Chapter 5

Optimality and Evolutionary Stability under
Short-Term and Long-Term Selection

ILAN ESHEL AND MARCUS W. FELDMAN

The theory of long-term selection was originally suggested as a
means of closing the gap between the phenotypic and the genotypic
approaches to natural selection (Eshel and Feldman 1984; Eshel 1991;
see also Eshel 1996; Hammerstein 1996; Matessi and Di Pasquale
1996). The objective was to incorporate aspects of the dynamical
theory of selection on genotypes, sometimes called the population
genetic approach to evolution, into the population game theory of
evolution, which is widely used in ecology, especially behavioral
ecology. The latter theory usually seeks some specific value of the
behavior under study, a value that can be regarded as optimal with
respect to some array of alternatives. For this reason, the game-
theoretic or phenotypic approaches are subsumed under the title
“optimality models.” They generally involve implicit assumptions
about the genotypic basis for the phenotypic variation, assumptions
that are often regarded as unrealistic by population geneticists. In this
chapter we discuss these two approaches and explain how they are
related. In particular, we are interested in the genetic conditions
under which the results of optimality models coincide with those of
explicit population genetic models. -

We start by distinguishing two sorts of population dynamics. Each
one is characteristic of the process of biological evolution, but each is
appropriate for a different time scale.

We call short-term evolution the dynamics of the relative fre-
quencies of a finite, fixed set of genotypes, usually those that exist
in the population at a given time but that may also include muta-
tion from among a finite set of alleles. Short-term evolution proceeds
by changes in the frequencies of genotypes represented in the
population. For most of these genotypic dynamical systems, the
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vector of genotype frequencies proceeds either toward a stable
fixed point at which all frequencies are positive (called an inferior equi-
librium) or toward one at which some frequencies are zero (called
a boundary equilibrium). For a given set of genotypes, there may
be many equilibria that are stable for the same set of evolutionary
parameters, fitness values, mutation rates, migration rates, recom-
bination fractions, and so on. This kind of stability entails that from
a starting set of frequencies close to the equilibrium, evolution will
take the population ever closer to the equilibrium.

Long-term evolution refers to the process, popularly termed
“trial and error,” whereby mutation continuously introduces into
the population new genotypes that are then subject to the forces
of natural selection, sexual selection, recombination, and the like.
Each new type may either be eliminated or become established
within the population. The successful establishment of any new
mutation initiates a new process of short-term evolution toward
a new (short-term) stable equilibrium, possibly with the extinction
of one or more genotypes that were originally in the population.
Thus, long-term evolution proceeds by an infinite sequence of tran-
sitions from one fixed set of genotypes to another fixed set of geno-
types, with each of these sets subject to short-term evolution toward
a new equilibrium characteristic of its fixed set of genotypes. We will
restrict our study of long-term evolution to those mutations that
result in changes of phenotypes that are involved in a specific game
or conflict.

This transition between short-term processes requires that muta-
tion changes the set of genotypes involved in each of the short-term
processes. Because we are concerned with mutations affecting phe-
notypes that are involved in a specific game or contflict, it is reason-
able to assume that the rate is sufficiently low that after the
occurrence of (and invasion by) a mutation, the subsequent short-
term process has sufficient time to approach its equilibrium before
transition to another short-term process occurs. Because we are inter-
ested in the random occurrence of mutations that affect the pheno-
types under study, the process of sampling induced by finiteness of
the population is ignored. Randomness enters only through the order
in which mutations appear. The order of appearance of mutations in
the initial stages can determine different (hence random) future paths
of the long-term process.
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Analysis of the dynamics of genetic systems — that is, population-
genetic theory — has traditionally concentrated on the short-term
process. It is the short-term process that one might observe directly
in a population, subject to an immediate selection pressure. On the
other hand, verbal discussions of the theory of evolution are often
couched (even if implicitly) in terms of the long-term process. Note,
however, that short-term and long-term evolution do not
correspond to any specific, absolute time scale. Indeed, long-term
evolution in bacteria may be faster than short-term evolution in
mammnals.

The two processes are often confused, but it is important to dis-
tinguish between the two kinds of evolutionary processes because it
can be shown that they obey radically different quantitative rules.
Thus, terms such as unbeatable strategy (Hamilton 1967) or evolution-
arily stable strategy (ESS) (Maynard Smith and Price 1973), which
concern immunity of a system to the introduction of any new muta-
tion (perhaps from a biologically restricted but still infinite set of
potential mutations), correspond to the long-term process of evolu-
tion as defined here. Yet whenever these criteria have been compared
with specific population dynamics, it has invariably been in terms of
dynamics of changes in genotype frequencies, namely short-term
evolution. It is therefore not surprising that in reasonably complex
genetic systems (e.g., those with linkage and epistasis among multi-
ple loci) — except in special cases, such as additivity among the geno-
typic effects (e.g., Hines and Turelli 1997) — an ESS is not stable in the
basic, Liapunov sense. This is why the concept of ESS has generally
been used either in a dynamics-free context (e.g., in economics) or in
connection with simple, asexual dynamics (Hofbauer and Sigmund
1988), where the effects of sex and recombination are dismissed
as a sort of white noise superimposed on the “descent” process of
evolution. :

Since the time of Fisher, an implicit working assumption in the
quantitative study of evolutionary dynamics is that qualitative
laws governing long-term evolution can be extrapolated from
results obtained for the short-term process. We maintain that this
extrapolation is not accurate. The two processes are qualitatively
different from each other. One obvious difference is that the
mutational changes that cause the transition between one set of
genotype frequencies, close to its short-term equilibrium, and the
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next set are random even in large populations. In the present discus-
sion we concentrate on another important difference: the adaptability
and tendency to an optimum of complex genetical systems.

Fisher’s Fundamental Theorem of Natural Selection (Fisher 1930}
guarantees that, under certain conditions, the average fitness of a
population subject to frequency-independent viability selection will
increase over time until the population approaches a stable equilib-
rium. A stable equilibrium is, then, a local maximum of the popula-
tion’s mean fitness. The theorem, which is immediate for an asexual
population (e.g., for replicator dynamics), was proved by Kingman
(1961) for diploid sexual populations undergoing random mating,
provided that the viability of the individual is determined by alleles
at one locus. The theorem has been extended (e.g., Ewens 1969) to
some special multilocus systems.

Unfortunately, Fisher’s fundamental law does not generally hold
for multilocus systems, even with random mating and frequency-
independent viability selection. The first counterexample was
suggested by Moran (1964) and has been extended since then by
many authors. Moreover, extensive further investigations (e.g.,
Karlin 1975 and references therein) have established that Fisher’s
law appears to be a property of only a small subset of multilocus
viability systems, a subset that includes the additive systems (but
not the multiplicative viability systems; see also Hines and Turelli
1997). Quite generally, the frequencies of genotypes within a
multilocus genetic system do not approach an equilibrium that
determines an optimal fitness distribution of phenotypes under
frequency-independent selection. It might therefore be predicted
that the introduction of frequency-dependent selection would only
exacerbate matters so that the distribution of phenotypes would not
be likely to converge to an ESS. We shall see that this prediction is
not always borne out.

The situation is different in the case of a long-term process of
evolution. In this chapter, we discuss one important example,
namely, that of a diploid, random-mating population subject to
multilocus viability selection. We discuss two kinds of selection
processes. / |

1. Frequency-independent selection. Consider a phenotypic trait that
can be measured in terms of a parameter Y (one- or multidimen-
sional). The fitness of an individual with phenotype v is w(y), and
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w(y) attains a unique strict maximum at the value y*, which is
called the optimal value of the phenotype.

The phenotype is determined by the individual's multilocus
genotype. When there is no danger of confusion, we can write the
fitness of genotype G as u{G) where actually

w(G) = wl¥(G)]

with ¥(G) the phenotype generated by G.

It is known that with fitness determined by two or more loc,

short-term selection, characterized by changes in genotypic fre-
quencies, does not in general produce convergence to the optimal
phenotypic value, even if this value is in the range of phenotypes
produced by the genotypes present in the population (Moran 1964;
Karlin 1975; Ewens 1969).
. Frequency-dependent selection. Here we treat the simplest case of a
two-strategy random-encounter population game in which (as in
the case of frequency-independence) an individual’s strategy p is
determined by its multilocus genotype G. If the distribution of
genotypes in the population is F, then the fitness of an individual
of genotype G will be written as

w(G, F)=V[p(G),q(F)]

where p(G) is the strategy associated with genotype G, and g(F) is
the population strategy phenotypically generated by the distribu-
tion of genotypes, F. Here, VIp, q] denotes the payoff to a player
playing strategy p against an opponent playing q in a two-strategy
random-encounter game.

When the genotype involves a single locus, if there is conver-

gence under short-term selection, the limit must be an ESS. If
the selection is sufficiently weak, then if an ESS exists, the system
must converge to it (Eshel 1982; Hines 1982; see also Thomas
1985a,b; Cressman and Hines 1984; Hines and Bishop 1984a,b).
This is generally not true for a multilocus system. It might be
predicted that this failure for frequency-independent selection
can be exacerbated only under (short-term) frequency-dependent
selection. We shall see, however, that the process of long-term
selection in both cases is most likely to produce convergence to an
ESS.
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LONG-TERM SELECTION AND TWO-LOCUS
POPULATION GENETICS

Consider a two-locus random-mating diploid genetic system with
alleles A,, A, ..., A, at one locus and By, By, ..., B,, at the other
and recombination rate R(0 < R < 1/2) between the loci. (See Eshel
and Feldman [1984] for further details and Liberman [1988] for a
generalization to multiple loci.) The viability of genotype AB:/ABis
w.-,—k;(i,j=1,2,...,n;k,l=1,2,...,m) with

Wikt = Wi = Wiy = Wik (1)

Here, w,, may be either frequency-dependent or -independent.

Denote by x; the frequency of the chromosome AB; after selection
and recombination. Under random mating, the average viability of
newborn offspring is

w= Zwr'jkixikx;‘l (2)
] ikl

After random mating, selection, and recombination, the frequency of
AB; in the next generation is

Xy = (w)_l {RZ Wi XaXj + (1- R)Z wijk!xikxﬂ} (3)
it ji

Equilibrium frequencies of {ABJ] will be denoted by Ixil,
where {xi} solves Equation 3 with the prime removed from the
left side.

Now assume that viability mutations occur at random at each
of the loci. We make no specific assumption about the distribution
of effects of a single mutation on the phenotype of its carriers. We
assume only the following:

AG) All mutations that affect the phenotype under study are possi-
ble in the long run.

A(ii) The rate of mutation (at least of successful mutations, i.e., those
that invade the population) is low enough to guarantee that
after an advantageous mutation arises, short-term convergence
occurs to a small neighborhood of a stable equilibrium before a
new, advantageous mutation arises.

In what follows, the second assumption enables us to ignore the
extremely unlikely occurrence of favorable double mutations. We
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therefore suppose that a new allele A,., appears at a low frequency
near the equilibrium {xj}. Denote Xy.. bye k=12,...,m), where
Y., =€ >0and |x,-,,—x:§,l <gfori=1,2,...,n

We are interested first in necessary and sufficient conditions for the
initial success of the new mutant allele. Note that such an allele intro-
duces m*n new genotypes A;B;/ AnBy each of which in general has
a different viability. The frequencies of these genotypes (even after
random mating) will depend on both the resident frequencies {x}}
and the relative frequencies €,, &, . . . , & of the mutant chromosomes
A, By upon their introduction. We can, however, use the Hardy-
Weinberg law to calculate the average viability of an offspring that
carries the mutant chromosome A,.;B;. Neglecting terms of smaller
order than ¢, this will be

Ditax = D, Wha wXy @)
il

where, in the frequency—dependent case, Wiau 18 evaluated
at {xz}, that is, with respect to the resident frequencies. With fre-
quency-independent selection, wjy = wju. The marginal fitness of
the mutant chromosome A,.Bx is therefore uniquely determined by
the distribution of resident chromosomes {xj}. This is not true for the
average fitness of all mutant genotypes, which is

IH 'H

_ €y _ €y s _
w-’fu = Z*E_ulﬂﬂ k= Z_EZw:H.ijF = w:ﬂ (8) (5)
k

k=1 € =121

Average fitness obviously depends on the relative frequencies at
which the mutant chromosomes are introduced.

Now use Equation 3 with # + 1 alleles at the A locus and neglect
terms of smaller order than €. We have forallk=1,2,...,m,

i

H
— -1
€k = X = (W) {Ekzzw§+1,jkfx}$
j=1 =i

1]

m
+R Zw::ﬂ‘jk,-(ﬁ;x;‘i —Ekx}‘;)} (6)

j=t 1=

If A is the leading eigenvalue of the local stability matrix from
Equation 6, with u = (4, U, . . ., U, the associated right eigenvector,
normalized to Xu; = 1, then we show in Appendix 1 that
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A= (@) 2 i D WhauXf = win(w) (7)

k=1 j=t I=1 w*
This allows us to state the following:

Proposition 1 (Eshel and Feldman 1984). A necessary condition for
the initial increase of the rare mutant allele An introduced at the A
locus is

5:;.1 (U) 2w* (8)

A sufficient condition for the invasion by a rare mutant allele is that
Equation 8 hold as a strict inequality.

Note that because A is a positive matrix, for any vector € = (&4,
€, ..., En 20 with L8>0,

. Ale
Iim =u
t—e | A'ef

where the norm |jzl| is defined as Zkle| (e.g., Karlin and Taylor
1975). Thus, the biological interpretation of Proposition 1 is that if
the initial frequency of A.., namely €, is small enough, then the
normalized vector of frequencies of A..Bx will remain as close
as we wish to the vector u for as long as we wish. With this in
mind, we first present details of the consequences of frequency-
independent selection and follow this with some analysis of fre-
quency dependence.

LONG-TERM FREQUENCY-INDEPENDENT SELECTION

With frequency-independent selection, wjy = Wi In this case, as
defined in Equation 5, W.,(u) is the average fitness of all the geno-
types that contain the mutant allele, where the relative frequencies of
the mutant chromosomes are U, Us, . - . , U, Butif the initial frequency
of the mutant is low enough, the relative frequencies of these chro-
mosomes will remain arbitrarily close to w, uz, ..., Uu- Then Propo-
sition 1 can be interpreted as follows:

Result 1. In a two-locus genetic model with frequency-independent
viability selection and random mating, except for the case of unit
eigenvalue, a newly introduced mutant allele at one of the loci will
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invade the population if and only if it initially increases the average
viability of the population.

Proposition 1 and Result 1, which have been generalized by Liber-
man (1988) to include mutations at one of any number of loci, may
provide a weaker, long-term counterpart to the short-term Funda-
mental Theorem of Natural Selection, which is false for multilocus
genetic systems.

Result 1 has an immediate application to the important case of
multilocus genetic determination of a quantitative phenotype 7 that
achieves a strict global maximum at y=y* (i.e., w(y*) > w(y) for all y#
v*). In this case, the only fixed points of the long-term process are
those (phenotypically equivalent) genotypic equilibria that determine
v*. Specifically, we have the following:

Result 2. Suppose that the viability w of an individual in a large
(i.e., infinite) population is determined by its phenotype 7,
and suppose w(y) attains a global maximum at y= v*. Let an individ-
ual’s phenotype Y be determined by its genotype G at a given set
of loci. Then

i. The only genotypes that are stable to invasion by any mutation
that affects the genotype are those that determine y*.

ii. The set I" of genotypes that determine the optimal phenotype v* is
stable to invasion by any mutation that affects the phenotype.

The proofs of both parts of Result 2 are given as Appendix 2.

EXTERNAL STABILITY, PHENOTYPICALLY STABLE
STRATEGIES, AND LONG-TERM STABILITY

The concept of a phenotypically stable strategy is an extension of
Hamilton’s concept of an unbeatable strategy, namely a strategy p
that, once fixed in the population, is immune to (say, short-term stable
against) any invading mutant strategy (Hamilton 1967). The motiva-
tion for this extension (Hammerstein and Selten 1994) stems from the
finding that the strict requirement for unbeatability is too strong to
be generally satisfied by the ESS even under haploid asexual dynam-
ics (see also Weissing 1996). This is because a set of genotypes may
determine the same phenotype, but some {or even all) of these geno-
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types may disappear following mutation. If, however, the mutation
does not change the phenotype, then that phenotype can still be
regarded as stable relative to the mutation. In this sense, genotypic
stability is a stronger concept than phenotypic stability. The weaker
concept of phenotypic stability, however, retains the spirit of unbeat-
ability in the sense that it allows the population to be “trapped” in
a set of states that determine the phenotypically stable strategy.
It is worthwhile to formalize this brief discussion using the
following definitions.

Definition 1. An absorbing set of states for the stochastic process of
long-term evolution is said to be an externally stable set.

In other words (see also Lessard 1990; Eshel 1996), a set I of short-
term stable genetic equilibria is said to be externally stable if, start-
ing from any genetic equilibrium in T, the long-term process of
evolution allows passage only to another state in T".

Definition 2 (after Hammerstein and Selten 1994). A phenotype or
a distribution of phenotypes F (a strategy, say) is said to be pheno-
typically stable if there is an externally stable set of genotypes, each
of which phenotypically generates F as a population strategy.

Equivalently,

Definition 2’. A strategy p is said to be phenotypically stable if it is
phenotypically determined by each genotypic state within a given
absorbing set of states for the process of long-term evolution.

Result 2 asserts that in a random-mating population with
frequency-independent viabilities, a phenotypic optimum and only a
phenotypic optimum is a phenotypically stable strategy with respect
to single-locus mutations, regardless of the number of loci involved.
This is not a trivial statement because the short-term process of
natural selection does not generally converge to a genetic equilibrium
that phenotypically generates the optimal phenotype. On the con-
trary, a stable genetic equilibrium may determine a phenotypic dis-
tribution that is not even the closest possible (given the available
genotypes) to the optimum. '

The preceding remark leads us to ask whether Results 1 and 2
guarantee that the long-term process actually converges, or at least -
converges with positive probability, to a genetic equilibrium that pro-
duces the optimal phenotypic value when it exists.
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By definition, a phenotypically stable strategy p is the phenotypic
result of an absorbing set of states in the long-term evolutionary sto-
chastic process. Moreover, in the case treated here (and all others with
which we are familiar), this absorbing set is attainable from all other
states. However, if the sample space of the long-term process (all
short-term equilibria) is not finite, it does not guarantee long-term
convergence to the absorbing set, and the probability of this event
may be zero. Thus, in a recent paper, Eshel et al. (1 997) address long-
term asexual selection with a population game structure having a
continuum of types. They show that the phenotypically stable strate-
gies of the long-term process are exactly the ESSs of the population
game. However, starting from a distribution of strategies close
enough to an ESS, convergence with probability 1 to the ESS is guar-
anteed only under specific additional conditions (namely, continuous
stability; Eshel and Motro 1980). If these conditions are not met, the
probability of long-term convergence to the absorbing ESS is zero!
For this reason, we need the following definition:

Definition 3. A strategy p is said to be long-term stable if for any
£ > 0 there is a neighborhood of p such that starting from this neigh-
borhood, the long-term process will converge to p with probability
greater than 1 — €.

Of course, the exact transition law of the long-term process is
determined by the distribution of the mutations, and this generally
is not known. However, the form of the selection matrix, in com-
bination with the genetic structure of the population, tells us
which transitions have zero density. It is somewhat surprising that in
many cases, this is sufficient to prove either long-term convergence
or nonconvergence. Theorem 1 implies that in a two-locus random-
mating genetic system with frequency-independent selection, a
new mutation will invade if it initially brings the phenotypic
value of its carriers closer to the optimum, at least with respect to
the weighting used in Equation 7. When a new mutation invades,
however, our analysis is not informative as to whether the final
state to which the subsequent short-term process moves must
produce a distribution of phenotypes whose average fitness is greater
than that of the initial population. When true, this is a very strong
result. It would entail that even though the long-term process is
essentially random (because each realization of the ordering of muta-
tions introduced is the result of a stochastic process) the average
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fitness of the population should increase from one equilibrium state
to the next. Thus, in the vicinity of a phenotypically stable strategy,
the population should converge to it with probability 1, regardless of
the distribution of the mutations, given only the general assumptions
A(i) and A(ii) earlier.

Simple structural assumptions on the parameters of the evolu-
tionary system may guarantee this property and, therefore, conver-
gence with probability 1 to a phenotypic value that is at least a local
optimum. To see this, consider two loci with a recombination rate R
> 0. Suppose that the effect of the phenotype in question on the
overall viability of the individual is small. In this case, the fitness dif-
ferences among all genotypes are sufficiently small relative to R, and
we kriow that the linkage disequilibrium for all chromosomes is
small, even relative to the selection forces, and short-term selection
will eventually lead to an increase in the mean fitness of the popula-
tion (Nagylaki 1976, 1992). Under these conditions, if the successive
mutations are also of sufficiently small effect, then the long-term
process should behave like a one-locus genetic system, converging
monotonically with probability 1 to a local optimum, which is then
long-term strictly stable.

It is interesting, and somewhat surprising, that this result is not
generally true. Bergman et al. (1997) have recently shown by numer-
ical simulation that the initial increase of the average fitness of the
population that occurs with the establishment of a new mutation,
may be followed by a decrease of the average fitness to less than its
initial value. However, this appears to occur in a rather small fraction
of cases. With randomly chosen fitnesses for the carriers of the muta-
tion (see Bergman et al. [1997] for details), we conjecture that the
expected change in average fitness from one equilibrium to the next
should be positive. If this is the case, the stochastic long-term process
must approach the vicinity of the phenotypic optimum, if it exists.
The optimum would then still be long-term stable.

An interesting case would take the phenotypic effects of all single
mutations from some distribution with a small variance so that
with some nonzero probability a mutation would have a large
effect on all its carriers, although for the large majority of mutations,
the average fitness of the population would increase from one
(short-term) stable genetic equilibrium to the next. In this case,
therefore, most of the time the system would be close to the local
optimum, although in a small fraction of that small fraction of
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mutations with large effects, the system may depart further from the
optimum. Because this rare event involves mutations of relatively
large effect, given that the system departs from the optimum, it is
likely to move relatively far from it. In this event, the long-term
process is likely to take the population near a new local optimum in
whose vicinity it should stay for-a long time. This pattern of evolu-
tion would be reflected in the phenotypic distribution (although not,
of course, if the genetics is one-locus) behaving as a punctuated
process in which most of the time, but not always, the system moves
toward a higher optimum.

LONG-TERM FREQUENCY-DEPENDENT SELECTION

We discuss a random-encounter population game with r pure strate-
gies o, 0, . . ., 0. Let vy be the viability of an o-player who encoun-
ters an oyplayer; i, j=1,2,..., 1. In reality, most individuals are
unlikely to play a pure strategy. The payoff function for a player who
chooses a mixed strategy p (i.e., a player who plays strategy o with
probability p;) when encountering a q-strategist is

V(p.q)= X pivid, )
ij=t
Different genotypes are assumed to have different distributions of
the propensities to play the different strategies. To be precise, assume
that the individuals in the population have genotypes defined at two
loci, with genotype A;Bi./AB, choosing the strategy (or having the
distribution of phenotypes) p“*” where

(ijkl) (ijik)

=P =P

(kD) (jitk)

p =P

If x; is the frequency of chromosome A;B; in the population after
selection and recombination, then the average strategy of a newborn
offspring, namely the population strategy, will be

p= p(x)= 2 p“jmxikxﬂ 10

ik

(In other words, the probability that a newborn offspring will choose
the strategy @, is ps = Zup " x4x;). The viability of genotype AB,/ A;B;
is therefore

(ki)
r

Wiy = wf;u(x) = V(P P)
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Recall that the (short-term) equilibrium frequencies {x}} of chro-
mosomes |AB,} are the solutions of Equation 3 with the primes
removed from the left-hand sides, regardless of whether the selection
is or is not a function of the frequencies.

Suppose now that a new mutant allele A,,, occurs at the A-locus.
We know that in this case Proposition 1 still holds: that is, A, will
become established in the population if Equation 8 holds as a strict
inequality. The viability wf,. of the mutant genotype A,aBi/ AB,
when it is rare, is computed at the equilibrium point {x%}, and for the
population game, is interpreted as

w:ﬂ,jk.' = V(p(nﬂ‘jk”fp*) (11)

where

p* = p(x*) — Zp(f,iknx;xﬁ (12)
ikl
is the population strategy at equilibrium.

Assuine now that the vector (€1, €, . . ., &) Of frequencies of the
mutant chromosomes is close to the right eigenvector u used in
Equation 7. The mean strategy of an individual carrying the mutant
chromosome A, By 18

n (rr+1.k0)
i
Hence, the mean strategy of a random mutant individual in the
population is

p(m) - p“””(u) - Z ukp(nﬂk) - Zukp{m.jknxﬁ (13)
k

il
When we combine Equations 5, 11, and 13, one has

{n+1)

w, =V(ip"™",p*) (14)

This is the payoff to a random mutant upon encountering a nonmu-
tant individual. In the same way, the residents’ mean strategy is

— _ {ifki)
w* = Y whexkxy = ), V(p™ prxkx]

ikl ijki

— V[Zp(ﬂkﬂx;xﬁ’p*) — V(p*,p*) (15)

ijkt
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We can therefore write Proposition 1 in this case as follows:

Proposition 2 (Eshel and Feldman 1984). A necessary condition for
the initial increase of allele A,,, is that the mean strategy p™"' of the
rare mutant genotypes be at least as good as the population average
strategy p* when playing against p*. That is,

Vip""V,p*)2V(p*,p") (16)

A sufficient condition for initial increase of A,., is that Equation 16
hold as a strict inequality.

A phenotypically stable strategy, if it exists, must be a best
response against itself. This is so because if the population mean
strategy p* were not a best response to p* in the phenotypic
game, then another strategy, s, must exist such that V(s, p*) >
V(p*, pY. In that case, it follows from Proposition 2 that a
mutant determining the strategy s will initially increase in the
population. .

Suppose the population mean strategy p* is a best response to
p* and is not an ESS in the phenotypic game. It follows from the def-
inition of ESS that another strategy s must exist such that V(s, s) 2
V(p*, s) (see Hofbauer and Sigmund 1988, 121). In such a case, the
frequency of a dominant mutation A,., that (monomorphically)
generates the strategy s, regardless of the alleles in the other locus,
can become established in the population and p* cannot possibly
be phenotypically stable. Thus, we have the following (see also
Hammerstein 1996):

Result 3. Any phenotypically stable strategy for the two-locus
population game is an ESS.

LONG-TERM STABILITY OF AN ESS

An important question still to be addressed concerns whether the
long-term process, once in the vicinity of an ESS p, will converge to
p. Let us distinguish two cases:

Case I. P is a strict best response against itself; that is, for all p # p,
Vip, §) < V(p, P)-

Case IL p is a weak best response against itself; that is, for some
p#p, V(p, P) = V(p, P). in which case we know that V(p, p) < V(p, p).

175



ILAN ESHEL AND MARCUS W. FELDMAN

Case I

Note that this case is possible only if p is a pure strategy. In such a
case, when the population strategy is close to p, the viabilities of the
genotypes wyy = V(p', p) can be estimated well by the fixed values
W = V(p™, ). We therefore expect (and simulations done in col-
laboration with A. Bergman offer some support for this conjecture)
that the conditions for long-term convergence to the ESS should be
very similar to those for convergence to a local optimum under fre-
quency-independent selection. This tends to occur with a probability
that approaches 1 when the population strategy is chosen initially to
be arbitrarily close to the ESS. It might be conjectured, however, that
with some positive probability a single mutation of large effect may
perturb the population sufficiently far from the ESS that convergence
to another ESS, if one exists, might ensue.

This would be impossible in a one-locus genetic system, and, as
shown for the case of frequency-independent selection, it would also
be impossible in a multilocus system under selection that is an order
of magnitude weaker than the rate of recombination. In a population
game, however, the viabilities of the genotypes are always bounded
from below and from above by the minimal and maximal payoff
functions, respectively. We can then state the following;

Proposition 3. If the ratio between the maximal and minimal payoft
function of the population game, measured in terms of viability, is
sufficiently close to 1, then for any ESS that is a strict best response
against itself there is a neighborhood of it from which the long-term
process converges to the ESS with probability 1. The optimum is then
long-term stable.

Case I1

This involves convergence to an ESS that is not a strict best response
against itself. This is always the case when the ESS is mixed. Here
we concentrate, for simplicity, on the case of a fully mixed ESS.
Thatis, p;#0,1foralli=1,2,.. ., r. It is surprising that convergence
to this “weaker” ESS is more easily guaranteed than in the
“stronger” Case L. To see this, recall that for a mixed ESS, P,
V(p, p) = V(p, p) for all p. Hence, at the ESS, the viabilities w;u(P) =
V(p%, p) are all equal. By continuity, it follows that the viabilities
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w;3(p) can be guaranteed to be arbitrarily close to each other provided
that p is close enough to the ESS p. Hence, the selection operating on
the population may be chosen to be weak as we wish by choosing the
population strategy sufficiently close to p. Note that this does not
depend on any specific assumptions about the phenotypic effect
of a single mutation, in contrast to what we saw for frequency-
independent selection: even large changes in an individual's strategy
will be only weakly selected for or against.

Now for any positive recombination rate, as the maximum
selection differential approaches zero, short-term selection will
take the linkage disequilibrium (i.e., the covariances between
allelic frequencies at the two 1¢€) to the order of the square of
the selection differentials (Nagy faki 1976, 1992). This must be true
for frequency-dependent selection as well as for frequency-
independent selection, because the only assumption made is that
selection differentials are sufficiently weak relative to the recom-
bination rate. Furthermore, Nagylaki has shown that for any
fixed set of wy (e.g., for frequency-independent selection), if the
linkage disequilibrium is small enough, then for chromo-
some frequencies {x;} in one generation and {xi} in the next
generation,

wajklekx;f > Zwijh'xikxﬂ (17)
ijki ikl '
as in Equation 3.

Equation 17 is true, then, as a mathematical statement regardless
of how {w;;} are interpreted. In Nagylaki’s analysis, w; were under-
stood as fixed fitnesses so that Equation 17 was interpreted in the
sense that the average fitness must increase over time. But Equation
17 remains mathematically valid for any choice of w;;, and, in parti-
cular, if we choose w;x = w;u(p), where p is the population strategy
before selection, recombination, and random mating. In this case, the
meaning of Equation 17 will be different. On one hand, it follows
from Equation 10 that

(rk!')
zqu!xﬂtxﬂ ZV ! |kxﬂ

ijkf ijkl

= V(Z xixyp ™, P] =V(p.p) (18)

ijkt

On the other hand, the same argument gives
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i)
ZWijklx:kx;l = V[Z xi—lx}:P(" ;PJ

ijki ificl
=Vp',p (19)

where
pr - Z x:kx;lp(ijkﬂ
ijki
is the population strategy after selection, recombination, and random
mating. We therefore have the following:

Result 4. If p is a mixed ESS (or, more generally, any ESS that is not
a strict best response against itself) and if the population strategy p
determined by the two-locus genetic model is sufficiently close to p,
then after one generation the population strategy p’ is a better
response against p than p; that is,

vip’.p)>V(p.p) (20)

Remark. This result holds for any distribution p of genotypes in
a one-locus genetic system (Eshel 1982) but not in general for a two-

locus system with recombination and selection unless p is close to
the ESS.

For a population game with two pure strategies, Eshel (1982)
further proved that whenever a system satisfies Equation 20, it also
satisfies the followjag two conditions:

a. If the ESS p is within the range of all genetically available vectors
p - that is, vectors p = p(x) obtained for some chromosome distri-
bution |x,} on the right-hand side of Equation 10 — then short-term
selection will result in convergence to a stable genetic equilibrium
x that phenotypically generates the ESS P

b. If pis not in the interval of available genetic values of p, then short-
term selection will result in convergence to a stable equilibrium x*
such that p’(x*) is the closest possible to p. We then have

Result 5. If a two-strategy mixed ESS exists, it is phenotypically
stable and strictly long-term stable in a two-locus genetic system with
selection and random mating.

Proof. Phenotypic stability is an immediate result of condition a
of a system satisfying Equation 20. Indeed, the ESS is genetically
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available within a genetic system in which it existed prior to the intro-
duction of a new mutation. Hence, after the introduction of the new
mutation, short-term selection must move the population to a genetic
equilibrium, possibly a different one from the original one prior to
the appearance of the mutation but one that again phenotypically
generates the ESS. Condition b associated with Equation 20 guaran-
tees that no mutation that invades can take the population further
from the ESS, but any mutation that increases the genetic availability
in the direction of the ESS will result in a stable population strategy
that is closer to the ESS. Moreover, condition a guarantees that when
the population reaches the vicinity of the ESS, the exact ESS will be
attained after a finite number of steps. Hence, the ESS is globally and
strictly long-term stable in this case.

More can be proved for the two-strategy case. For a mixed ESS in
a two-strategy population game, the long-term process will converge
with probability 1 to the ESS. This is true because no other state is
long-term stable, and from any state there is a positive probability
that the system reaches a vicinity of the ESS within a finite number
of steps, and from here we have proved that there is convergence to
the ESS with probability 1.

Thus, contrary to intuition, frequency-dependence does not exac-
erbate the analysis of convergence to a phenotypic optimum in a
multilocus genetic system. In fact, we have just shown that with
frequency-dependent selection, convergence occurs with probability
1 regardless of the distribution of the mutations, a stronger result
than with frequency-independent selection. There is a simple reason
for the stronger result with frequency-dependence. A multilocus
system may react to natural selection by reducing the average fitness
of the population, but this requires linkage disequilibrium. Recombi-
nation always reduces linkage disequilibrium, but epistatic selection
can compensate for this. If the selection is weak enough, however,
recombination will eventually render the linkage disequilibrium
negligible (even compared to the selection differentials). With fre-
quency-independent selection, the only way to reduce selection
differentials is by reducing the phenotypic differences among
the genotypes. But in the case of a mixed ESS with frequency-
dependent selection, the differences in fitness among the genotypes
tend to zero as the population strategy approaches the ESS, regard-
less of the phenotypic variation in the population. Thus, selection
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tends to zero and recombination takes over and nullifies the effect of
linkage disequilibrium.

Thus, for a general population game with any number of
strategies, Equation 20 guarantees that the long-term process
determined by a two-locus genetic system will behave like a one-
locus system in the vicinity of an ESS. The question of long-term
convergence to the ESS in this case remains open, even for an asexual
population. We will see, however, that even under multilocus selec-
tion and recombination, the ESS is phenotypically stable in the sense
that there exists an externally stable set of genetic equilibria such that
each equilibrium in this set phenotypically generates the ESS as its
mean strategy.

PHENOTYPIC STABILITY OF THE ESS
WITH MULTIPLE LOCI

If the first ESS condition is satisfied as a strict inequality (i.e., if the
ESS is strictly the best response against itself), then the set of genetic
equilibria that phenotypically determine the ESS is externally stable.
This follows from Proposition 2 in exactly the same way that Result
2 follows from Proposition 1. Consequently, we have the following:

Proposition 4. Any ESS that is a strict best response against itself is
phenotypically stable.

Note, however, that only a pure strategy can be a strict best response
against itself. Weissing (personal communication) showed that the set
of all genetic equilibria that phenotypically determine the ESS is not
always externally stable; with more than two strategies involved in
the ESS, an invading mutant may shift the population to an ever-
increasing cycle away from the ESS. Hammerstein and Selten (1994)
and later Hammerstein (1996) suggested that the set of all pheno-
typically monomorphic genetic equilibria that phenotypically gener-
ate the ESS is actually externally stable (in which case, according to
the definition given earlier, the ESS would indeed be unbeatable). The
exact mathematical statement by Hammerstein (1996, Theorem 2) is,
however, significantly weaker than this. This theorem claims only
that “if p is an evolutionarily stable strategy of G, then the monomor-
phism is phenotypically stable and invasion stable (ie., externally
stable) against any mutant that cannot phenotypically generate p in
heterozygous condition.” From the proof (in particular, p. 525) it
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appears that a “mutant allele that cannot phenotypically generate p
in heterozygous condition” means a mutant that does not include p
among the linear combinations of strategies generated by its het-
erozygotes. Unfortunately, stability of a set of states against such a
restrictive set of mutations that take the population outside this set
is meaningless; indeed, any set of states is stable against some class
of mutations.

In fact, it is easy to find an example of a neutral invasion of the
genotypes producing a phenotypically monomorphic ESS by a dom-
inant mutation that, when associated with different alleles at another
locus, phenotypically generates different strategies with the ESS as
their average. If initially there is linkage equilibrium, neutrality is pre-
served regardless of the frequency of the mutant allele. A phenotyp-
ically nonmonomorphic equilibrium will then be attained. Moreover,
it is not clear how the neutrally perturbed system will respond to a
subsequent mutation.

Weissing (1996) suggested that if a two-locus double homozygote
generates the ESS it will be externally stable. This seems actually to
be a one-locus property and therefore standard except for neutral
mutations that phenotypically generate the ESS as their mean strat-
egy, thus again shifting the population to almost any mixture of
phenotypically nonmonomorphic genotypes that on average pheno-
typically generate the ESS.

We have seen, however, that at least in the vicinity of a mixed ESS,
short-term natural selection renders the effect of linkage disequilib-
rium negligible even relative to the weak selection operating on the
population. Therefore, the multilocus system behaves as a one-locus
system. For a one-locus system, Eshel and Sansone (1998) have
recently proved the following:

Proposition 5. Let p be an ESS of a population game (with any
number of pure strategies) and let individual strategies be deter-
mined by a one-locus diploid genetic system with random mating.
Then

i. The set of all genetic equilibria that phenotypically generate the
ESS p as a population strategy, each including at least one
homozygote with p as its own strategy, is externally stable.

ii. The ESS p is therefore phenotypically stable in the one-locus
systemn.
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Following this result, we can now prove that in a multilocus
genetic system, at least any mixed ESS is phenotypically stable.
Here we state this for a two-locus system, and an analogous
argument applies for any number of loci. The proof is included as
Appendix 3.

Result 6. Let p be a fully mixed ESS with any number of pure
strategies. Then

i. The set T of all genetic equilibria that phenotypically generate p
as a population strategy, each including at least one double
homozygote that phenotypically generates p exactly as its own
strategy, is externally stable.

ii. The mixed ESS p is, therefore, phenotypically stable.

CONCLUSIONS

Our results indicate that in the debate about adaptation, adaptation-
ism, and'optimality (Maynard Smith 1978; Parker and Maynard
Smith 1990; Orzack and Sober 1994, 1996; Brandon and Rausher
1996), a distinction should be made between short-term and long-
term evolution. We call short-term evolution the process by which
natural selection, combined with reproduction (including recombi-
nation in the multilocus context), changes the relative frequencies
among a fixed set of genotypes, resulting in a stable equilibrium, a
cycle, or even chaotic behavior. Long-term evolution is the process of
trial and error whereby the mutations that occur are tested and, if
successful, invade the population, renewing the process of short-term
evolution toward a new stable equilibrium, cycle, or state of chaos.
These two processes, even though tightly interconnected, are quali-
tatively different from each other.

In the debate about adaptationism the opposing arguments tacitly
invoke different dynamic processes. Thus, the concept of evolu-
tionary stability as immunity to any possible mutation (Hamilton
1967; Maynard Smith and Price 1973) corresponds naturally to the
realm of long-term dynamics; yet, both the criticism and the defense
of the relevance of this concept to population genetics have been
by and large based on the analysis of short-term dynamic models
(see Eshel 1991, 1996 for further discussion). Concerning short-
term dynamic models, we have expressed our view elsewhere
that convergence to individual local optima is likely to occur only
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under the specific assumptions of often unrealistically simple models
(Eshel 1991; Feldman et al. 1996). In this chapter we show that,
quite surprisingly, this is not the case for long-term evolution. Phe-
notypic changes, when determined by long-term genetic dynamics,
even with a multilocus genetic structure including recombination,
tend to converge in the long term and, with probability 1, to local
optima.

Does this mean that one can evaluate local optima without having
to worry that they would rarely, if ever, be present because they are
not dynamically accessible most of the time? The answer is only
partly positive. Our results indicate that theories of local optima
(e.g., population game theory) are by no means irrelevant to the
theory of natural selection. Thus, local optima may be important. But
arguments concerning such local optima cannot be indiscriminately
employed for theoretical predictions. Although local optima are
likely to be dynamically accessible for conflicts that persist for a long
enough time under virtually the same conditions, they still might not
be dynamically accessible most of the time under evolution in rela-
tively new environments. In a different paper (Eshel 1991; see also
Eshel and Matessi 1998), it was suggested that at least one role of
sexual reproduction could be to prevent short-term optimal adapta-
tion that removes heritable variation when environmental conditions
change over time.

The model of long-term dynamics suggested here focuses on non-
neutral, potentially successful mutations, chosen among those muta-
tions that affect a specific phenotypic trait; this is a small fraction of
a small fraction of all mutations that may occur at a few specific loci.
Thus, it is assumed that the appearance of such a mutation is a rare
event even in relatively large populations. A crucial question, then, is
whether this assumption does not stand in contradiction to our deter-
ministic treatment of the short-term stages of the dynamics. Deter-
ministic short-term dynamics indeed correspond to the assumption
of an infinite population size. But in an infinite population, the
appearance of any possible mutation or, for that matter, a double or
triple mutation, cannot possibly be a rare event; with probability 1,
any such event must be instantaneous.

The application of such an argument to natural populations,
however, should be made very cautiously. Natural populations are
finite, even though sometimes large. Yet under most circumstances,
deterministic dynamic models have proved quite satisfactory as

183



ILAN ESHEL AND MARCUS W. FELDMAN

approximations for most aspects of (short-term) natural selection
in populations that are not very small. More specifically, if the
population is not too small and if the short-term deterministic
dynamics of an infinite population results in a stable equilibrium,
then the corresponding, finite population is likely to remain in
the vicinity of this equilibrium. Moreover, in such a case, the
only nonneutral mutations with a reasonable chance of successful
establishment in the population are those that (when introduced
close to the equilibrium in question) are initially successful in the
deterministic model. It is therefore reasonable to expect that rare
successful mutations in real populations are likely to occur quite
close to stable equilibria of the deterministic version of the short-
term. process.

If the distribution of mutations were known then, in principle,
the probability law governing the transition from one short-term
equilibrium (or cycle or state of chaos) to the next could be deduced.
From this perspective, long-term evolution is a stochastic process
over the space of possible “states” to which short-term evolution
carries the population. Unfortunately, the transition law governing
this process is rarely known. However, knowledge of the genetic
structure and the selection parameters is sufficient to determine the
zero-probability transformations. Surprisingly, this information by
itself is sufficient to obtain quite strong results concerning the limit-
ing behavior of long-term evolution.

It is important that the asymptotic behavior of the long-term
process may be very different from that of the more widely studied
short-term process. Our focus here has been on long-term viability
selection, either frequency-dependent or -independent, in multilocus
genetic systems, where an increase in the average fitness of a popu-
lation is not guaranteed even in the frequency-independent case.
Moreover, a stable multilocus equilibrium may not correspond to a
maximum of the population fitness over all possible distributions of
genotypes. Furthermore, in the frequency-dependent case, a multi-
locus genetic system may support a stable genetic equilibrium that
phenotypically determines a population strategy that is not an ESS,
even if the ESS is genetically available (i.e., if it is phenotypically
determined by some distribution of genotypes).

For the long-term process of evolution in a two-locus system with
random mating and viability selection, we have shown that a strat-
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egy (or a distribution of phenotypes) is phenotypically stable if and
only if it is either an optimum (in the case of frequency-independent
selection) or an ESS (in the case of frequency-dependent selection).
This result and all others reported here can be generalized to any mul-
tilocus genetic system with random mating.

At least for a two-strategy population game, a mixed ESS is also
long-term strictly stable and it also appears that any ESS is long-term
stable. It is interesting that this result is independent of the distribu-
tion of mutations and requires only that the density of the distribu-
tion of the effect of a single mutation be positive in all directions.

Somewhat weaker results apply to a pure ESS in a frequency-
dependent selection system and for a phenotypic optimum under fre-
quency-independent selection. Although in these cases phenotypic
stability is an immediate consequence of Proposition 1, long-term
convergence (even though it appears to be likely) depends on plau-
sible, although specific, assumptions (e.g., they should not be far from
homogeneous or too biased in one direction). Convergence is not nec-
essarily monotone, and in some cases a mutation can be established
that causes the eventual population strategy to depart further from
the ESS than the initial one.

Monotone convergence with probability 1 to either an optimum
(under frequency-independent selection) or a pure ESS (in the case of
frequency-dependent selection) is guaranteed only when the effect
of natural selection via the phenotype is small relative to the rate
of recombination. This is caused by the decline in the effect of linkage
disequilibrium relative to selection differentials, as a consequence of
which the system tends to behave as though only one locus were seg-
regating. We have shown this to always be true near a mixed ESS,
and that is why stronger results are available in this case.

The process defined here as long-term evolution involves only
changes, due to mutation and selection, in the distribution of specific
phenotypic traits - that is, an individual’s strategy in a specific con-
flict. (Neither neutral mutations nor nonneutral mutations that affect
other traits are considered in this process.) It is crucial for our analy-
sis that such specific mutations are rare. A different model would
apply if there were frequent relevant mutations for natural selection
to act upon. In that case, the population might follow a so-called
adaptive path (Hofbauer and Sigmund 1990). So far, however, this
model has been developed only for asexual populations.
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We make a stronger assumption concerning natural selection —
namely, that the regime of selection acting on the trait under study
remains invariant during the slow process of transitions between
genetic equilibria. This is the kind of assumption relevant to Fisher’s
(1928) proposal for the evolution of dominance, but it may also be
valid for long-lasting conflicts involving mate choice or predators and
prey. Of course, each case requires its own specific model. For such
cases (but by no means for all population games), the theory of long-
term evolution predicts convergence to either an optimum or an ESS
regardless of the genetic system.

For shorter-lived processes of conflict (e.g., in a newly colonized
niche) we expect the population to be close to a short-term stable
equilibrium, but not to one that is long-term stable. Sex and recom-
bination are likely to cause deviations from either optimality or evo-
lutionary stability.

Finally, if the environment changes frequently or continuously,
convergence even to a short-term equilibrium is unlikely to occur. In
such case$, unless the multilocus selection is strictly additive, the
effects of sex and linkage may prevent the population not only from
reaching an optimum (or an ESS) but also from attaining a locally
adaptive trajectory.

APPENDIX 1: PROOF OF EQUATION 7

Rewrite Equation 6 in vector form as

g = Ae (Al1.1)
where A = ||dg;/ 0| with
% _ (@ RY wh sk (A1.2)
3 = (w ) sznﬂ‘}yxﬁ for k=l -
! i
and
Ok, .\
-aTk =(w*) I{RZ Wi X +{1- R)Z w:n,,fer}?} (A1.3)
k * 7

Denote by A the leading eigenvalue of A with u = (u;, Uy, .. ., Un)
the corresponding right eigenvector normalized to Zu; = 1. Because
A is a positive matrix, it follows from the Perron-Frobenius theorem
that A is a positive real number and u is a unique positive vector.
Thus
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1=1 aE!'

inserting Equations Al.1, A1.2, and Al3 into Equation Al.4 and
summing over k we obtain

i) m L

A=(w ")_l {(] - R)Z 22 U Wiy X

j=1 k=1 1=1
1 M L}

+R222uﬂv,‘fm“x;i (A1.5)
i=1 k=1 i=1

Interchanging the indices k and ! and using Equations 1 and 5,
Equation A1.5 becomes

_ _ n " n w:'+ u
A=(w?) Izukzzw:Jrl.jk;x}? = 10) (Al.6)
P

y *
= i=1 I=1 w

APPENDIX 2: PROOF OF RESULT 2

i. We apply Result 1. Assume that the population is at a genotypic
equilibrium I where at least some of the genotypes determine phe-
notypic values different from y*. The average viability of the pop-
ulation will then be smaller than the optimum w(y*). It then
follows from Result 1 that this equilibrium will be unstable with
respect to any mutation that initially increases the average viabil-
ity of its carriers. Such mutations must be possible; an example
of a mutation of this kind is one that determines y* in all of its
heterozygous carriers.

ii. Assume that the population is at a phenotypically monomorphic
genetic equilibrium I (i.e,, " contains one genotype or is a set of
equally fit genotypes) each of which produces the phenotype Y.
Now consider a mutation that affects the phenotype of at least
some of its carriers. Because y* is the optimum, the viabilities of
all carriers of the mutation (either heterozygotes or homozygotes)
that alter the phenotype will be lower than those of the genotypes
in T. The viabilities of all other carriers of the mutation, if they
exist, will equal those of the genotypes in T. Recombination will
produce nonzero frequencies of the first kind of genotype so that
the average fitness of carriers of the mutation will be less than that
of the genotypes in I'. As a result, the mutation will be selected
against and cannot invade.
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Remark. Note that in Appendix 1, Result 1 was used only in the
proof of part i of Result 2. No assumption about the leading eigen-
value was made in the proof of part ii of Result 2.

APPENDIX 3: PROOF OF RESULT 6

Let G be any genetic equilibrium that phenotypically generates p as
a mean population strategy, and let it include a positive frequency
x of the double homozygote A;B,/A,B, that, by itself, phenotypi-
cally generates p. Now consider a mutant allele that when introduced
into the population at low frequency shifts the average strategy away
from p. Let the population strategy after the introduction of the muta-
tion be p # p. We know V(p, p) = V(p, p), and, because p is an ESS,
Vip, p) < V(p, p)- But V(p, p) is the new average fitness of the popu-
lation, whereas V(p, p) is the fitness of A;B,/A;B, in the perturbed
population. Hence, whenever the population strategy is different
from the ESS, the fitness of A;B,/A;B, is greater than the average
fitness of the population. Moreover, because p is arbitrarily close to
p. the selection forces are as weak as we wish, in which case, due to
recombination, any linkage disequilibrium will be arbitrarily small
relative to the selection differentials. In particular, the difference
between the fitness of A;B;/A;B; and the population mean fitness
can be arbitrarily small. Hence, the frequency of A,B,/A:B, should
increase and therefore tend to a limit. It may either increase to 1 or
reach another positive limit as the population strategy tends to
the ESS.
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