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EVOLUTION IN DIPLOID POPULATIONS
WITH CONTINUITY OF GAMETIC TYPES

+ ILAN ESHEL, Tel-Aviv University

Abstract

This work studies the long-term effects of mutation and selection pres-
sures ona diploid population embracing many genectic types. A number of
results previously established for the simpler asexual case (see [4]) are
extended to the cases of random mating and complete inbreeding (Theoremi
1), and then, under particular conditions, to certain circumstances of mixed
random mating and inbreeding (Theorem 3 and Corollary 1). Several
implications for sex and diploidity are drawn from Theorem 2 and its
corollaries, Further biological interpretations of these findings, especially
of Theorem 2, are given in [3].
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1. The general medel for a diploid-sexual population

In [4] we analyzed some long-term effects of mutation and selection on a
multitype haploid population. The type of each individual in su¢h a popula-
tion is characterized by multiple factors inherited from a single parent of
the previous generation. For the mathematical analysis, each type in the
haploid population has been identified with a point of a Enclidean space E,

* the identification scaling the properties of the type in accordance with a

quantitative features in which we are interested.

For the analysis of the corresponding diploid model we now consider an
infinite population in which the type of cach individual is determined by two
parental gametes. Bach gamete is transmitted by a distinct parent of the
previous generation. We associate each type in the diploid population with

- a pair (x;,x,}, where x,,x, € E represent its two constituent gametes. Ana-

logously to the haploid case the distribution F{x) describes the cumulative
frequency distribution of gametes of type less than or equalto x in the popu-
lation at generation ¢, Before we can study the composition of types in the
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diploid population, however, we must have further information about the
manner in which the gametes are paired, Thus we must know the conditional
distributions F,(x_] #) of gametes x that are paired with any given gamete
uek, : '

From generation ¢ to generation ¢+ 1, selection, mutation, and mating
act in the following manner,

(a) A function y(x;,x,) defined for xy,x,cE (the viability function),
determines, up to a normalizing factor, the frequency of survivors among all
individuals of type (x;,x,). Obviously, the survival probability of any specific
gamete x depends on the other gamete with which it is paired, The frequency
of survivors of all gametes x is thus proportional to

| el
E
and the distribution of the gamete types existing after selection is

fosx [59(u,0)dF(u] v)dF(v)

(t.1) FeC) = 1 e vdb | 0drm)

whete v = (v,0,,+,8,) £ (%;,%,,+,%,) = x signifies v; £ x;, i = 1,2, -, 1.

(b) Mutation operates independently on gametes in the same manner as
in the haploid model; i.c., within one generation, any given gamete xc E
may change into a gamete u with a probability dG(u~x). The distribution
G(u) is called the mutation distribution.

The distribution of the gametes after selection and mutation is thus

(1.2) R = f GG —w)dFHw).

(¢) Reproduction through mating rearranges pairing of gametes and thus
affects the conditional distributions F,(x[u). It does not affect, however, the
gametic distribution F,(x) in the entire population.

In this study we concentrate on mating systems that are equivalent to a
partial inbreeding with random mating, More specifically, we assume a value
0=p =1, namely the rate of inbreeding, such that in each generation a
frequency p of the gametes of any type is paired with gametes of their own
kind, resulting in homozygotes (x,x), while the rest of the gametes are paired
randomly, As a special case, for p = 0 and p = 1 we have random mating
and complete selfing, respectively.

Since we are dealing with an infinite number of gamete types, we assume
that, with probability one, any two randomly paired gametes are different
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and thus constitute a heterozygote (x,,x;), where x, # x,. In this case,
the conditional distributions are uniquely determined by the gametic distri-
bution. More specifically, under the assumption of random mating we get
F(x l u) = F(x)for allu & F, whereas in the more general mixed system we have

(I-pFx)+p if xzu,

F1.3) Fy(x J u) = { (1= p)F,(x) otherwise.

As in the haploid case, we further restrict ourselves to the single-parameter
property of fitness. In order to assign a natural *‘fitness value’’ to a gamete x,
we consider the viability of the homozygote (x,x) that is created by a pair of
such identical gametes. And as in the haploid case, it proves convenient to
define the gametic fitness of x as a logarithmic function of the viability of the
type (x,x). Here, by the definition of x, the viability of the homozygote
(x,x) is given by

1.9 P(x,x) = A7,

where A > 1 is a fixed real number, the standard malthusian coefficient (see
[3]). The viability of the heterozygotic (x;,x,)(x, # x,) is determined by the
composition of its gametes, and also by its heterozygotic character, which
constantly shifts it from the average of its gametic viabililies:

(1.5 P(%1,%5) = QAFEED,

Here 8 > (0 is the heterozygosity-effect (usually, in nature, 8 > 1).

Applying identities (1.1)-(1.5) we see that for any given initial distribution
Fy(x) and a mutation distribution G(x), the process is uniquely determined
by the two parameters § and p. By virtue of (1.3}, the process may be com-
pletely described through the sequence {F?"%(x)}, of the gametic distributions.

For further investigation of the process, it is useful to introduce the gene-
rating functions

(1.6) SPsy= f " o)
and *
@D Wi(s) = JL 5¥dG(x).

The convergence of the integrals for any s = 1 is immediate from the spectrum-
boundedness of their probability measures, This is implied by our restriction
to viability fitnesses. We obtain

f Y )FP ) = pA* - (1—p)8 f JHEDGEP)

= A" + (1= PO (Y.



58 B TLAN BSHEL

Inserting this into (1.1) and (1.2) we get
PTG —w)dFP () +(1— p)OdF A 2 LAY G(x—ui)d FP (1)

poPA) + (1— poTe (H ]

(L8) F)3 (%) =

Equivalently,

P (As) + (1= p)0 ¢7°(AN)p! (4%s)
poE Ay + (1 — PO~ *(AH]

with #2'%(s) = ¢o(s) for all p and 6. Now, set

(L9 ) = ¥

p
1.10 -7
and
(1.11) FP%x) = FXx), t=0,1,2,-..

Expression (1.9) can then be written

qi(As) + (1 — A AN (2%s)
a¢i(D) + (1 —q) [d8(A%)]?

with @3(5) = ¢o(s) for all g. The process is thus determined by a single
parametet g, to be called the diploidity parameter. (1,10) makes it clear
that 0 = ¢ = 1, where the extreme values are obtained for the extreme values
of the inbreeding rate p. Furthermore, for any given # > 0, ¢ is a mono-
tonically increasing function of p, and the effect of the inbreeding coefficient
on the process may be studied through the effect of the parameter g.

For the special case of complete inbreeding (p = 1 and thusg = 1), (1.12)
becomes

(1.12) bi+ 1(8) = ¥(s)

i (43)
(1.13) br+1(5) = ¥(s) -
O =V,
For the complete random-mating case {p = 0 and thus ¢ = 0) we obtain
o
(L.14) 8010) = v )

Since for the asexual process it has already been proved that the generatmg
function ¢, ((s) of generation 7+ 1 is given by

¢,(45)
Pdh)

(see [4]), we obtain, as an immediate result:

(1.15) Pr+1(5) = W(s)
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Theorem 1. (a) A diploid process with complete inbreeding is equivalent
in law to an asexual process with the same initial distribution, the same
mutation law, and the same malthusian parameter,

(b) A diploid process with completely random mating is equivalent in
law to an asexual process with the same initial distributions, but with a lower
malthusian parameter A%,

The proof of the theorem is immediate from (1.13), (1.14), and (1.13). Its
first part is quite expected. The second part is, however, more interesting,
since it extends all qualitative results of the asexual model to the frequently
freated case of -a diploid random-mating population. More specificolly, in a
. way consistent with [4], denote by EX! = [, xdFJ(x) the average fitness

in the population of generation ¢t of the process {Ff(x)},2,, and lot
G = sup{x[ G(x) < 1} stand for the maximal mutation. The value EX/, — EXY,
measuring the average change in fitness from generation ¢ to generation t 4 1,
is called the rate of evolution in generation t. As has been proved for the
asexual model with bounded initial fitness and bounded mutation:

(1) The rate of evolution in a random-mating diploid process tends to a
finite limit, This limit is equal to the maximal mutation, independent either
of A or of F,

(1.16) lim {EXy, - EX]} = G.
t—on
(2) The centered distribution F2(x —EX?) of relative fitnesses tends by
law to a limit distribution F%(x) with a finite variance.

(3) The limit-fitness distribution F°(x) has a bounded support if and only
if G(x) has a “jump’’in G, i.e., if there is a positive probability of the maximal
mutation. In this case the process is said to be perfect.

2. Processes with partial inbreeding and random mating

Systems of partial inbreeding and random mating were first treated (though
in a different context) by Wright [13], [14]. Further discussions of their
mathematical implications or biclogical applications are given by Hayman [7],
Bennet and Binet [1], and Karlin [8]. Mathematical methods similar to those
employed in this section were first offered and used by Karlin and Rubin [10].
A more general treatment of the concepts used here may be found in Karlin [9].
The reader is also referred to Karlin and Studden [11] for properties of general
convexity that are relevant to the ordering concept, and to Lehman [12] for
statistical applications of the concept of monotone likelihood ratio,
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To study the effect of inbreeding on the diploid process of evolution, we shall
be interested in the families {F/(x)}os,<1 for any fixed ¢ =0,1,2,---, We
shall begin by introducing some useful concepts and properties from the theory
of total positivity, For the sake of simplicity, since for t=0,1,2, ..., the
distributions of the family {F{(x)}o<,<1 are mutually absolutely continuous
(immediate from (1.9)), we restrict the discussion to mutually absolutely con-
tinuous families,

(a) A function E(g,x) is said to be tetally positive of order 2 (TP2) if for
all measures ¢ and a monotonically increasing function r(x) for which the
integral [ 1(x)K(q,x)a(dx) converges, this integral defines an increasing
function of ¢ (see [9]). '

(b) A family of mutually absolutely continuous distributions is said to
have an increasing monotone likelihood ratio (IMLR) if a TP2 function
K(g,x) and a measure ¢ exist such that, for all geQ and almost all x < <0,

.1 F(x) = J‘j K(q,x)o(dx).

For g, < ¢, we then denote F, <F,,, say F, is smaller than F , by a
monotone likelihood ratio (MLR). Further, where two r.v.’s X,, X, are dis-
tributed F;,F, with generating functions ¢,,¢,, respectively, and where
F; < F,, then it is convenient to make ¢; < ¢, and X, <X, (X, is smaller
than X, by an MLR). Equivalently:

(by} The family {F}, .o is IMLR if for all increasing functions r(x) the
integral [2,7(x)dF(x) assumes a monotonically increasing function of g,
wherever it converges (sce, for ¢xample, [10]).

(b,) Where F; and F, are mutually absolutely continuous distributions,
F, < F,, if the Radon-Nikodim derivative

0F (x) ewo Fi(x =+ 8) — Fy(x)
is monotonically increasing on the common support. (Since F, < F,, 0F,/0F,
exists a.e. and F(x) = [% [OF,(u)/OF (u)]dF(u) a.e.)

(c) A distribution F(x) is said to have an order-2 Polya density if
Fx) = [X, f(u)u(du) and f(x—y) is a TP2 function a.e. in the F-measure.
Equivalently: ‘

(cy) The function f(x) is an order-2 Pélya density if f(u 4 A)/f(u) is
monotonically decreasing a.e. for all A > 0.

(c,) A r,v. X is said to have an order-2 Pélya density if X + A<X for
all fixed numbers A > 0.

#
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The proofs are immediate from the definitions. The normal, binomial,
Poisson, exponential, geometric, y, §, rectangular, and triangular distributions
are all of an order-2 Polya density.

(d) For an order-2 Pélya density, a r.v. U and any two r.v.’s X and ¥
that are independent of it, it is not difficult to prove

(2.2) X+U>¥Y+U
(see [6]). .

The following properties are more specific, but will be readily proved from
@-(d):

(e) Let F > H (F, H are mutually absolutely continuous distributions),
A> 08>0, and

Fi(x) = f A*dF (u) / f A"dF(u);
- -y
X [ve]
H,(x) = f 6"dH () / f 6" dH(w).
- -
Then F; > H;. ‘
Proof. Tor almost any x on the common support

OF () [7readre) _ ( A )xaF(x)_

= ¢lim il A CA
aHl(x) g—=+0 J‘x+e el!dH(u) 0 aH(x)

which is an increasing function a.e.

(f) If ¢,(s) (g c Q) are generating functions of an IMLR family {F(x)} ..,
and if A(g) is an increasing function over Q, then ¢ [A(q)s]/¢ [A(a)](g< Q)
arc again generating functions of an IMLR family,

Proof. ¢ (Mq)s)/d(A(q)) is the generating function of the distribution

o [ IMGYTE ()
Fol) = 1o Taay1aF )

and the IMLR property of the family {FY(x)},.o follows immediately from

(e). ,
() HF>H,G>H,0<p<1,then pF+(1—p)G > H.

Proof. For any increasing function r(x),

f H(X)A{pF() + (1- PG} = p f H(X)dF(x)+ (1-p) f r(x)dG(x)

> f r(x)dH(x),

provided the integrals converge,
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Using the above properties, we shall now prove the following theorem.

Theorem 2. Consider a family {{FI(x)}i~o}os,s: of diploid processes
of evolution, determined by the same initial distribution Fo(x) and the same
mutation distribution G(y) and differing only in their heterozygotic para-
meter q. Let the distribution G(y) have a Pélya density of order 2. Then
in any given generation t = 0,1,2, -+, the family {F{(x)}o<,<1 is increasing
by a monotone likelihood ratio (IMLR). In other words, a TP2 kernel K(g,x)
exists such that

2.3) )= f " (g, dFOw)

forall0 £ g=<1; —co<x<o0.

Proof. The theorem is trivially correct for ¢ = 0. Assume now that it is
correct for a given z, We denote

P S IHO)
i) = Azt AFW)
t(x) J'ojwléudl;;q(u)

From property (€) above we know that {H%}o<,<, is IMLR. Since A*>1,
(e) also implies that, for all0 £ ¢ = 1, H? > F! Hence, by virtue of prop-
erty (g), we obtain, for all 0 £ ¢, £ g, =1, '

(1~ g)F+ g H2 > (1—qOFP* + q:H* > (1—q)Ff + ¢, H

The family {(1 —@)Ff + qH}o<q<s 18 thus IMLR. The generating functions
of this family are

f " S — )FU) + gHY()]

Piits)
P2

()
= (1-q)¢i(s) + ¢q

Property (f) thus implies that the functions x7(2%s)/x!(A}) are again gene-
rating functions of an IMLR family of distributions, and it follows immediately
from (d) that so are the functions

(1— )P Y1) + g(As)
A—a[ FGHE + 4y

(M)
x4

W(s) = Y(s)

But by (1.12) these are simply ¢¥.,(s).
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Corollary 1. For all increasing functions r(x) and all ¢t =0,1,2,...,
E[r(x{)] is an increasing function of ¢, whenever it is defined.

Remark, Since X was defined as a specific increasing function of the
gametic viability (the logarithmic function), Corollary 1 states very generally
that, at any given generation, the expected value of any increasing function
of the viability is increasing with ¢, and thus with the inbreeding parameter p.
For a discussion of the significance of this result for the evolution of sex, see

[3].
Corollary 2, Forall0<qg =<1,
EX?

(2.4) lim

i=rco

= G.

Proof. Asaspecial case of Corollary 1, we have EX? < EX/ < EX,'. From
Theorem 1, we know that

q 1

lim % = lim EX,

] =

=G,

and (2.4) immediately follows.

Theorem 3. In a perfect diploid process of evolution (i.e., a process in
which the probability of themaximal mutation is strictly positive), the variance
o(X7) is uniformly bounded for all q.

Proof. Tt is not difficult to establish that if G(x) has a jump at x = G
then

e} ek
¥ ‘G /1""”“]<oo for all 1> 1,

k=0
Also, if F, is the upper bound of the support of Fy(x), then

o Bl
o e

(see [4] for proof). From (1.13) and (1.14) it is not difficult to obtain

) T
=40
oot 2X 00m

= F0<OO

and

0 _ g4 P0(A¥) TP
EX; =2 ¢(A*')+ ZA SO
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From this and Theorem 1, we obtain

0 < ! g0 o 2t SOD _ jue B5OY
I XY X ¢
. t—1 Copte ke re 24k
i SV 0 :
05 + I {2 )

@ TEE
<cv+ 3 [G—z*"‘”ﬁ)}sc ,
5 g = C=®

where C* and C are constants, independent of t. Using the inequality
EX? < EX? £ EX}, we now get

var(X9) = Jw (x — EX)2dFI(x)

(2.6)

IIA

Bx? @
f (x— EX)2dF¥(x) + f . (x—EXDY? dFi(x).
EX,

Denote
- {0, x < EX%,
X)) = .
(x — EX2)?, x = EX?!.

Since this is an increasing function of x, Corollary 1 implies that

o]

[ s = mxdyaric = |7 roarre s [ rmarico
EX: - -0
@7 - [ -mxharie s [ e-mxvaie
= C*+var(X}).
In the same way, v
EX.
(2.8) f (x — EX])AF}(x) < C* + var(X}),

But we know from Theorem 1 that

limvar(X?) = 02 < 003 limvar(X}) = 0% < o0,

oo =200
and from (2.6)-(2.8), we have

var(X{) £ 2C* 4 o5 + 07 <.



&

‘Evolution in diploid popuiat_r‘ons with continuity of gametic types 65

Acknowledgements

1 am indebted to Professor Samuel Karlin for his help and counsel on this
research. I am also grateful fo Professors James McGregor and Joseph Yahav
for a number of stimulating discussions, and to Mrs. Jeannette Calhoun for
editorial assistance,

References

[1] BennerT, J. L AND BineT, F. B. (1956) Association between Mendelian factors
with mixed selfing and random mating. Heredity 10, 51-55,

[2] Crow, J. F. anD Kivura, M. (1970} Aa Introduction to Population Genetics Theory.
Harper and Row, New York.

[3] Esuse, I. {1971) On evolution in a population with an infinite number of types. J,
Theoret. Population Biol. 2, 209-236. ,

[4] Bsuew, I. (1972) Bvolution processes with continuity of types. Adv. Appl. Prob, 4,
475-507,

[51 Ewsns, W. X. (1969) Papulation Genetics, Methuen, London,
o f‘[GEi FisHeR, R. A. (1930) The Genetical Theory of Natural Selection, The Clarendon Press,

xford.

[7] Hayman, B. I. (1962) The gametic disiribution in Mendelian heredity. Ausiral. J.
Biol. Sei. 15, 166-182.

[81 KARLIN, S. (1968) Equilibrium behavior of population genetic models with non-
random mating. L. Preliminary and special mating systems. J. Appl. Prob. 4, 482-366.

[9] KarvLiN, S. (1968) Toral Posirivity, I, Stanford University Press, Stanford, California,

[10] KarLIN, S. anD RuBmy, H, (1956) The theory of decision procedures for distribu=
tions with monotone likelihood ratio, Ann. Math, Statist. 27, 272-299,

[11] KarLIN, 8. anND StupDen, W. 1, (1966) Tchebycheff Systems with Applications in
Aralysis and Statistics. Interscience Publishers, New York.

[12] LeavaN, B. L. (1959) Testing Statistical Hypotheses, Wiley, New York.

[13] WrigHT, S. (1921) Systems of mating. Genetics 6, 111-128,

[14] WriGHT, 8. (1935) The analysis of variance and: the correlation betwean relatives
with respect to deviations from the optimum, J. Gener. 30, 243-256.



o

I T et

[l T



