against the invasion if, whetl beginning at this state, the dynamic .. . ' _ me:
process of interaction and Jearning eliminates the mutants with probability 1.
Definition. 4 strategy X is an unbeatable strategy of (2, k;n) if for any strategy” ‘ | ane
Y, beginning from a state. in which all but a finite number of individuals play -
o S o o v Le
1 We allow individuals to learn and imitate mixed strategies. In a genetic context this raises no’ : - ex¢
probiems. For cultural evolulion one may argue that when an individual adopts a new mode of
canduct he learns a set of rules that determine hi¢ random behavior. Do I

2 The payofis of the game {3 may be interpreted as the excess payoff above a payoff level 0.
Transforming all payoffs of € (and 0) by an affine transformation, X — ax + f§ with.a > 0, leaves. .

the dynamnics defined above unchariged. Thus the payoffs of the game £2 can be taken to be von 2.
Neumnann Morgenstérn utility levels. :
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strategy X and the rest play Y, the dynamtc process {{,k n) conuerges with
probability 1to a state in wtuch all play X. :

-

The d1ﬁ‘erence ‘between an ESS and an Unbeatable Strategy is that the

) latter is defined for populations-with a local interaction structure; and that the

process by which mutants are eliminated is explicitly defined.
- Due to the conservative learting assumption, the strength of an un‘beatable

: strategy is revealed when the mutants have succeeded and won over a large

interval on the line: Any short string of mutants has a positive probability of

_ vanishing. It also has a posmve probability of becoming sufficiently long so '
that, due to the local interaction structure, whatever happens on its one side is

unaﬂ‘ected by the other side. If a large string of mutants is guaranteed to

. shrink then it must eventually vanish, Thus it suffices to test the strength of an

- unbeatable strategy against a long string of mutants, It therefore suffices to
consider the movement of the boundary: between two large strings of strat-
egies, This, mtmtlve argument is made c]ear in the deﬁmttons and the lemma

of this séction. .
‘Consider a Frontier State a state in wluch aIl players on one side of a

‘certain player, his left side say, play a strategy ¥y, while all players to his other

side (his right side) including this player, play a strategy x. Begmn.mg with this
state, only ‘the players on the border between the two strategies may revise
their strategies, thus the dynamic process becomes a continuous time random

walk of the border (between x and y). For a strategy x to win means that each
. player will eventually play x, or altematwe]y that the frontier, the border be-

tween the two strategies, Wﬂl move to the left, to —co, with probablllty 1.

- Which strategy. will win in this simple s:ttuanon‘? Con31der the frontier be- .

tween the regions in which x and y are played. We can calculate the momen-
tary rate -of transition Pyy, for a frontier. x agent to become a y agent.

*This probability i is, of course, mdependent of thq: precise location of the fron-
-tier on the line. The position of..the frontier behaves like a_continwous time

random walk with rates of jumps Py..y and }—"y_.x to the right and to the left

. respectlvely “Frém ‘basic properties “of random walks we know that if

Px_,,, > Py "then a frontier x-player is more likely to tum to y than the

" reverse, in that case strategy y takes over, each individual will eventually play

the strategy y and the frontier will move to -+co-with probability 1. If
Pysy < Pyxt ‘then strategy x will take over, In the singular case Px—.y = Py_.x,
no strategy will take over and the borderhne between the strategies will
meander over all positions on the line.

When Py_x > Py_.y we denote it by: x > y. ¢

The follovnng lemma establishes the first connection between unbeatability

and winning in a simple fronner state,

Lemma 1. Let the initial state be one in which all individuals play sirategy x
except for a ﬁmte number who play Y, then

N I.f',.

1l If y {hen w:th posmve probab:hty the process wzl! conuerge toa ﬁxatzon
of'Y, i.e. to.a statg in which all play y.

2. IfX 'y then wtth probabzhty I aIl y players will be driven to extinction and
all will play x.' .

e L -
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Proof 1. Consider the case y > x. Thete is a positive probability that a suffi-

- ciently large single cluster (interval) of y players will be formed (recall that an
x player whose iminediate neighbor is a y player has a positive probability of

becoming a y. player). Once 2 single cluster of y players has been formed

“‘whose length is > + k the transition probabifities Py..y, Pyx o the left and
right borders of the long cluster are the same as in a simaple frontier state, ie.

" the system behaves as if there are only X player on one sidé and only y players
on the other-(or vice versa).- This is so because a player observes a neighbor-

" hood of radius n, the individuals .in :this. neighborhood: interact with in-
. dividuals who are all included in a neighborhood of tadius k of this neigh-
“porhood. Thus, if all clusters are longer than # + k thén each border. behaves
‘as a simple frontier. Since y > X, a long cluster. has' positive probability of

" becoming infinité without ever being shorter than k +#n+ 1, The process is

-~ then supercritical and therefore a cluster of y has a positive probability of

-~ winning ovet the whole population. == oG Gy
5 Now consider the case x > y. First we show that beginning with a gen-
eral population state, each single cluster will either vanish or will: beconde in-
- finite. All transition rateg at a boundary location are bounded above by 1 and
“below by some p > 0, since by assumption all payoffs in the interaction game

* are strictly positive. It therefore follows that any. chuster; of length N has a°

“probability larger than (p/p + 1)¥--of vanishing before it .reaches length

. This means that for any N > 0, with probability 1 there is only a finite num-
ber of times that a cluster ¢an be shorter than N before it disappears. Hence
. any cluster will either vanish or will become lafger than N. ~ - > - 7
.. Since we begin with a state that has only a finite fiumbér of clusters and no
._new clusters can appear (although clusters fmay vanish) it follows-that after a
finite random time all remaining clusters will be longer than 1 +k + 1 forever
and therefore their botders will behave like simple frontiers. The: length of a
(long) cluster is then a continuoéus time. Markov process. Since x > y the-pro-

- cess is subcritical and from any length > n + k4 cluster of y players will shrink
to length n -+ k with probability 1, from whence it has positive probability of

* vanishing. It therefore follows that with probability 1 a. cluster. of y can be

‘longer than i+ k only a finite number of, times before vanishing. Thus all

clusters of y will disappear with probability 1.

A direct corollary from this Iemma"is: -

Corollary.

1. 4 Straregy x is unbeatable in {.Q, I, nyif and only if for all strarégies Y#FX:

x-y {ie Py > P&-*x)-
2. There exists at most one unbeatable strategy.

Corollary 1 follows from the definition of unbeatable strategy and from

.. part 1 of the lemma. Corollary 2, the uniqueness of the unbeatable strategy

“follows directly from the lemma: If both X and y are unbeatable then Py_x
should, at the sarne time, be strictly- bigger and strictly smaller than Py
Unbeatable strategy was defined as one that cannot be invaded by any
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' mutant however from- lemrna 1 it follows that an unbeatable strategy is also
~ the upique strategy that can with positive probability invade and take over -

any other strategy: If a finite number of mutants playing the unbeatable

strategy invade a line in which all play another strategy, the mutants have a
_,posﬂwe probab1hty of taking over the whole hne :

o 23 Algebraic characterization of unbeatable strategtes

In this section we find an algebraic characterization of unbeatable strategles

. ‘based on Lemma 1. We have established that a strategy X is unbeatable in

{Q,k,n) if for all strategies y: x> y. The latter property can be easily
described in terms of the game §2 and k,n the radii of the interaction and
learning neighborhoods. .

Consider a frontier state in whxch a strategy y is played to the ]eft of the
- boundary and x to its right. We enumerate the individuals accord.lng to their
" distance from the frontier and the strategy they play

y4y3y2y1x1x2x3x4 ceees

" The payoff of an individual x; (y;) will be denoted by cu(x,) (w(3). ‘Since
- a player interacts.with 27 of his nelghbors the mﬁmtes1mal switch rates of the

border p]ayers are given by:

Z wo(y)

P i=l ' . - .‘ :
P T R T )

ZMY:)_"‘Z@@) S r
Zw(xd P e

n nt1

”Zw(xoarzw(y.-)

= EY

The cond1t10n for X>=yor P,._.x > Px_,y, becomes - _
L n+l -
oS0t +Zw(xo} >3t {zw 0 $et0)
=1
or:

"+| n+1

Zw(xf) > () > 2 wln) 2 @) @
Dividing both sides by n(n+1): '
i+ n+1

%;w( +1Zw(’“ Zm Y n+12a) ¥) .(5)

i=1
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We now calculate each player’s payoff. Denot_é by a;(g, b) the payoff of.
strategy a against strategy b (in @) then: -~ &= 0 e '
fori<k: - o - L

w(xi):(k+i~1)w(z,z);C(k'%f'+l)c_u(z,z) e -zf@'

and similarly:

o(y) = Lo
\V.Vhi]é ‘forrr‘z' > k:j - ‘. R
() =w(xx) a;'(y;'):% CAQ,X) — ®

By.'s'umming over equations (6), (7), (8) we find that the .a-vgara;ges in eqﬁa—
tion (5) .can be written as: } ) o ‘

©

n 2t n-il '].w(x,z)-k———zk' ’&lm(x;y)'? fongk
1 o 4k . 4k oS e
- E ~wx) =4 :
Er= dn—k—1

k41 )
ol %) + - w(xz) Y nzk
and similarly for strategy y. The coefficient of w(x, x) in the above equation
“can be easily explained, it is the proportion of x. players with whom the n
" strategy x players next to the border interact. That is, for each-of these n
players find the number of x players hé interacts with, add those numbers and
divide by the total number of players these n players interact with: 2kn. The
future actions of a frontier individual are partly infivericed. by the n players
who play his strategy. The coefficient of w(x,x) in (9) measures the extent to
which the influence of these n players is derived from interactions. with their
kin, players who play the same strategy. Thus this coefficient assesses the total
effect of his kinsman on a boundary player. We will see later that this indeed
corresponds to a measure of degree of relatedness among kinsmen. .

Rewrite the condition for x > y (equation (§)), to obtain:

Proposition 2. For strategies X,y ! "X > y if and onljJ if
Jorn<k ' T -

[(2k +n ~ Leo(x, %)
+ (2 = n+ Doo(, P2 + oz, x) + 2k o, ).
> [(2k + 1~ Doy, y) + (2 — n 4+ Dealy, g)][(zk_ +m)o(y,y)
+ (2% — (g, ) -

aﬁdfof nx>k .
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[(4n—' o= D5, + (k + Dol (= k + Do, + (k + oo,y 9)

[(4?1 — k- I)w(y, Y + (k+ 1)03(3’, x)][(4?1 —k+ 3)01(30 ) :

(k + Doy, 0l
- The proof-is immediate. _ o o I

24 The casen-*l

When n=1, an 1nd1v1dua1 wﬂ] imitate one of his unmedlate neighbors. In
‘this case the learning process is automatically conservative for-all values of
k. Before continuing with the general case (which requires the conservative
learning assumption} we point out how when n = 1 the unbeatablhty concept
'selects a part1cular equlibrium in 31mple 2x2 games.
From proposition 2, for # =1, strategy X is. unbeatable if for all strat-

egles y . ) i
[co(x x) + w( ][(2k + l)co(x x) + (2k - 1) (x y)]

> [w(y,y) + oy, X)I{(2k+ Daly,y) + (2K - Doy, X))

+- Consider a simple coordination game: -

when X is ‘the first strategy and y the second strategy (or indeed any other ¢
mixed strategy), the above condition translates to:

e -

7' i.e. a strategy is unbeatable if and only if 1t ylelds ‘the pareto payoﬁ'

. Conmder the Stag Hunt game:,

a,a Ob T e
b,0 | b,b R S

and test when the second strategy is unbeatable. -
The condition for the second strategy to be unbeatable is:

(2b)2> a (1 + 21k)

When (b B) is the risk dommant equ]hbnum i.e. when 2b > g, then it will
also be the unbeatable strategy for sufficiently large k. Unbeatablhty chooses
the risk dominant equilibrium for sufficiently large k's.
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2.5.f.'Large nez'ghborhoods' i

The above charactenzatmn of uibeatable strategies becomes - partlcu]arly
simple when we take the limit », £ — co while holding the ratio n/k = 8 con-

stant. The strict inequalities we obtam imply that the mequahtles of proposi-

tion 2 hold for sufficiently large n, kwith nfk=8"

for 8 <1: ‘ '-‘
Gf®(~J+G*%wm) | |
é.nd‘for9> 1 ” | R P R

- (I;L)w(z'x)*ﬁ%w(i'l)' R BT

‘The llmJ.t process should be 1nterpreted In the followmg way If for a gwen 8 '

" a strategy x satisfies {10, 11) for all strategles ¥, then for sufﬁcwntly large n,k
such that n/k = 0, strategy x is unbéatable in the process {2, k, ).
The two condxtions for unbeatablhty (10,11), can be combmed by deﬁmng
(9) as: _
o g if 0.< 1 S
r8) = { L , (12)

_ ‘417579 .-1f_9 2l

‘Note that r takes values between 0 aud 1. It is small when the mterachon
neighborhood & is bigger than the learmng neighborhood n, and r 1s closer to
1 when the learning neighborhood is the larger one. ; s

The condition for unbeatability can now be written as:

>Qi¥mw®)+g%#mﬂbﬂ S

Definition, A strategy x is unbeatable in (.Q ) af X satrsﬁes mequahty {13) for
all strategiesy #%. . 5 o -
If such strategy ex:st.s' we denote it by B(.Q r)

3
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From our _previous. comment it is clear - that ‘when B(82,r> exists for
r=r(f) then it is tnbeatable in {2,k,n) for sufficiently large nk with

arly nfk=0. ..
jon- :
(O ‘ - 3. Unbeatable strategy and kiﬁship behavior -
8. . In this section we show how the .property of unbeatability rela‘tefs‘to kinship
) “behavior. Following Hamilton [10], if an individual is related to a degree r to
Vo his opponents his inclusive fitness (see Hamilton [9], Taylor [14]) is his own
payoff plus » times that of his kin-opponent. If the game played between in-
_ _ dividuals is 2 the corresponding matrix of inclusive fitness is:
(10) O QT =Qhra N ¢ 0

(where Q' is the transpose of ).~~~ = . : L

~ An unbeatable strategy is shown to be an ESS in the game Q™ in which a

player takes into account his opponent’s payoff. Here there is no longer any

local interaction structure in the population, the population is fully mixed,

however, the payoff of each individual has been changed to take into account

that the individuals care about each other. More precisely: We show that a

- strategy is unbeatable in (£, r) if and only if it is unbeatable in {(Q27,0), and
(i1) - © that if it is unbeatable in ¢’ 0) thén it is an ESS of Q7. o

o The case k > n, where an_ individual interacts with a large number of

‘ . players but learns from few, is similar to a totally mixed population. In the

m 8, limit, where k,n — co, i.e. r = 0 each interacts with the whole population and
nk : Jearning is rather insignificant, it is therefore not sirprising that an unbeatable

: o : strategy in this case is an ESS. The main result of this section is that {£2,r)

" aing - - and <Q",0) have the same unbeatable strategies, i.e. instead of considering a

population with the local structure r we may ignore the local structure and
consider a panmictic population in which the interaction between player is

. according to the game 27, a game in which each player cares to a certain ex-

. " 'tent about his opponents: Caring substitutes the‘local structure. Since in this

{12) o setup an unbeatable strategy is an ESS of 2" it follows that an unbeatable
. strategy of {{2,r) must be an ESS of ", L
o We . begin with the case. r=0. We show that B(Q2,0), an unbeatable

© strategy of the dynamic process {(£2,0), is an ESS of Q. L

“tion ' . Forr=0the condition for unbeatablity (13) becomes:
i to L e e ' ‘ _
) o w(x,X) + 0, y) > oy, y) +o(y,x) - Vy#X o (15)
J or: S . - |
w(x,—%) > w(y,-wz-—g) Yy # x o (16)
(13) Py o ) |
This implies that if the indigenous population of x players were to be
massively invaded by a mutant y which took over half the population, then
) for : the x players would do better than the mutant. The following lemma shows
that x will also do better than a2 mutant invading in small groups, i.e. X is an

_ESS of . - -
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Lemma 3. (i)} If an unbeatable strategy B(Q 0) exists rhen it is an ESS of 2.
- (i) [fxwafu!ly m:xedESSon then x = B(Q,0). =~ . :

Proof. (i) If an unbeatable strategy x = B(©2,0) exists it satisfies (16) for all
n#X : oo : L

' For a gwen y ;-’- 4 and for any 3 > g> 0 choose

n= .( — 28)x + 2y
then:

’T

(1 —s)x—l—ay

if\!

"ifrom (17) it follows that

o B " gt
w(x,(l —s)x+3y) > co(y,(l —-s)x-{-ay) vy %'_)5,'_ 0< e'.<%-.

This ensures that % is an ESS of the game 2. o
.+ {li) Let X be a f‘ully mixed ESS of Q, then by the deﬁmtton of ESS the
. fo]lomng two properttes (1) u) hold for all ¥ ;é X

”,wa>wmw @

- addmg (:) (u) we ﬁnd that (16) is sansﬂed ie. x is an unbeatable strategy of
':thegamleorr—O SRR, S _ - n

We now consider- the general case: * > 0. The next lemma shows that'a
strategy is unbeatable i (.Q r) if and only if it is unbeatable in (.Q’ 0.

Lemma 4. For all 0 <r<1i B =B, 0) pravided at least one side of
the equation exists (i.e. If one side exists then the other exzsts as well and they
are equal)

Proof. Denote by cu’(x, y) x!)”y the payoff of x against y in the game 0", |

The strategy X is unbeatable in the game Q2" : x = B(Q" 0), 1f‘f (15) holds
forally # x, ie.

--hﬂ;m+w%&ﬁbﬁd0J%HNWéﬂ>0
using the definition of w”(x,y), this can be rewritten as:

U+NML&—MLQ+U—r@L m»m>o
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—_—
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which is the condition for X to be an unbeatable stra.tegy in (.Q r)

Comblmng lemmas (3) ( )we get:

Propasntmn 5.1 Ifx = B(Q,r), an unbeatable strategy of (Q r), exists then it

is an ESS of Q. Moreover, comparing X to any other strategy or any other ESS
of Q7 (y the stmtegy X does better than Y agamst a 50:50 mix of the two®:

A" 7). “’ Y_= 2 S

2. Any fully mzxed ESS of Q’ xs an unbeatable slmtegy of (Q r}

An unbeatab]e strate:gy does not necessanly éxist even if Q" has an ESS -

We provide an example in which ‘Q" has 4 unique ESS, and this only candi-
date for an unbeatable strategy of {£2, r) fails to be _unbeatab]e. o

Example. Let Q2 be given by:

lilof1 o l+rlo00
a=|0l2{0| o= 0 |20+ ]3r ’
030 1..r 3 0

it is easy to verify that for r < § the pure stratégy x= (1,0,0) is the unique

ESS of ', Let y =(0, 1,0) be the second pure strategy, then:

b ETY -‘i_,1,+r _ X+y o
(351 ()

B

$0 X, y do not satisfy (16) for o’ .which is a necessary. condmon for xto be an

unbeatable strategy in <.Q’ 0) and in (Q r)

4. Altrmstlctralts | a
). o e '
In this section we demonstrate thal: for some nelghborhood structures the un-

beatable strategy is an altruistic one, Consider the games Prisoners’ Dilemma
and Chicken, we show that for a sufficiently large r the unbeatable strategy is

. R

the cooperative one. A large r corresponds to the case where the learning .

neighborhood is much larger than the interaction neighborhood.

P

* Any B(Q,r) is an ‘Aunlbe:z;.t'ablie stré._téé? of f(.Q’ ,0) and as such it satisfles (16) in @ for all y.
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i

. Lét 9 be the g.mné:-

C .D ;
=15
Djeld

SN
d>b. ) . : : S BT A \
For £ to be a Chicken game its parameters should satisfy:'¢>a > b > d.
* For both games we will further assume that 2a >.5 + ¢ so that cooperating
(C, C) is the utilitarian outcome of the game. ... *: -, I
_ We now show that cooperating (C) is an unbeatable 'stfa’.'tégy.'}ii 0,7y for

is uqbeatablg in {227,0.-The ga_fr_ie,,!?’ is given by "

a sufficiently largé r. By proposition 4, strategy C is unbeatable, in {2, ry iff it
RS M L L HA

gl ]| bir
o c+rb | d(l4r)

By (15) strategy C-is unbeﬁtabié:in (Q" ) O) if for every suht#@ Z = (j},, Ya)
with y, > 0: A :

a(U47) + a1+ )y + (0 + 769, > @' (5,7) +a(l + )0+ (c+B) 3,

k

where w’(y,y) is.the payoff y qbtainsla_g?inst itself in Q2. This fgrdlllces to
Ca(i4n-epy) > (L-nnle=8)

Expanding the left hand side by writ'ing'éo‘.’-(y, y) explicitly, and di*;ri_ciing‘ by
¥4, the above can be written as: T S
(1+A(Za=b—n+@=dyl>(1=ne=b) + »its
. Since for both the Prisoners’ Dilemma and Chicken '~ d > 0 and since
we assumed that 2a — b — ¢ > 0, it follows that the above will hold for r suf-
ficiently close to 1, for all strategies y.. ' :

In contrast, the above inequality does not hold for r close to 0, thus to

coopetate (C) is not an unbeatable strategy in that case.

5 Summary and conclusions _ -

The distinguished population biologist S. Wright [17), 18] was the first to
suggest that evolution may lead to altruism in large populations in which in-
dividuals are, as he called it, isolated by distance. He believed that in large
populations individuals tend to meet only a relatively small number of their

For £ to be a Prisoners’ Dilemma game a,b,¢,d shqixld- Sat_iéfy: c>a>

m e ey —




- strategy, he learns by imitating the strategy.of one of his more successful

“The cmefgenéc of kinship behavior ; o 46l

. neighbors and that this adds to the evolutionary process more than random
noise, it substantially changes the direction of the evolutionary process. '

. This paper presents a model that agrees with Wright’s intuition. In our

* model individuals imitate and interact with a small subset of the population:
_their neighbors. A player is occasionally allowed to learn and change his

neighbors, We have shown that if a strategy is unbeatable, in the sense that
when all play it, the evolntionary process. eliminates any finite number of
mutants with probability 1, then this strategy must take into account the
payoff of its opponent. The degree it cares about the opponent’s welfare de-
pends on.the ratio between the radii. of:the interacting and the learning
neighborhoods. We found that the evolved behavior will be more altruistic the
bigger the learning neighorhood is (given an interaction neighborhood).

" Our result seems, on first'sight, to be in disagreement with some of the lit-
erature. Learning new strategy makes strategies mobile, a small learning (or
propagation) neighborhood corresponds to -low mobility. of new ideas. We
have found that altruistic behavior is more likely to occur when the learning
‘neighborhood is large. Following Wright's logic, Eshel [4] presented a model
of demes, in which the population is divided into subgroups and individuals
normally interact only within their group. Occasionally, with a given proba-
bility, an individual may move to another deme. The probability of a move
“measures mobility in this model. When mqbility is high the model approaches
a panmictic model. Eshel shows that.in a deme model altruism is more likely
to develop when mobility is low. D.S. Wilson in [15], [16), was the first to in-
troduce different leamning and interaction environments. He gave intuitive ar-
guments suggesting that altruism should evolve when the radius of the inter-
" ‘action néighborhood is substantially Jarger than the radius of the learning
- neighborhood: Our results, however, are derived with.the additional assump-
tion that learning is conservative. This assumption makes mobility low even
- when learning neighborhoods are large, one does not import a new strategy
‘into a neighborhood if it was not there to begin with. There i3, therefore, no
disagreement between the intuition- and results of our model and those of
Eshel and Wilson.* .

Our result crucially depends on the conservative learning assumption. We
assumed that an individual learns only when one of his 2 jmmediate neighbors
plays a strategy different to his. This assumption can’ be seen as an extreme
form of feluctance to learn or fequiring an incentive to learn. A player needs
to observe something new and different in his. immediate environment before
he will begin to look for a new strategy. Reluctance to learn in uniform envi-

- ronments fits cultural learning rather than biological propagation, In biologi-
cal models a dead individual is réplaced by the seed of one of his neighbors,
depending on this neighbor’s strength to project his seed to the vacant location
and with no reference to the dead individual or his ‘wishes’. We believe that
‘reluctance t6 learn describes human behavior in many situations and thus this
assumption, or variations of it, is suitable for models of cultural evolution.
Conservative learning tends to create large patches of identical strategies in

4 When we set #= 1 in the biological propagation model then conservative learning i3 trivially
satishied, A simple calculation (based on the inequalities of proposition 2) shows that contrary to
Wilson's intuition the itteraction neighborhood should, in fact, be not too large in order to sup-
port altruism.
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the population. Causal observation of cities or nations confirms that patches
of uniform behavior ocur frequently. Patches of altruists earn, on average,-
more- than patches of egoists, when the interaction Qﬁighb_ori_lo' 0 d'is srall
compared to the learning one, hence con_servatiSm_.l,ea.dsr.fq_alt_n_ustlc behavior.
- Relaxing the assunption not only makes the mathematics too complicated
for us to solve analytically, it also changes the results, as we have found in
related computer simulations. In-another paper (Eshel at al. [5]) we have
tested what happens when the conservative learning assumption. is relaxed.
‘We found that the results of this paper no longer hold wheh we move to a
model of biological propagation in which there is no re_s_t_rictign on ‘learding’”:
when an individual dies he is replaced by one of his 2n neighbors. with no
conservative restrictions. In that case, a strategy which is unbeatable in. our
model (with the conservative learning assumption) is.no, longer unbeatable, it
can be beaten by another, less altruistic strategy, However, w_e;f_oung:l_thq; even
“in the biological propagation model altruism. can be_ sustained in circum-.
stances which are extremely favorable to it, like when it costs an 1?‘11?1(111&1
‘very little to confer a great favor on his neighbors.. ... . . el
" When we remain in the cultural realm and relax the assumption by degrees
simulations show that our results still hold: Permitting an individual to learn
with small probability even when' his two immediate neighbors play the same
strategy as he does, but ‘one of his four immediate neighbors plays a'different
strategy thenthe results of our paper seem to-be robust. A 'strategy which is
unibeatable with the conservative assumption remains unbetable when'the as-
sumption is gradually relaxed. = oo e e g o
A similar model was developed by-Bergstrom & S_ta.:k. ['2] and by Eshel,
‘Samuelson & Shaked [6]: It differs from this model in that it does not allow
stochastic learning when neighborhoods have a radius > 1. Other models of
local interaction can be found in: Cohen & Eshel (3], Matessi & Jayakar (12},
- Nunney (13] and Grafen (8}~ =~ .~ o
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