J. theor. Biol. (2001) 208, 000—000
doi:10.1006/jtbi.2000.2232, available online at http:/www.idealibrary.com on IIIEQI,®

Partnership

ILAN ESHEL* AND AVNER SHAKEDT

tEconomics Department, Bonn University, 24 Adenauerallee, 53113 Bonn, Germany

(Received on 28 January 2000, Accepted in revised form on 2 November 2000)

Individuals are called partners when it is in their best interest to help each other, if by doing so
they increase the probability of being together in the future when, for similar reasons, they will
continue to help each other. Kinsmen or individuals who often face (hedonic) situations in
which helping is the dominating strategy are committed to help each other. Partnership may
develop among them since the loss of the other means the loss of a guaranteed helper. Thus,
they may be willing to take additional risks to help each other. Partnership may occur among
unrelated individuals and with no hedonic situations. Partnership creates bonds between
partners which may be much stronger than those between kinsmen; an individual may take
more risks for his partner than he will ever take for a kin. Partnership may evolve without the
sophistication and memory required for reciprocation altruism. Although kin selection,
partnership and reciprocation are likely to appear fused as the causes for altruism, we argue
that it may be possible to distinguish between them in some situations. We show that as the
partners get older partnership may become less important to them. We also show that like
cooperation, and for analogous reasons, malice may evolve among partners so that each will
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be willing to take additional risks in order to eliminate the other.

1. Introduction

Individuals are selected to behave in a way that
increases the expected length of their reproduc-
tive life. In most studies of population game
theory, individuals assume that their actions do
not influence their own or their partners’ survival
to future periods. These considerations become
important in social networks where the existence
of a surviving “partner” may strongly affect one’s
own survival probability.

The case in which one’s present actions affect
the future behavior of his partners has been
often considered in the literature. It has been
shown how reciprocal altruism (cooperation)
may evolve in such situations (Trivers, 1971;
Axelrod, 1981).
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The case in which an individual’s action affects
the welfare of others in the network and thus
their potential ability to help in the future, has
been rarely discussed in the literature, with the
exception of Eshel & Cohen (1975) and Eshel
& Motro (1981) who shows that kinship altruism
amplifies itself. If an individual knows (as in
kinship) that the other will help him in future
dangers, then the death of the other means the
loss of a reliable helper, and it is in the indi-
vidual’s interest to help the other survive. Thus,
mutual altruistic behavior among such indi-
viduals will strengthen itself. We term this
amplifying factor partnership. Partnership differs
from reciprocation altruism in that it is the ability
to help, not the willingness to help, which is
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2 I. ESHEL AND A. SHAKED

conditional on past behavior. Thus, partnership
is the relation established between two or more
individuals when it is in the interest of one to help
the other, since by doing so he increases the
probability of the other to survive and be present
in future situations where for similar reasons it
will be in the other’s best interest to help the first
individual. In this work, we concentrate on part-
nership between non-related individuals.

Where one finds altruistic cooperation its rea-
sons are likely to be mixed: kinship, partnership
and reciprocation.* Hunting dogs, inbreeding
within the pack, are likely to develop altruism
due to kin selection. But their cooperation leads
to a strong mutual dependence in their hunting
and in skirmishes with rival packs or with other
predators. The loss of a few members may be
lethal to the pack and lead to its extinction,
cooperation will therefore amplify itself and part-
nership will develop (van Lawick-Goodall, 1973).
Elaborate alliances and social bonds develop in
the pack and memory of past behavior leads to
cooperation based on reciprocation. Although
intense partnership may be established between
young unrelated male lions who form a lifelong
close bond based on mutual dependence
(Schaller, 1972), it is more common for a sibling,
when present, to be the chosen companion,
amplifying dependency and creating a partner-
ship. The common courtship-like behavior
among kin-partners suggests that reciprocation
plays an important role in maintaining and
intensifying the relationship, perhaps even
initiating it.

Although the three factors, kinship, partner-
ship and reciprocation, are interwoven in estab-
lishing altruistic behavior, we demonstrate that
they may each have a different effect on the
resulting behavior. We suggest that each of the
above factors leads to qualitatively different, if
related, predictions that may be conceivably dis-
tinguished on the basis of field observations on
a sufficiently wide range of situations.

* Altruism may also evolve by natural selection in a struc-
tured population (see Wright, 1943). In a recent paper, Eshel
et al. (1999) have shown that altruism which develops due to
a neighborhood structure resembles altruism among kins-
folk. For a more general treatment of neighbors as kin see
Hamilton (1972).

In contrast to kinship and reciprocation, the
effect of partnership on animal and human
behavior has not been studied. In order to distin-
guish between partnership altruism on one
side and kinship and reciprocation altruism
on the other, we assume that the potential part-
ners are unrelated, so that each aims to increase
only his own expected lifespan. To isolate
the effects of partnership from those of recip-
rocation we describe a situation in which
the actions of one individual can affect only
the survival probability of the others, not their
future behavior, thus precluding punishments
and rewards. This assumption, which is
formally equivalent to assuming the absence of
memory, fits a situation in which an organism
developed physiological factors for symbiosis
and partnership. Among humans, this may de-
scribe a case of help without the receiver being
aware of it, a case which cannot be explained by
reciprocal altruism (although it may be initiated
by kinship).

Under these assumptions, we demonstrate that
partnership altruism may evolve, beginning at
a level in which the cost of helping the other is
low, and amplifying itself to higher levels of mu-
tual dependence. We show that, like in kinship
altruism, an individual chooses his action to
maximize his “inclusive survival” consisting of
the sum of his own survival probability and the
product of a partnership coefficient and the
probability that both he and his partner survive.
Unlike Hamilton’s kinship coefficient, the part-
nership coefficient may assume arbitrarily high
values or indeed negative values. High values of
the coefficient correspond to situations of ex-
treme mutual dependence when the probability
of survival without the partner is low. Negative
values of the partnership coefficient correspond
to malice, when the individuals are bound to-
gether but the presence of one is detrimental
to the survival of the other. In partnership
altruism, unlike in kinship altruism, the altruistic
behavior is aimed at increasing the partner’s
survival probability conditional on the altruist’s
own survival.

In later sections of the paper, we discuss how
the age, mortality and ecological factors affect
partnership altruism differently than kinship or
reciprocal altruism.
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PARTNERSHIP 3

2. The Model

There is a large population of individuals who
may be either paired or single and who face
a stream of dangerous situations (events). The
events that occur may kill one or more of any
pair. The events differ in their nature but the
individuals recognize the type of danger and can
take some specific actions which affect their
survival. In addition, individuals whether single
or paired may die a natural death. Natural death
is distinguished from death in one of the events in
that the individuals have no effect on the prob-
ability of natural death. Natural death comes
with intensity 4, i.e. at any infinitesimal time
interval dt an individual (single or paired) may
die of natural causes with probability 4 dt. A dan-
gerous event occurs with intensity w, and a single
individual is matched with intensity v. We refer to
paired individuals as partners. Thus, a paired
individual may die a natural death or be killed by
an event. He remains with his partner for as long
as both live, if his partner dies he remains single
for a while and he may die a natural death or be
killed in one of the dangerous events, he may find
a new partner and continue his life in a pair.

At each encounter, the actions taken by the
partners determine the survival probabilities of
each of the and of their joint survival. Thus, the
effect of them actions can be described by three
probabilities: the survival probability of each
partner and their joint survival probability (the
probability of both dying is the residual probabil-
ity). We assume that there are two strategies
available at each encounter: C and D. The
dependence of the survival probabilities on the
actions taken by the two players can be written as
a symmetric game, in which each cell contains
two probabilities: the survival probability of the
player taking the action and the joint survival
rate. Thus, an encounter V' can be described by

C D

C D11, W11 V12, W12
V= , 0

D V21, W12 | U22, W22

Here v;; 1s the first partner’s probability of
survival when he takes action i and the other
partner has taken action j. The survival probabil-

ity of the other partner is then v; and the prob-
ability of both surviving the event is w;;. We
assume thatf w;; = w;;. Finally, when a single
individual faces this encounter his probability of
surviving it is 0.

An encounter is therefore characterized by
eight probabilities (v;;, w;j, 0). The distribution of
future encounters V e Q = [0, 1]8 is assumed to
be time independent and is given by F (V).

The support of the distribution F(J') may in

general be wide, allowing for various types of
encounters. In this paper, we will restrict the
support to encounters of the Prisoners’ Dilemma
type, with the first strategy representing coopera-
tion and the second defection, i.e. v,; > vyy >
U,5 > Uy,. Thus, a player can always increase his
survival probability by defecting. However, we
will in most examples assume that wy; > wy,
= W,y = Wj,, SO that defecting means a lower
probability of surviving together. This introduces
a conflict between wishing to increase one’s own
survival probability and wishing to have the
other player alongside if, indeed, he is supposed
to help in some future encounters.

In order to distinguish between partnership
and reciprocation we assume that an individual
always takes the same action in a particular event
irrespective of the past. Thus, we assume that
individuals cannot condition their behavior on
past actions taken by their partners; this excludes
reciprocation. A global strategy for an individual
is therefore a plan of how to act at each possible
encounter, i.e. a measurable function x from the
set Q of all possible encounters to the unit inter-
val, such that for all V € Q, x(V) is a (mixed) local
strategy, determining the probability of playing
C in the encounter V. Thus, at each moment in
time when both partners are present, their future
(which depends only on their global strategies) is
independent of time.

Stability. We assume that the individuals in the
population are selected to behave in a way that
increases their expected lifespan. In this model,
the longevity of an individual, either single or

1 For a mathematically oriented analysis of a special case
of this model, with the restriction w;; = v;;v;;, see Eshel &
Weinshall (1988).
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4 I. ESHEL AND A. SHAKED

paired, depends on his own strategy and on
the distribution of strategies in the entire
population.

We shall be interested in strategies that when
played by the whole population are in some sense
evolutionarily stable. Denote by S(x,y) and
U(x,y) the expected lifespan of (respectively),
a single and paired x-player in a population fixed
on y-players. Note that the strategy x affects the
behavior of its player only when he is paired. It
affects the lifespan S(x, y) of the single x player
only via the conditional lifespan of this player in
a pair [U(x,y)]. Hence, a mutant strategy x in-
creases U(x,y) if and only if it increases S(x, y).
We can therefore define an ESS using either the
payoft function U(x, y) or S(x,y):

Definition 1. A strategy y, which is fixed in the
population, is an ESS if it is strictly advantageous
against any small group of mutants playing x, i.e.
S(x,y) < S(y, y), or equivalently U(x,y) < U(y, y).

In most of the paper, we use a weaker stability
concept, an agent equilibrium or agent ESS,
in which only a single local deviation from the
global strategy y will be considered. In this
equilibrium, the only mutants considered are
those that deviate from y in a single event. This
concept is similar to Selten’s agent strategic form
(see Selten (1975), or Section 12.5.2. in Osborne
& Rubinstein, 1994).

A comment on the modeling. We have assumed
a continuum of events, each occurring with prob-
ability 0, in order to achieve two aims:

e Our modeling guarantees that changing the
action in a single event has no effect on the
long-run survival probability, since this event
will reoccur with probability 0. Thus, when con-
sidering what to play in a single event an indi-
vidual need not take into account the long-run
effects of this action. If, on the other hand, there
is a finite number of events, or one of the events
occurs with a positive probability then chang-
ing the action in that event will substantially
change the global strategy and the long-run
survival probabilities.

e A continuum of events enables us to assume, as
we do later, that the events are densely ranked

by a single parameter and each event is sur-
rounded by close and similar events. Thus, it
may be possible to deduce the behavior in one
event from the behavior in the neighboring
ones. In a discrete set of events, we would need
an additional assumption to ensure that the
distances between “neighboring” events are
sufficiently small.

The continuum model can be seen as a
limit case of a single-parameter discrete set
of events each occurring with small probability
and where neighboring events are close to each
other.

Some notations. When both partners face an
encounter V' together and their (mixed) actions
are x(V) = (x1, x2), Y(VV) = (y1, ), the survival
probability of partner 1 to the end of the encounter
is given by

' V. x(V),y) = Y, vxi(V)y; (V).

ij=1

The probability of both partners surviving the
encounter V is

P, x() y(¥)

- 3w

i,j=1

)y ).

The probability of partner 1 surviving a ran-
dom future encounter, given the global strategies
x,y of the two players and the distribution of
events F(V), is therefore,

A= Fxy) = Lnl(_v, x(V), y(V)) dF(1).

Similarly, the probability of both players sur-
viving a forthcoming encounter is

A

2 _ 2 y) = J 2V, x(V), y(V) dF (V).

Finally, the probability of a single individual
surviving such a (potential) encounter is

~

o— f 0(V)dF (V)
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PARTNERSHIP 5

2.1. PARTNERSHIP COEFFICIENT AND
INCLUSIVE SURVIVAL

Let a mutant x player be paired with an indi-
vidual taken from a population of y players and
let the two face an encounter V. Let the mutant
consider his strategy choice in the event V, as-
suming that his partner plays the global strategy
y [in particular his partner will play y = y(V) in
this event], and he himself plays the global strat-
egy x in all other events and the strategy x in the
event V. Let his conditional lifespan, given this
behaviour, be U(x, y|V, X, y).

Definition 2. 1. A global strategy x is a local best
response to y if for any encounter V, except per-
haps for a set of measure zero, the strategy
x = x(V) maximizes the conditional expected
lifespan U (x,y(V)|V, x, y).

2. A global strategy y is an agent equilibrium if
it is a local best response to itself.

Agent equilibrium is weaker than a Nash equi-
librium: clearly, any best response is an agent best
response and hence any equilibrium is an agent
equilibrium but the reverse need not be true.

To calculate the conditional expected lifespan,
note that if the two players play x, y in the en-
counter V, then the probability that both survive
the encounter is n'?(V, x, y) and the probability
that only the mutant will survive it is
n'(V,x,y) —n'*(V, x, y). In the first case, the
expected lifespan of the mutant is U(x,y), and
when he is left on his own it is S(X, y), hence,

Ux, y1V,%,y) =S, Y) [ (V,x, y) = 2(V, x, y)]
+ Uy (V. x, )
=S,y (V,x,») + [UKX,y)
— S, y]n2 (¥, x, )
=Sx, y)[7'(V,x, )
+ K(x, y)n'2(V, x, y)],

where

U(Xo y) B S(Xs y)
Sxy)

K(x,y) = (1)

The values K(x, y), S(x, y) are determined by the
two global strategies and do not depend on any
particular encounter. When an individual
chooses his action in an event V, he leaves his
global strategy unchanged and so S(x, y), U(x,y)
and therefore K(x,y) can be taken as constants.
Thus,

U(x,y) oc ! + Kn'2.

We have shown that the conditional lifespan of
an individual in an encounter V is proportional
to his own survival probability in this event plus
K times the joint survival of the two partners in
this event. The constant K measures the affinity
between the two partners and the extent to which
one partner will want to sacrifice some of his
survival probability in order to increase the joint
survival probability.

Definition 3. 1. The constant K(x, y) is the part-
nership coefficient of the two players.

2. The function I(x, y|V, x,y) = n'(V, x, y) +
K(x,y)n'?(V, x, y) is the partnership inclusive sur-
vival of player 1 when playing x against y in the
encounter V.

The conditional lifespan of an individual in an
encounter V is proportional to his partnership
inclusive survival in this encounter. Of particular
interest to us is the symmetric case of a homo-
geneous population in which all individuals play
y. In that case, y is an agent equilibrium if and
only if for almost all encounters V' the pair of
(local) strategies [y(V),y(V)] is a symmetric
Nash equilibrium of the symmetric partnership
inclusive survival game I(x, y|V, X, y).

The partnership coefficient K is conceptually
and significantly different from Hamilton’s
kinship coefficient r. Related individuals in
Hamilton’s theory care about their own survival
probability plus r times their partner’s survival;
here they care about their own survival plus
K times the joint survival probability. They care
about their partner’s survival conditioned on
their own survival. This, as we show later, leads
to different behavioral predictions of the two
theories.

Definition 4. The global strategy y is an agent-
ESS if and only if for almost all encounters V, the

[ ITRI 200022222 |



6 I. ESHEL AND A. SHAKED

local strategy y(J') is an ESS of the symmetric
partnership inclusive survival game I(x, y|

.y, y).

2.2. CALCULATION OF THE PARTNERSHIP COEFFICIENT

We begin by calculating the expected lifespan
of an individual (single or paired) who plays the
global strategy x in a population of y players. We
denoted the expected lifespan of a paired indi-
vidual by U(x, y) and by S(x, y) when he is single
(recall that in this stationary model, the expected
lifespan of an individual, whether paired or
single, is independent of time).

We first calculate U(x,y). Consider a paired
individual who plays the global strategy x in
a population of y players. Equation (2) lists all
that could happen to this individual in a short
time interval 7, between time t and t + 1. The
time interval 7 is assumed to be close to 0, which
justifies ignoring terms with higher order of .
Both individuals survive to the end of this time
interval; at the end of it there is a probability At
that the individual will die and his expected re-
maining life is 0, with probability At that only his
partner will dief and then he will be single and
his expected lifespan will be S(x, y). With prob-
ability pt the two partners will face a random
encounter, in that case with probability
7i'? = #!2(x,y) both will survive it and with
probability #! — 7'? only the first will survive it.
With the residual probability 1 — (24 4+ u)t that
none of the above will happen, our player re-
mains with his partner and his conditional life
expectancy is U(x,y). Other things could occur,
e.g. that W

Hence (ignoring terms with higher order of ,
i.e. by letting t approach 0),

U=r1+ A0+ AtS + ut[(7' — #'?)S + 712U
+[1—-Q22+ wr]U ()
or

[24 + u(l — 712U = [2 + u(@ — 7#'2)]S +1.
)
iThe probability that only the partner dies is in fact

At(1— J1), but since 7 is small we ignore the quadratic term
(Ar)2.

Similarly, we obtain an equation for S(x,y).
A single individual may die from natural causes,
or die in one of the events, or he may find a new
partner

S =1+ 10 4+ pur(1 — )0 4+ viU

~

+[1—Jt—pur(l — 0) —vt]S 4)

or

~

[ +pu(1l—0)+v]S=1+U. (5)

Solving the equations for U, S and by eqn (1)
we find that

u(@ —0)
K = .
&Y = (=22 +
Denote
24+ v
p= , (6)
u

then the partnership coefficient K can be written
as

-0

K(x, y)=m-

(7)

Note that for given global strategies, a positive
partnership coefficient K decreases with p; note
also that K increases with p and decreases with
A, v. Hence, it becomes less beneficial to take
a risk for a partner who is likely to die (a high /),
when it is easy to find a new partner (a high v),§ or
when the encounters are less likely to happen
(a low p).

The partnership coefficient K depends on the
global strategies (through 7', #'2). On the other

§ We have taken v, the ease of finding a new partner, to be
an exogenous parameter. However, if v depends on the size
of the population, then the model can be extended to deter-
mine v endogenously. A large population where it is easy to
find a new partner (a high v) lowers K which makes indi-
viduals cooperate less. Thus, individuals will have shorter
lives and the population shrinks, leading to a low v and more
cooperation. In an equilibrium, of this extended model, both
v and the population size will be endogenously determined.
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PARTNERSHIP 7

hand, the local stability of the strategies x,y
and therefore the (equilibrium) strategies
themselves depend on K. We investigate this
interrelation between the two in the following
sections.

3. An Example: Mutual Help Among Partners

Assume that all encounters have the prisoners’
dilemma form and that the survival probability
in mutual defection equals that of being single,
then defecting in all events is an ESS. If no one
ever cooperates then individuals do equally well
when single or when paired. If a small group of
mutants begins to cooperate, they will be worse
off since they sacrifice some of their survival
probability for cooperation but receive nothing
in return. However, non-cooperation is not al-
ways stable against small deviations of the entire
population. If some small degree of cooperation
has been established in the whole group, or in
a sufficiently large group, then cooperation may
amplify itself and reach a higher degree of
cooperation. If the whole population cooperates
in events in which some help can be offered for
a small cost, and if such events occur often
enough then each individual is no longer indiffer-
ent to the existence of the others. He may now
help the others in situations in which help de-
mands a greater sacrifice in order to secure the
other’s existence and thereby his help in situ-
ations for which cooperation has already been
established. We demonstrate this argument in the
example of this section.

An ESS is said to be continuously stable (CSS)
if in addition to its stability against deviations of
small groups it is also stable against small devi-
ations of large groups (see Eshel & Motro, 1981;
Eshel, 1982).

Consider a family of events each of which
exposes an unaided individual (whether single
or paired) to a fixed probability of death e.
A paired individual can help his partner
survive by reducing his own survival probability
by h. The events differ only in the cost h
of helping the other. The events (parametrized by
h) are distributed according to the function F(h)
on (0,1 —¢]. Mutual cooperation makes the
partners survive or die together. An event of
this type can be described by the following

game matrix:

C D
C |1—-hl1—h|1—-h—¢1—h—c¢
,0=1—¢.
D | 1,1—h—c¢ 1—e (1—¢)?

The first number in each cell describes the row
player’s survival probability, the second number
describes the joint survival probability, the num-
ber 60, outside the matrix, is the probability of
a single player surviving this event. Note that the
part of the matrix which describes the player’s
own survival probabilities corresponds to the
situation of additive costs and benefits, analysed
by Hamilton (1964) in his classic argument for
kin- selection.

To defect in all events is an ESS. The partner-
ship coefficient is 0, reflecting the fact that each
partner is indifferent to the survival of the other.

We show that under certain conditions the
partners will cooperate in some of the events. In
particular, we show that

e Under certain conditions there exist agent
ESSs in which the population cooperates in
a wide range of events. These agent ESSs are
also evolutionarily and continuously stable, i.e.
they are stable against small groups of mutants
and against small deviations of the whole
population.

e When such cooperative ESSs exist then the
totally non-cooperative ESS is continuously
unstable, that is, if the whole population co-
operates in events with very low costs of co-
operation (h close to 0), then increasing rather
than decreasing the range of cooperation is
advantageous. In fact, when there is a high
concentration of events around h = 0, and the
entire population has, for some reason, begun
to cooperate then it is beneficial for any indi-
vidual to further increase his range of coopera-
tion. Thus, little cooperation can amplify itself
and reach high levels of cooperation.

e The partnership coefficient K (x, x) may assume
arbitrarily large values for evolutionarily and
continuously stable strategies x. This ensures
that the partners will cooperate in a wide range
of events, including events in which the cost of
cooperation is large.

[ ITRI 200022222 |



8 I. ESHEL AND A. SHAKED

We will consider only simple strategies in
which there is cooperation in all events up to
a certain h and defection for all other events:

x(h) = {1
0

Let K(o) = K(x,, X,) be the partnership coef-
ficient when the population is fixed on a simple
strategy x,. By eqn (7)

if h<a,

if h>o.

- [3(c—h) dF ()
“y_1+p—[%a—wyuqm+450—mdemﬂ'
)

The partnership coefficient depends on the glo-
bal strategy played. On the other hand, a given
partnership coefficient determines the local best
response to any strategy played by the partner.
A strategy x, is an agent equilibrium if the part-
nership coefficient it induces makes cooperation
the best response to cooperation for events below
o and defection the best response to defection
above o.

An agent equilibrium is stable against local
mutations, i.e. against mutations occurring in the
action of a single event. However, for this family
of events local stability implies that no other
mutation, however elaborate, can invade the
population. An agent equilibrium in simple strat-
egies is an ESS. The proof for this can be found in
the appendix.

To find the agent equilibria we first investigate
the best responses for a given coefficient K.

Cooperation is the best response to coopera-
tion in an encounter A, if the partnership includes
fitness of cooperating against a cooperator is
higher than that of defecting against a cooperator:

A—h+K1-h>1+K1—h—¢ (9
or
h < Ke. (10)

Similarly, cooperation is the best response to
defection in an event h if

(l—h—e)+K(1—h—g>1—¢+K(1—¢)?
(11)

or
K
< —e).
h 1+K8(1 g) (12)
Denote
K)=K K) = (1 —¢).
H\(K) =Ko, Hy(K) = el o). (13)

Note that for any K > 0,
H,(K) < Hy(K);

hence, C is the dominant strategy for events
h < H,(K), defection D is the dominant strategy
for events h > H,(K), and for intermediate events
H,(K) < h < H{(K) cooperation is the best
response to itself and defection the best response
to itself.

We have thus proved:

Lemma 5. 1. If h < H,(K) then C is the local
dominant strategy in event h, i.e. it is the unique
best response to any strategy of the partner.

2. If h > H{(K) then D is the local dominant
strategy in event h, i.e. it is the unique best response
to any strategy of the partner.

3. If H,(K) < h < H{(K) then C is the unique
best response to C in event h and D is the unique
best response to D.

The following proposition follows directly
from the lemma:

Proposition 6. A simple strategy x, is an agent
ESS if and only if H,(K (o)) < o < H{(K(2)).

Proof. If o < H,(K(«)) then by Lemma 5 the
local best response to X, in events h:a <
h < H,(K(2)) is to cooperate contrary to what x,
prescribes, which cannot therefore be a local ESS.
If o > H{(K(2)) then the local best response in
events o >h> H{(K(x)) is to defect; hence
x, cannot be a local ESS.

If, however, H,(K(«)) < o < H{(K(x)) then for
all events h, except h = H{(K(2)) and H,(K(x)),
the strategy x,(h) is the strict best response to
itself. [

If events with lost cost of cooperation rarely
happen, then it is not worthwhile for any of the
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PARTNERSHIP 9

partners to sacrifice anything for a partner who,
even if he were so inclined, would rarely have the
opportunity to help.

If, on the other hand, there is a high concentra-
tion of events around h =0 then there exist agent
ESSs in simple strategies in which there is
cooperation, and in any of these ESSs there is
a minimal level of cooperation. This is shown in
the following proposition.

Proposition 7. Let the events be distributed
according to a continuous function F(h), with a
density function f(h), and let

1+p—(1—¢?

10> e2(1 —¢)

T hen:

1. There are two events oy > o, > 0 such that
for all events o.: 0y > o > o, the simple strat-
egy X, is an agent ESS.

2. For a < a, the simple strategy X, is not an
agent ESS.

3. The strategy X, (defection in all events) is an
ESS but is not continuously stable.

Proof. Note first that H,(K(0)) = 0 and that for
any K>0 H,(K)<eég(l —¢); hence, for a >
e(1 —¢), Hy(K) < a. If the derivative of H,(K(x))
is greater than 1 at o = 0 then H,(K(«)) is above
the diagonal around o = 0.

The derivative of K(«) at o = 0 is [see eqn (8)]

¢/ (0)

KO =1 —a o

hence, by the definition of H,(K):

d (1 —ef(0)
g FeKO) = =

the assumption of this proposition guarantees
that this expression is greater than 1. Thus,
H,(K(x)) is above the diagonal around « = 0 and
will (strictly) cross the diagonal for the first time
at some o, < g(1 — &)

Since H, < H, it follows that H; (K ()) > « for
0 < o < a,; hence, there exists o; > o, (possibly

o; =1—¢) such that for all
H,(K(2) < o0 < Hy (K(2)).

ae o, 0]

1. By Proposition 6 the strategy x,, o€
[, 1], i1s an agent ESS.

2. For a < a,:0 < Hy(K(2)), hence by Prop-
osition 6, the strategy x, is not an agent
ESS.

3. The strategy X, is not continuously stable
since when the entire population deviates
from defection and cooperates up to an
event «, for some o < oy, then given this
degree of cooperation each individual
would want to increase his cooperation up
to a;. Hence, a small deviation of the entire
population leads to even more deviations
bringing the population further away from
total non-cooperation.

This completes the proof of the proposition. []

Proposition 7 demonstrates that under certain
conditions (a high concentration of events
around h = 0) if some cooperation has been es-
tablished, the population will cooperate at least
up to the event o,, and it is possible for the
population to cooperate up to o;.

The next lemma shows that by choosing an
appropriate distribution of events the partner-
ship coefficient can be made arbitrarily large.
A large partnership coefficient makes both o, o,
large and guarantees that if there is cooperation
it will necessarily be in a wide range, at least up to
o,. Indeed, cooperation may be achieved even in
events with & close to 1 — &. In such events the
cooperators sacrifice so much for their partner
that their survival probability is close to e—their
survival probability when they are singles.

Lemma 8. The partnership coefficient K can be
made arbitrarily large by choosing a high concen-
tration of events around h = 0 in which the popula-
tion cooperates and by letting p be close to 0. For
sufficiently large K, the point o,, at which
H, (K () crosses the diagonal for the first time, can
be made arbitrarily close to ¢(1 — ¢) and the point
oy can be made arbitrarily close to 1 — .

Proof. From the definition of K(x) [eqn (8)] it is
straightforward to see that K(x) can be made
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10 I. ESHEL AND A. SHAKED

arbitrarily large for o’s close to 0, by making
p close to 0 and by choosing a distribution of
events which puts nearly all weight on
events with h close to 0. Moreover, where
the density of events is low, the derivative of
K w.r.t. o i1s close to 0. Thus, K can be made
arbitrarily large around O after which it changes
very little.

This ensures that H,(K(x)) will start close to
&(1 — ¢) around 0, and will cross the diagonal for
the first and last time arbitrarily close to (1 — &).

For similar reasons, H;(K(x)) will be large
around o = 0 and will be above the diagonal for
allao<1—¢ [

Thus, if events occur with a high probability
and if most of them have small values of h, then
partners will cooperate in nearly all events, even
in those in which helping the other requires
a great sacrifice. The intuition is simple: if most
situations are such that helping the other is
cheap, and situations in which helping is costly
are very rare, then by risking a lot to keep the
other alive, on the rare occasion when it is expen-
sive to help, one secures help in the frequently
occurring situations (the cheap ones) while an-
other situation requiring costly help is unlikely to
occur again.

Figure 1 illustrates Proposition 7 and Lemma 8.

Where H,(K(«)) is above the diagonal co-
operation is the best response to defection (C/D),
while defection is the best response to itself (D/D)
when H,(K(x)) is below the diagonal. Similarly,
cooperation is the best response to itself (C/C)
when H,(K(x)) is above the diagonal. Thus, all
simple strategies x, with ae[a,, ;] are agent
equilibria. The conditions of Lemma 8§ ensure
that both functions H;(K («)) start above the diag-
onal and cross it for high values of o5, o;.

The events in our example have the property
that the willingness to take high risks for a defect-
ing partner is limited. When h > ¢(1 —¢) an
individual will not cooperate against a defective
partner, since by cooperating he lowers both his
own and the joint survival probabilities. One can
easily imagine families of events for which this is
not the case. In such families, the partners will be
willing to cooperate even against a defecting
partner in order to increase the joint survival
probability.

D/C
PAIEE )
c/C
D/D Hy(K(0))
C/D
%, o, % (X))

F1G. 1. Agent equilibria with cooperation.

4. Malice

The partnership coefficient need not always be
positive as assumed until now. It can be negative
and induce the individuals to take risks to their
own life in order to decrease rather than increase
the joint survival probability. Such behavior, in
which an individual endangers himself in order to
lower the probability of being with his partner in
the future, we call malice.

Not all harm done to a partner is malice.
Rivalry and direct competition between indi-
viduals is common in nature and in such situ-
ations it is often to the advantage of an individual
to injure his partner opponent. In these cases,
harming the other is due to egoism, not malice.
In this sense, competitive behavior is analogous
to hedonic altruism which is also derived from
selfish behavior rather than goodwill.

A negative partnership coefficient can be estab-
lished when the partners often meet in competi-
tive situations. If then an event occurs in which
both mutual cooperation and mutual defection
are possible, the negative coefficient may tilt the
balance in favor of malicious behavior. But, as
the following example shows, a negative partner-
ship coefficient may emerge without the presence
of rivalry or competition, in situations where
both competition and cooperation are possible.

Consider a variation of the additive help
example of Section 3:

C D
Cll1—hl—-h|1-h—¢l1—h—¢
, 0=1—0,
D | 1,1—h—¢ 1—e (1—¢)?
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PARTNERSHIP 11

with ¢ <&, 0 <h <min{g,&(1 —¢)} and with
h distributed according to some function F(h).
The only difference between this event and the
events of section 3, is that the survival probability
of a single individual is higher than in mutual
defection: 1 — ¢ > 1 —e&. Defection creates a
competitive situation: with the other defects he
becomes a nuisance, since the survival probabil-
ity is higher when single. Indeed, when both part-
ners defect in all events the partnership coefficient
is negative:

B (p — &)
mey_1+p_u_wy<0

A negative value of K ensures that defection is
the dominant strategy in the partnership inclus-
ive survival game defined by this K, since

1+K(1—h—g>1—h+K(1—h),
l—e+K(1—e?>1—h—e+K(1—h—¢)

[recall that h < ¢(1 —¢)].

In this example, there is no malice per se,
confronted with a partner’s defection an indi-
vidual can only gain by defecting, he increases his
own survival probability and reduces the joint
one. However, total defection is an agent ESS for
these events and it establishes a negative partner-
ship coefficient. This negative coefficient prepares
the ground for malice to appear when a suitable
event occurs, then an individual will be willing to
reduce his own survival probability in order to
reduce their joint survival.

Note that in this example, like in Section 3,
there can be a cooperative agent ESS when there
is a high concentration of events around h = 0.
Thus, in this family of events it is possible to
establish cooperation with a positive partnership
coefficient, leading to altruistic behavior in other
events, or alternatively to have no cooperation
with a negative coefficient which may lead to
malice in other events.

The following example shows that malice, like
cooperation, can amplify itself to extreme levels,
even in situations where cooperation may also be
established. Consider the following situation in
which two neighbors could live independently

and peacefully next to each other and may con-
tinue to do so, except that occasionally the op-
portunity arises for each to harm the other. In
event h < 1/2, the aggressor survives a one-sided
attack with probability 1 — h, while the peaceful
neighbor survives it with probability &; the peace-
ful neighbor is never the sole survivor of such an
attack, ie. the joint survival probability is h.
When both neighbors attack, one of them will die
and each survives with a small probability ¢. The
risk h is distributed in (0, 1/2] according to
a function F(h). The situation is described by the
matrix:

C D

C| L1 |hh
,0=1.

D |1—hh|o0

Let x, be the simple strategy of attacking in all
events in which the cost is lower than o: h < a.
The partnership coefficient when the entire popu-
lation plays x, is

(1 —0)F()
1+p—1[1—-F(x)]
for = 0 (complete cooperation) the coefficient is
0, for o > 0 it is negative, also —1 < K(x) < 0.

Analogous to the discussion in Section 3 we
show the following:

K(O() = K(Xaa Xa) =

Proposition 9. 1. The simple strategy of full co-
operation X, is an agent ESS.

2. If events are concentrated around h = 0 and
events occur with high probability (p ~0) then
there exist a® < 1/2, such that for all « € [a*, 1/2]
the simple strategy X, is an agent ESS. In that case
no strategy x, with 0 < a < o* is an agent ESS,
and the strategy of complete cooperation X is not
continuously stable.|| Moreover, when o is small
then o* can be made close to 1/2.

Proof. Following the lemmas and propositions
of Section 3 it can be shown that:

e Cooperation is the best response to itself in the
partnership inclusive game of event h if and
only if h > — K(1 — K) = H;(K).

| Like in Section 3, it can be shown that an agent equilib-
rium in simple strategies is an ESS (see the appendix).
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12 I. ESHEL AND A. SHAKED

e Defection is the best response to itself in the
partnership inclusive game of event h if and
only if h < ¢/(1 + K) = H(K).

o If events occur with high probability (p ~ 0),
and if most events are concentrated around
h ~0, then the value K(0) can be made arbit-
rarily close to — (1 — o), thereby making
H,(K(0)) arbitrarily close to (1 — 0)/(2 — ¢) and
H,(K(0)) to 1.

e Both functions H;(K(x)) increase with o but
very slowly since most events are around h = 0.
Hence, H; (K («)) does not cross the diagonal in
(0, 1/2], and H,(K(x)) crosses the diagonal in
the interval [(1 —0)/(2 —0), 1/2].

e For all ae[(1—-0)/(2—0),1/2] the simple
strategy x, is an agent ESS.

e For small values of ¢ the expression
(1 —0)/(2—0) is close to 1/2. This ensures that
there are agent ESSs in which the partners
defect in events with h close to 1/2. In this
case, an individual is willing to forgo a
survival probability of 1/2 for a low survival
probability of ¢ in order not to be with his
partner.

Part 1 follows immediately from the first two
points and part 2 from the rest. []

Proposition 9 demonstrates the symmetry be-
tween cooperation and malice; both can start at
a low level and be amplified. Here, full coopera-
tion is an ESS, but (in some circumstances) when
a small level of aggression establishes itself in the
population then each individual will become
more aggressive until a level of aggression o*, or
higher, is achieved.

Malice between partners may begin by com-
petition while altruistic cooperation may start by
hedonic cooperation. Although both competition
and hedonic situations abound in nature, the first
is probably more common. This does not neces-
sarily indicate that malice is to be found more
often than positive partnership. In situations of
malice it is best for the partners to break the
partnership, seek a new partner or new pastures,
and generally avoid each other. Although it may
not always be possible for the partners to move
away from each other, some situations of malice
will therefore not manifest themselves and will
be avoided. On the other hand, in cooperation

the partners’ bond will be strengthened and they
will be inclined to stay together.

5. Ageing

So far, we have taken the basic parameters of
the model 4, u, v, F(-) to be constant. This, in
general, need not be the case; one obvious situ-
ation to consider is ageing, when A the natural
death rate increases with the age of an individual.
When two individuals are old and their death is
imminent they will provide little help to each
other since it is doubtful whether they will both
survive to reap the benefits of their sacrifice.
When they are both young and aware that old
age gradually approaches they will help each
other but less than in the absence of ageing, since
they know that in the future they will help each
other less.

A model taking the change in A into account is
very difficult to solve, particularly since we expect
an individual to be familiar with his and his
partner’s ages. Thus, a strategy should depend
not only on the individual’s own age but also on
the age of his current partner. To simplify matters
we present here a special case of this model, in
which the events consist mainly of hedonic situ-
ations with a very small chance of another event
occurring and where a single individual cannot
find a new partner, and therefore, once single will
remain single for the rest of his life.

Let two partners be of the same age and have
the same increasing natural death rate
A(t) = Aoe®. If left alone because of the partner’s
death an individual cannot find another partner
(v =0). Each moment an event may occur with
intensity u. The event is one in which mutual
cooperation ensures survival and anything else
ensures the death of both:

C D

C [1,1]0,0
, 0=0.

D 10,00,0

The partners will always cooperate in this event
irrespective of their age; here altruism is hedonic,
one can only gain by cooperating, cooperation is
the unique ESS of this game. This mass of
hedonic events creates a positive partnership
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coefficient, so that each individual is prepared
to forgo some of his own survival in order to
increase the joint survival. The ratio of sacrifice
to gain depends on the current value of K. As-
sume that, very rarely, an opportunity for such
a sacrifice arises in the form of a non-hedonic
event in which there is a possibility of making
a sacrifice for the other, e.g. an event of the type
discussed in Section 3. The higher their current
partnership coefficient K, the wider is the range
of such events in which they will cooperate. We
show that K approaches 0 with time, so that
when young the partners will cooperate in a
range of events which shrinks as time goes on.

At each moment in time K = (U — S)/S, where
U is the expected lifespan (at time t) when with
a partner and S the expected lifespan when single.
The intensity of death is higher when an indi-
vidual is single, since in the absence of a partner
he will certainly die when a hedonic event occurs,
thus U > S. However, as the intensity of natural
death A increases both U, S approach 0, and since
the occurrence of an event becomes insignificant
relative to the looming (natural) death, the ratio
U/S approachesl.§ Thus, the partnership coeffi-
cient approaches 0 and the range of cooperation
decreases with time.

Ageing has an effect on individuals only if their
expected lifespan is long enough to enable them
to reach old age. If individuals die young because
of predators or events other than natural death,
their strategy will not take into account the de-
crease of cooperation due to old age (see Hamil-
ton, 1966). To show that the ageing effect plays
a role in the actions taken by the young we need
to show that they continue to live sufficiently
long even after introducing ageing. Beginning
with a world in which there is no ageing, i.e. the
natural death rate A is a constant (6 =0), we
gradually introduce ageing: 6 becomes positive. It
can be easily shown that the expected lifespan of
a young individual gradually decreases as o
increases. In formal terms, the derivative with
respect to 0 of the functions U, S, U/S taken at
0 =1t=0, is finite, so that they live sufficiently

¢ The differential equations for S, U are S’ =(1+ p)
S —1,U" =2AU — (1 4+ AS). Itis straightforward (but some-
what cumbersome) to solve the equations and prove the
claimed properties. We omit the calculations.

long for ageing to affect the partners’ behavior
when they are young.**

6. Partnership, Kin Selection and Reciprocation
6.1. PARTNERSHIP AND KIN SELECTION

Differentiating between behavior which is mo-
tivated by kinship and one derived from partner-
ship is not an easy task. One reason is that they
are likely to appear intermingled, socially inter-
acting kinsmen are likely to develop some degree
of mutual dependence, becoming partners [ Eshel
& Cohen, 1975; Eshel & Motro, 1981], while
partners are often chosen among kinsmen. An-
other reason is that, as we have shown in this
work both types of behavior, kinship and part-
nership, can be similarly described each with the
help of suitable coefficient by inclusive fitness or
by partnership inclusive survival.

Partnership cannot be determined by observ-
ing only one interaction between the partners,
even if it is of a repeated nature. The existence of
other interactions and the behavior of the part-
ners in those events is essential in determining the
partners’ behavior in a particular interaction.

Both kinship and partnership may lead an
individual to exhibit altruistic behavior by
helping another individual at a cost to himself,
provided the cost is not too high. However,
partnership-altruism qualitatively differs from
kin-altruism in three factors:

e While the kinship-coefficient r can take values
between 0 and 1 only, the partnership-coefficient
K can assume arbitrarily high values or nega-
tive values.

e Kin-altruism can be described by assigning
a fixed weight r to the survival of the kin.
Partnership-altruism attaches weight to the
survival of the other conditioned on one’s own
survival.

e While the kinship-coefficient » of two indi-
viduals is fixed for life, the partnership-
coefficient K depends on the environmental
parameters (4, 4 and v in our model). For
example, K decreases when the exogenously
given intensity of death increases, as a special
case, K decreases with age.

** The simple but lengthy calculations are omitted.
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14 I. ESHEL AND A. SHAKED

The following examples demonstrate how kin-
ship and partnership may lead to different behav-
iors in seemingly similar situations.

Consider two individuals interacting while
facing a danger of a prisoner’s dilemma type:

C D
C |v11| U1z

, (14)
D | vy | V2

where v,; > vy > 035 > U1,, and v,; <3, and
where the payoff v;; describes the survival prob-
ability of an individual when he has taken action
i and the other action j.

If the two individuals are kinsmen with a
kinship-coefficient r, cooperation (C) is evolu-
tionarily stable (see Hamilton, 1964) when the
expected advantage of defecting is smaller
than r times the expected harm inflicted on the
other, 1.e.

Vyy — U
r>—2 1 (15)
Vi1 — V12

It is crucial for the theory of kin selection that
the above condition ensures cooperation in this
game matrix irrespective of the interpretation of
the game, the age of the participants and other
past or future interactions they have been or will
be involved in.

We now consider the same situation between
non-related partners; for this case we need to
know their past and future interactions (sum-
marized in the coefficient K) and also the joint
survival probabilities. We first take the joint
survival probability to be 0, i.e. whatever the
partners do, at most one will survive the danger.
The partnership matrix is

C D

C |v11,0 |v(,,0
11 12 (16)

D |v31,0 | v;55,0

Regardless of the value of the coefficient K, the
only globally stable strategy here is defection D.
So, whereas kinsmen may cooperate in this situ-
ation, pure partners never will. Unlike kinsmen,
partners are not interested in the other’s existence
after their own death.

Now consider a different way of adding the
joint survival probabilities to the game:

C D
C |vqq,0 Vi, U
11> V11 125 V12 (17)
D U1, V12 V22,0

Here if both cooperate they will survive and die
together; if only one cooperates he has a lower
chance of surviving and the defector has a higher
chance, if both defect at most one will survive the
danger. To illustrate the differences between
kinship and partnership assume, in addition, that

Va1 — V11
—>1;

V11 — V12

this ensures that condition (15) of stability of
cooperation among kinship cannot be satisfied
(r<1.

Given a partnership coefficient K, the condi-
tion for evolutionary stability of cooperation is

U1 — V11

K> (18)

Vi1 — V12

This condition is identical to condition (15); how-
ever, the partnership coefficient K can take any
positive value. Thus, if the partnership bonds are
sufficiently strong the partners will cooperate in
this situation as opposed to kinsmen who will not.

The difference between the behavior of
kinsmen and partners, particularly since the
strength of partnership changes with time, may
explain many observed phenomena in human
behavior, for example, the well-known human
tendency to remember in their last will kinsmen
rather than life-long friends.§+

6.2. PARTNERSHIP AND RECIPROCATION

Like kinship altruism, altruism that relies on
reciprocation leads to partnership, because once
the other individual will provide help in the
future (for whatever reason) he becomes

11 A model incorporating this phenomenon would have
to allow individuals to have different relations with different
persons. Some would be relatives, others partners. The de-
gree of cooperation will vary with the person and with age.
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important, his mere existence is valuable and
cooperation will amplify itself. However, partner-
ship can develop without complex memory
which is essential for reciprocation. Partnership
may begin with hedonic situations so one needs
to only identify the individuals with whom one
encounters sufficiently many hedonic situations.
It therefore becomes important for a potential
partner to signal his willingness to cooperate.
Unlike in reciprocation, the signal required for
partnership is relatively primitive, there is no
need to memorize how each individual behaved
in the last period and to reward or punish them
accordingly. For partnership it is enough to be
aware that the other is a helper (or a menace) and
to know the degree of the partnership (K). Thus,
partnership may develop among primitive organ-
isms as self-restraint in exploiting a limited re-
source (see Cohen & Eshel, 1976). For partner-
ship all that is required is a signal that can be
imprinted rather than a signal that needs to be
continuously checked; it is therefore more primi-
tive and cheap. Once such a signal evolves it is in
the interest of the recipient to identify and accept
it (Axelrod & Hamilton, 1981). The sender and
the receiver of the signal would be able to reach
higher levels of cooperation to their mutual bene-
fit. Thus, partnership may enchance the evolution
of simple signalling which may later expand to
more complex signals and lead to reciprocation.

7. Conclusion

Partnership has been defined as the relation
established between two or more individuals
when it is in their best interest to help each other,
since by doing so they increase the probability of
being together in the future when, for similar
reasons they will continue to help each other.
Partnership is inevitable among kinsmen, and it
may start among non-relatives when they face
hedonic situations. In both cases, it is worthwhile
to help the other because it will be in the other’s
best interest, if both survive, to provide help. We
have shown that partnership may evolve even
without hedonic cooperation.

Kin selection, partnership and reciprocation
are likely to appear fused as the causes for altru-
ism. However, we have shown that it may be
possible to distinguish between kin altruism and

partnership altruism by their different effects in
some situations. We have also argued that part-
nership requires a lesser degree of sophistication
than reciprocation. Our work may provide some
theoretical ground for field biologists, anthro-
pologists or sociologists in their observations of
altruism.

In this work, we have concentrated on the
survival aspect of partnership, since survival and
life expectancy are significant factors in biology.
However, the concept of partnership can be
extended to include general payoffs like welfare,
assets, income and power. Helping a partner to
increase his income ensures a more powerful
helper in the future. Such a generalization may
provide tools for applying partnership to econ-
omics and the social sciences.
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APPENDIX

In Section 3, we presented an example of a fam-
ily of encounters for which we have considered, as
candidates for equilibrium, only simple strategies
in which one cooperates up to a certain encoun-
ter and defects for all others. We have also con-
sidered only agent equilibria. Here we show that
all agent equilibria in simple strategies are neces-
sarily ESS.

Consider a family of encounters, parametrized
by h, with a given distribution function. The first
lemma applies to all such situations, the sub-
sequent lemmas hold for the situations generaliz-
ing the example in Section 3.

First, we observe that if a strategy is a best
response to another then it must also be a local
best response to it.

Lemma Al. Let x(h) be a best response global
strategy to y(h), then x(h) is a local best response

to y(h).

Proof. The proof is straightforward, and we give
here only a sketch of it. If there is an interval of
events for which x(h) was not the local best re-
sponse to y(h), then x can be corrected on a small
set of events to the local best response. This will
improve the expected lifetime of the player
on this set of events and therefore in all other
events. [

We define a family of events which generalizes
in an intuitive way our additive example in Sec-
tion 3. The encounters of family are ordered
according to a parameter h, so that as h increases
the benefits of cooperating become smaller both
for the player’s survival and for the joint survival
of the partners.

We consider families of events ordered by
a single parameter h; an event is described by the
following survival probabilities (which are func-
tions of h):

U115 Wit | VD12, Wi2 0
, 0.
Uz1, W12 | U232, W22
Assumption. 1. The gains of cooperating

decrease with h, i.e. the following differences

decrease with h:

Ut1 —U21, Ui2 —U22, Wit —Wiz, Wiz — W2,
2. For each h, the gains to the player and the

gains to the joint survival from cooperating

(rather than defecting) against a cooperator are

higher than cooperating against a defector, i.e.

V11 — U1 > V13 — U332,
W11 — Wi > Wip — Was.

It follows immediately from these assumptions
that if for some positive K and some event
h cooperating is the best response (in the inclusive
survival game) against a pure strategy X then it is
also the best response to X in events with lower h.
Also, if for some h, the strategy C is the best
response to D, then for all smaller h’s the strategy
C is the best response to C.

It is straightforward to see that the additive
example of Section 3 satisfies the assumptions
and that these ensure that H,(K) < H;(K), and
that C is the best response to D for events h below
H,(K) and C is the best response to C for
h < H,(K).

Lemma A2. Let x; be the simple strategy of
cooperating up to the event 6. Let 'y be the best
response to Xg, then y is a simple strategy.

Proof. From Lemma Al, y is a local best re-
sponse. If y is not a simple strategy then there
exist h; < h, such that y(h;) =0, y(h,) = 1. There
could be three cases concerning the location of
o0 relative to hq, h,. If 6 < hy < h, then the local
best response to defection at h, is to cooperate;
hence, by our assumption the best response to

[ ITRI 200022222 |
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defection at h; should also be cooperation and it
cannot be the case that y(h;) = 0. A similar argu-
ment holds for the case hy < h, < 0. When 0 is
between the two values h; < 6 < h,, the best
response to defect at h, is to cooperate and hence
by our assumption C is the best response to C at
a lower event hy, so that y(h;) should be 1. []

The next lemma proves that if x; is an agent
equilibrium then it is a strict equilibrium and
hence an ESS.

Lemma A3. Let x5 be an agent equilibrium then
X; is the best response to itself.

Proof. Let y be a best response to x;; then by
Lemma A2 it is a simple strategy y = x,. We now
show that o« = ¢.

Let o < 9, since X, is a best response it is (by
Lemma A1) a local best response; hence, at h = «
the best response to x;’s cooperation is both to
defect and cooperate, i.e.

v11 + K(X,, X5)Wi1 — 021 — K(xXy, X5)Way =0.

(A.1)

At h = 6 the best response to cooperation is to
cooperate and the best response to defection is to
defect; hence,

U1y + K(Xs, X5)W11 — V21 — K(X5, X)Wy = 0.

(A.2)

Recall that v, wy1, etc., are functions of h.

We show that this leads to a contradiction,
since as a function of h between o, o the left-
hand side cannot increase from equality to
inequality. To show it we need to write K(xj, X;)
explicitly. The numerator of K(x;, x;s), for
h<o,is

|:th11 dF(v) + Javm dF(v)

0 h

+ OOUzzdFU — OO(dev
[/ ear0 - | (ﬂ

0

o o0
=|:J vy11 dF(v) +J V22 dF (v)

0 o

o) )
—J 0 dF(v) +j (v — vll)dF(v)J

0 h

= |:T + j5(021 — Ull) dF(U):|’

h

where

T = fun dF(v) + vandF(v) - F@dF(u).

0 14 0

The denominator of K(x;, xs) is

1+p—[f:w11 dF(v)—I—J:WZI dF(v)

+ L‘” Wyy dF (U)j|

0 0
=1 +p— |:J' Wi1 dF(U)+J' szdF(U):|

0 J

-Pp L (W21 — wy1) dF(v)

J

=1+p_3_jmm—wMMHm

h

where

B = f wy1 dF(v) + foo Wy, dF (v).

0 ]

Substituting the explicit value of K on the left-
hand side of eqn (A.1) and multiplying by the
denominator of K, the following expression
should not decrease as a function of k:

0

(V11 — v21) |:1 +p—B _j (W21 — W11)dF(U):|

h

— (W21 — wyy) |:T + J‘é(vzl — U11)dF(U)}-

h

However, we show that its derivative is negative
and hence a contradiction is obtained. The
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derivative is ,
— (Way — Wll)h|:T + J

P h
(V11 — Uz1);'u[1 +p—B— J (W21 — Wq1) dF(U)}

h

0

(V21 — U11)dF(U):|-

By our assumption on the family of games this

, o expression is negative and hence o cannot be less
— (W24 _Wll)h|:T+J (V21 _Ull)dF(U):| P :
h

than J.
I By a completely analogous method it can be
+ (U = v20) (W21 — wi) f(h) shown that o cannot be greater than J. Hence,

+ (W21 — wi1)(v21 — v11) f(h) x=0. [

the last two terms cancel, and we are left with We have shown that when x; is an agent equi-
s librium then the only best response to X;s is X;
(V11 — V21)h [1 +p—B— J (Wa1 — Wi1) dF(v)] itself. Hence, x; is a strict equilibrium and hence

h an ESS.
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