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Abstract. Long-term co-evolulion of male’s sexual extravagance and female's preference
for it is studied. Fisher's “Sexy Son” principle is checked against Zahavi’s Handicap Prin-
ciple. It is shown that although both principles are equally likely to explain this sort of
co-evolution in the short run, only the second one allows for a long-term evolutionarfly sta-
ble females’ preference for costly male’s extravagance, It is shown, however, that Fisher’s
argument, although not sufficient on its own to explain long-term petsistence of females’
choice, may tacitly appear as an indispensable component for the application of Zahavi’s
theory to the important case of dense polygenous populations.

1, Introduction

This work suggests a quantitative study of the co-evolution of male's sexual ex-
travagance and female’s preference for it in large polygenous populations. For
biological discussion of this study, the reader is referred to Eshel et al. (2000).
Following Lande (1981), Kirkpatrick (1985, 1987), Pomiankowski (1987), Grafen
(1990), Maynard-Smith (1991), Otto (1991), Iwasa et al. (1991), Pomiankowski
et al. (1991), Iwasa and Pomiankowski (1995), Pomiankowski and Iwasa (1998),
we compare and analyze the two leading theories about the evolution of sexual
conflict, namely Fisher’s “Sexy Son” principle (Fisher 1915, see also 1930 pp 135-
162) versus Zahavi's Handicap Principle (Zahavi 1987, 1991). Differently from
previous works, we assume a long-term genetic model in which any mutation, af-
fecting either male’s or female’s strategy, can sooner or later be introduced into the
population (e.g. see Eshel 1995, Eshel et al 1999 and references there). We assume,
for simplicity, that male’s and female's behavior are affected each by a different
single locus.
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Following the arguments of both Fisher and Zahavi, we assume that each female
has to choose a mate from a random number of encountered male’s, the choosing-
rule I" being based only on one observed quantitative trait of the candidate, whose
trait value shall be denoted by x. This trait can therefore evolve as a means of sexual
advertisement. We assume, however, that advertisement, at least above some fixed
optimum xp, is costly in terms of viability. Most crucially we assume that male’s
and female’s strategies are both at least partially heritable and are, therefore, sub-
jeet to natural selection. Natural selection on the male’s locus operates to increase
male’s reproductive success. Dealing with polygenous populations in which male’s
only pass their DNA to offspring, it is assumed, however, that the choice of mate
does not affect the direct reproductive success of a female (e.g. Fisher 1930, Sce
also Eshel et al. 2000 and references there. For a different assumption, however,
see Grafen 1990). Instead, natural selection on female’s preference is assumed to
favor the choice of fittest possible mate, thereby assuring good genes to be passed
to offspring.

While the evolution of males’ extravagance, when favored by females, is by no
means surprising, a more delicate question concerns the maintenance of female’s
preference for such a trait, which reduces the male’s viability. Different answers,
given to this question by R. A, Fisher and by A, Zahavi will be quantitatively stud-
ied in this work. As we see in the next two paragraphs, they should require two
different sets of extra assumptions.

According to Fisher’s “Sexy Son Argument” (Fisher 1915, 1930), the female’s
preference for high values of the x-trait might have initiated as historical accident
when directly advantageous, namely when males’ x-values were, on the average,
lower than xg. Once this female’s preference becomes established in the popula-
tion, sexval selection can indeed promote further increase of male’s advertising
above the viability-optimal value of xg. At this stage, however, the fixation of the
female’s preference for male’s high (now exaggerated) x-values might still remain
stable because in such a case the male offspring of any otherwise-choosing mutant
female, although of higher viability, would be likely to remain without a mate,
As predicted by Fisher, a so-called “Runaway Process” can start then, at which
females’ preference for male’s extravagance would lead to the evolution of an ever
higher exaggeration, thus to a more intense competition among males. As main-
tained by Fisher, this can provide females with further incentive to choose highly
advertising males and, as suggested, the process should continue up to the level at
which natural and sexual selection would balance each other,

The Handicap Principle of Zahavi, on the other hand (Zahavi 1987, 1991),
suggests a frequency-independent advantage of females” preference to extravagant
males, based on two plausible extra assumptions. First, that male’s advertisement,
even though costly to all, is more costly to those males which are intrinsically less
viable to start with, namely, in the terminology of Zahavi, low quality males. Sec-
ond, that males can adjust their level of advertisement to their quality. On this basis
it was claimed by Zahavi that by optimizing their level of advertisement each to its
own quality (clearly in a way that the investment in advertisement would increase
with the male’s quality), males inevitably provide trustful signals about their qual-
ity, available to females. A crucial question to be checked in this case is whether, at
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equilibrium, the cost of advertisement imposed on the son of the choosing females
is always overbalanced by its expectedly higher quality.

. We see that Fisher’s “sexy son” argument can indeed lead to a runaway process
in which females’ preference for males’ extravagance would persist while males’
extravagance increases up to a certain exaggerated level. Yet, contrary to the predic-
tion of Fisher, and in agreement with the quantitative models of Iwasa et al. (1991),
and of Pomiankowski et al. (1991), we see that such a process cannot possibly lead
to along-run maintenance of females’ preference for males’ extravagance. Contrary
to Iwasa and Pomiankowski (1995), it is shown, instead, that long-term dynamics
should always bring the population to a stable equilibrium at which females prefer
non-advertising males.

We sec that the situation is different if, as suggested by Zahavi, the cost of
advertisement is different for males of different quality, in which case it is shown
that a single evolutionarily stable strategy exists, in which females prefer adver-
tising males, In this, the findings of our long-term-evolution model stand partly in
agreement with those of the quantitative genetic models of Pomiankowski (1987),
Grafen (1990) and Iwasa et al. (1991). They stand in disagreement with those of
Kirkpatrick (1986). Quite interestingly, though, it appears that the offspring of a
highly advertising male at equilibrium, even though of a higher quality than that of
a poorly advertising male, is not necessarily more viable, given its high tendency
to advertise. Yet sexual success (in this case combined with high quality) ensures a
higher-than-average total reproductive success of such an offspring. On the basis of
this findings it is maintained in Sect. 4 that although Fisher’s “sexy son” argument
alone cannot explain the persistence of males’ extravagance, this argument proves a
tacit but indispensable component in the application of Zahavi’s handicap principle
to the quantitative theory of sexual selection.

2. Long-term analysis of Fisher’s argument

Following the argument of Fisher we assume that the viability n(x) of a male with
trait value x is determined by a function #, which is supposed to be a unimodal
differentiable function, with a maximum at ¥ = x, and with (x) = Qas x — 0.
1t is further assumed that once a male survives to maturity, the number of females
it encounters is independent of its x-trait. The total reproductive success x of such
a male, conditioned on its survival to maturity, is therefore proportional to, and for
simplicity will be measured by, its probability of success in the competition over
a single courted female, thus 0 < x(x) < 1. Unlike the frequency independent
viability 5 of a male, its expected reproductive success x, conditioned on survival,
depends not only on its x-trait, but also on both the distribution F of this trait in the
male population and that of the preference-rule I' in the female population. Here
a female’s mate-preference I" is any rule, cither deterministic or probabilistic, to
choose one x-value out of any finite set of such values. As two special cases we
denote by I'y the female preference for a mate with x-trait closest possible to the
viability-optimum x, and we denote by 't the female preference for a mate with
highest possible value of this trait. The expected net reproductive success of a male,
namely its fitness, is given by
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w=1x (2.1)

Note that the fitness & of a male, as given in (2.1), is proportional also to the ex-
pected number of genes this male passes to the next generation. Assuming genetic
heritability of the trait value x, we take over the simplest “replicator” assumption,
nainely that the relative frequency of males with a given trait value x is multiplied,
atany given generation, in proportion to the fitness of males of this trait in that gen-
eration. Restricting our attention here to panmyctic populations in which males’
contribution to females is limited to DNA, it 1s also assumed that natural selection
operates in favor of any female-preference that guarantees higher fitness of chosen
mates, hence of male offspring (for further details see Bshel et al. 2000).

Denote by py the probability that, courting a female, a random male would

find itself in presence of k other contenders (k =0,1,2,...,Y . pr =1, pp < 1).

‘We assume that this probability is independent of either the mgles’ feature or past
events, and that competitors are independently drawn from the population of adult
males.

A natural and apparently common evolutionarily stable equilibrium is given by
the pair of strategies (I'y, X4}, in which natural selection simultaneously maintains
the viability-optimum x, of the male’s x-trait and the preference of this trait by fe-
males in the population, In this section we are interested, however, in the existence
and possible development of an alternatively stable equilibrium (I‘+, F ) in which
F determines a distribution of males’ frait value x which is evolutionarily stable
under the females’ choosing rule I't, and I'* is evolutionarily stable, given the
distribution of the males’ trait value x. Following Fisher, we start our analysis by
assuming a historical event that may have lead to a temporal fixation of the females’
mate-preference I'* in the population. We then study the population-dynamics of
the males’ x-trait thereby induced and its asymptotic behavior. Given this popula-
tion-dynamics, we check, in turn, the stability of the mate-preference T'" during
the process and in long-term equilibrium, if it exists.

Lemma 2.1. Assuming fixation of the females’ mate-preference T'Y, no long-term
stable distribution F of the trait value x exists, which contains a positive probabi-
listic weight at a given value x*. Move specifically, any distribution F of the trait
value x, which contains such a probabilistic atom, is unstable against the increase
of the frequency of (either mutant or resident} x-values sufficiently close to this
atom and above it.

Proof Given I't and F, x becomes a function of x alone. Moreover, in such a
case any small shift of the male’s trait-value from x* to a higher value x should
guarantee sexual priority of the male of the trait value x over any competitors with
the trait-value x*, if encountered. But if F has a positive probabilistic weight at
x*, the probability of such an encounter is positive, hence y must have a jump at
this point and, since n is continuous, so must have @ = ), with advantage to
trait-values sufficiently close to x* and above it. m]

Assume, on the other hand, that F does not have a positive probabilistic weight
at any given value x. In such a case a x-male, courting a female in competition with
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k other males, would be chosen for a mate if and only if the trait-value of all its
competitors would be strictly lower than x, which occurs in probability (F(x)).
The general probability of an x-male to be chosen by a courted female is therefore
given by:

XY= p(F @)t =0 (F @), 2.2)
k

where ¢ (s} = > p, ()* is the generating function of the number of competitors
k

encountered by a random male in the population. Equality (2.1) thus becomes:

wx) =owrx)=nx)x x) =n&) ¢ (F(x) (2.3)

Lemma 2.2, Assume females’ mate-preference T', then for any value x1 > xo for
which n(x1} > 0, there exists a value 8 = 8(x1) > O such that starting from any
initial distribution F of the male’s x-trait with support SuppF = [x1, x2] where
X1+ 8 > x3 > x1, the distribution F") of the males’ x-trait in the population of
the n-th generation tends to fixation on x2 as n tends to infinity.

Proof of Lemma 2.2. Let us choose any value &, x; < £ < x3, on which the
distribution F does not have a positive probabilistic weight, and let F(£§) = p,
0 < p < 1. LetX, Y and Z be values of the x-trait, randomly chosen in-
dependently, X from the entire population, Y from below and Z from above &
respectively. By simple combinatorial arguments one readily gets p{¥ > X|Y
< & = kand plZ > X|Z > &) = 52—'2 regardless of the distribution F.

Hence E{(X()IY < £) = ¢ (§) and E(x(DIZ > &) = ¢ (42). But for al
x1 <y <&, n(y) < n(x1), hence E{w(Y)|¥ < §} < n(x1)¢ (£), and in the same

way E@(@)IZ > £ 2 0o (142). It follows that Zel@iz=t) > g a02)

14
where K = Ming<p<) q:g 7 )). From the monotony and continuity of the gener-
ating function ¢ it follows that K > 1 and from the continuity of 5 it follows

that a value § > 0 exists, such that if x2 < x; + &, then K gg—fg > 1 hence

%-F;E—?ﬁ—:g > 1 regardless of the value p and hence of the distribution F, given
only SuppF < [x1, x2]. From the replicator assumption that the relative frequency
of males with a given trait value x is multiplied, at any given generation, in propor-
tion to the fitness of males of this trait in that generation, it follows that the proportion
of males with a trait-value lower than & decreases from one generation to the next in
a geometric rate. This being true for any & below the supreme of SuppF, on which
the distribution F does not have a positive probabilistic weight, completes the proof.

O

As a special case of Lemma 2,2 we get:

Lemma 2.3. Assume females’ mate-preference T't. Then for any trait-value
x1 = xg for which n(x1) > 0 there is a positive value 8§ = 5(x1) > 0 such that
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if the males’ population is fixed on the point-distribution x1, then a new mutation
x with |x1 — x| < & will be successfully established in the population if and only if
x > x1. Moreoves, in such a case the new mutation will eventually become fixed in
the population.

As a result of the last two lemmas we get:

Proposition 2.1 (Fisher’s Runaway Process with small-effect mutations).
Assume that the event of mutation Is sufficiently rare in the population. Assume
that at some time during the course of evolution, females’ mate-preference Tt
has been fixed in the population. Assume further that at that time the x-values in
the male population were bounded from above by some value x* > xo for which
1(x*) > 0. For any such x*, there exists avalue 8 = §(x*) > O such that if both the
effect of a single mutation and the initial differences in x-values among males in
the population were bounded by 8, then long-term evolution must lead to Fisher's
Runaway Process, ar least as long as the x-values in the male population does
not precede the value x*, during which time females’ mate-preference T'V should
remain stable. . .

Here, with long-term evolution we mean the dynamics in which the combina-
tion of natural selection and rare random mutation events operates to repeatedly
shift the population from the vicinity of one genetic equilibrium to another, each
being stable for a different set of alleles, temporarily present in the population (See
Eshel 1991, 1995, Eshel et al. 1999),

Proof of Proposition 2. 1. Assume first that females’ mate-preference in the popu-
lation is I'T. From Lemma 2.2 it follows that for any closed interval [xp, x*] such
that x* > xg and n{x*) > 0 (hence n(x) > 0 for all xp < x < x*, 7 being an uni-
modal function of x), there is a value 8 > 0 such that as long as differences among
males’ x-values are smaller than 8, pure ratural selection should lead the popula-
tion to the fixation of the maximal x-value, originally present in the population,
provided this maximal value does not exceeds x*. Assume further that mutations
for the x-trait are rare and bounded in their quantitative effect by §, Lemma 2.3
then indicates that, starting from the vicinity of fixation of a single x-value, the
only possible long-term shifts from one short-term equilibrium to another are those
leading to fixation on a slightly higher level of the x-value. On the other hand, since
during the whole process, males with higher x-values are selected for, so should
be the females’ preference I't for such values; Hence the process is bound to ever
perpetuate itself. o

A natural question to be asked is, indeed: Should the process stop, as it was
maintained by Fisher, at some point in which the forces of natural and sexual selec-
tion are balancing each other? As it foliows from our analysis, no such a point can
possibly exist. Short-term selection would always operate to null small differences
in the males’ trait value x; and with any fixation of this trait on a single value,
mutations for its increase, if of a sufficiently small effect, would always be selected
for, This, indeed, seems a non-realistically too strong a result. Does it mean that
Fisher’s runaway process should inevitably continue till the total extinction of the
population?
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Remark. Note that the distribution {pi} of the number of competitors encountered
by a single courting male indeed depends on the density of the population. More-
over, when the population becomes close to extinction, most (but not all) courting
males would find no competitor at all. In the present article, allowing for long-
term co evolution of male and female strategies with all sorts of mutations, a fixed
population size was assumed, for simplicity, at least at birth. In a previous paper
based on the analysis of changes in genotype frequencies without mutation (Eshel
1979) but allowing for the effect of courtship behavior on the population density of
juveniles, it was shown, on the other hand, that in this case either a stable equilib-
rium or an ecogenetic cycling can be maintained, in which case the establishment
of male-extravagance leads to a drop in the population size, then to the advantage
of the non-exaggerating male type which, in turn, results with the increase of the
population size and so on. For the case of long-term evolution, allowing for all
sorts of small effect mutations we see, however, that at least no stable equilibrium
can exist. As we know from Lemma 2.3, for any trait-value x* > xg for which
n{x*) > 0, if fixed in the population, a value 8 > 0 exists such that mutations of
lower effect should be successfully established and fixed in the population if and
only if they increase the x-value of their carrier.

We now see that the situation is different when less restricting assumptions
than those of Proposition 2.1 are taken over, allowing for all sorts of mutations to
occasmnal]y oceur.

Proposition 2.2. Under the conditions of Proposition 2.1, but allowing for all sorts
of mutations:

i) Fisher's Runaway Process should continue in probability one up to the trait value
x* in which

1
n(x*) = Pon(xo)(f $(s)ds)~!, 24
0

where xg, as we recall, is the value ar which the unimodal function n obtains its
maximum.

ii) Once the trait value x* is surpassed, the process may continue but may, at any
moment in time, be reversed by a single large-effect mutation, drastically reducing
the value of the x-trait.

Remark. Since n is a continuously decreasing function for x > xg and since
1

f P (s)ds > ¢(0) = po, equation (2.4) has always a unique solution,

0

Proof of Proposition 2.2 Tt is easy to see that if the males’ population is fixed on a
single value x, then the probability of a resident x-male to be chosen by a random

1
female is Z T which, as one can readily verify, equals f o (s5)ds. The fitness of

a res:dent x—ma]e in a population fixed on x is, therefore:
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1
0(x) = n(x) f $(s)ds. 25)
0

A sexually inferior mutant y < x, in such a case, will be chosen by a court-
ing female only in the absence of any other male competitor, hence x(¥) = po
and a)(y) = pon(y) Having 5(¥) < n(xgp), it therefore follows from (2.5) that
if x < x* x* being the solution of (2.4), no mutation ¥ < x can be selectively

advantageous. Having, on the other hand, f ¢(s¥ds > po, it follows from (2.5)

that if x > x*, then a mutation y < x, sufﬁc:lently close to x,, will be selectively
advantageous. Yet, at the same time we know from Corollary 2.3 that any mutation
¥y > x, if of a sufficiently small effect, will also be selected for. O

Indeed, once a new mutation for large-scale reduction of the exaggerated
x-trait becomes established in the population, it is possible that the runaway process
would come to an end as natural selection would then favor females with prefer-
ence just for low values of the x-trait. Another possibility, actually one of many, is
that a polymorphism between the two male types would become established in the
population, with the possibility that other mutations will follow. The asymptotic
behavior of the general long-term evolution of the male’s trait value would then be
hard to follow. Instead we now ask about a possible limit distribution F of this trait
value, in long-term equilibrium, given the females’ mate-preference I't, For any
such a distribution, if it exists, there must be a constant ¢ > 0 such that

iy For any x € SuppF, wr(x) = c.
iiy Forany x ¢ SuppF, wr(x) <c.

The first condition is necessary and sufficient for the requirement that short-
term selection will not change the shape of F. The second condition is necessary
for the immunity of F to an invasion by a new mutation. A version of condition (ii)
with a sharp inequality is a sufficient condition for such immunity.

From Lemma 2.1 (together with the fact that F is monotone increasing) we
already know that a distribution function F in long-term equilibrium, if it exists,
must be continuous as a function of x. From the equilibrium-conditions (i) we know,
further, that for any x in the interior of SuppF, w(x) =n(x)¢ (F(x)) =c.nisa
positive differentiable function of x, hence ¢ (F (x)) is a differentiable function of
x. From this and the fact that ¢ has a derivative bounded from below by a positive
value, it follows that Fis differentiable for any x in the interior of SuppF, with
a density function f = F’. It is indeed differentiable for any x ¢ SuppF with
f{x)Y = F'(x) = 0, hence F is a proper probability distribution, differentiable
almost anywhere. It therefore follows from (2.3) that

@'(x) =97 ()¢ (F (x)) + f)n (x)} ' (F (x)) (2.6}
almost anywhere. As an immediate result we get:

Lemma 2.4, i) For any value x > xp, o’(x) < 0.
it} For any value x > xo with x ¢ SuppF, o'(x) < Q.
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Proof of Lemma 2.4. From both the equilibrium-conditions (i) and (it) it follows
that for x € SuppF, &'(x) = 0. From (2.6) it follows that for any x ¢ SuppF, as
f(x) =0, @ (x) is equal in sign to #’ (x) which for x > xg is negative. ]

Lemma 2.5. Given the females’ mate-preference 'Y, the distributions F in long-
term stable equilibrium are exactly the solutions, if they exist, of the equation

n(x} @ (F (x)) = pyn(xo) 2.7

on SuppF = [xp, al, where a is the solution of the equation

nia) = pgn(xo) (2.8}

Proof of Lemma 2.5, Assume first that F is in long-term equilibrium, If x < xp
then both n(x) < n(xp} and ¢(F(x)) < ¢(F(xp)), hence x ¢ SuppF. It follows
that F(xo) = O and, thus, wr(x0) = n{x0)@ (0) = pyn(xo).

On the other hand, if x > a, where a is the solution of equality (2.8), then
wr(x) < n(x) < n(a@) = pynxo) = wr(xp) which, again, implies x ¢ SuppF,
We, thus, infer that SuppF C [xg, a], and we get wr(a) = n(a)¢(l) = nla) =
L Pott(xo) = wp{xg). _
' Finally assume @ > x > y > xo, and suppose x € SuppF. In this case
‘we know that wr(x) = wgr(xg). If, on the other hand, ¥ & SuppfF, then it fol-
‘lows from part (ii) of Lemma 2.4 that @}z (¥) < 0. From this it follows that for
some value z, x > z > Xxp, co’r (z) > 0 which contradicts Lemma 2.4, It there-
fore follows that SuppF = [x,, ¢], where xp < ¢ < a. But then we know that
wr(e) = wr(xp) = n(a) while, on the other hand, wr(e) = )¢ (1) = n(e),
hence ¢ = a and SuppF = [x,, a]. We further know that for any x € SuppF,
n(x) ¢ (F (x)) = wp(x) = wp(xp) = pyn{xo), hence F is a solution of (2.7).

Assume, on the other hand, that F is a solution of (2.7) on SuppF = [x,, a].
In such a case we have already seen that

a) For any x € [x0,a], w(x) = w(xg) = Pon{xo)-
b) Forany x ¢ [x0,a], < @(x) < pon(xp).

This implies that F' is in long-term equilibrium. m|

Example, The case of the Poisson encounters. Without loss of generality, let
us assume xp = O and let us measure the trait x by its logarithmic cost in terms
of viability, thus n(x} = e, Let females encounter courting males at random,
so that the number of competitors, encountered by a single courting male has a
Poisson distribution p, = e %‘-, where A is a measure of the population-density.
Equation (2.7) thus becomes e~*elf®) -1 — =2 with SuppF = [0, A]. This
yieids F(x) = £ for all x € [0, A]. F(x) is, therefore, a uniform distribution with
density % over the interval [0, A].

A natural question to be asked is why one does not seem to observe similar
distributions of secondary sexual traits in nature. The theoretical answer to this
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question may follow from the next proposition, which is the main result of this
section.

Proposition 2,3, Under the assumption of the model, no long-term stable equilib-
rium ('Y, F) can exist.

Proof of Proposition 2.3. A necessary condition for (I“", F) to be long-term stable
is that, given the females” mate preference I't, F' will be in equilibrium. From Lem-
ma 2.5 we know that this helds if and only if F satisfies the equality (2.7). Assume
that a proportion & > 0 of the females correspond to a mutant type I'%, ignoring the
males’ trait x, thus mating at random. The rest of the females are resident I't. An
adult x-male would then have a probability 1 — & to encounter a I't -female and a
probability & > 0 to encounter a I'’-female. Conditioned on the first possibility, we
already know that the probability of the x-male to successfully mate is ¢ (F (x)).
Conditioned on the second possibility, any male, regardless of its x-trait, has the
same, positive, probability of success, say A > 0. The general success-probability
of an adult x-male in such a case is, therefore, (1 —&)¢ (F (x)) +£A, and its fitness
is, thus, given by

wr{x) =nx}[(1 - &) (F(x))+eA] (2.9

Suppose now that F is in equilibrium for the females’ mate-preference I't. We
know from Lemma 2.5 that it must satisfy equality (2.7), namely n (x) ¢ (F (x)) =
Poh{x0). Substituting in (2.9) we, thus, get

wr(x) = (1 — &) pon{xo) + £An (x) (2.10)

Hence wr, like , is a decreasing function of x for all x > xp. This means that
with the invasion of the equilibrium (I‘*’, F) by any small proportion of the females’
mutation 'Y, natural selection should operate against males with high values of the
x-trait, and hence, against the resident strategy I't of preferring such males. The
pair {T'*, F) is, therefore, long-term unstable. o

From Proposition 2.1 we know, though, that, in agreement with Fisher, until
a certain level of males’ extravagance is reached, the sexy-son effect alone can
initiate a runaway process, which, in turn, stabilizes the females’ preference I't.
Above this level, our analysis is not indicative about the exact long-term dynamics.
As it follows from Proposition 2.2, this dynamics depends on the random order of
the mutations and it is, therefore, by definition, stochastic. Proposition 2.3 asserts,
however, that contrary to Fisher’s hypothesis, such a process cannot possibly lead
to a long-term stable equilibrium, with females’ strategy I'*, hence the sexy-son
argument alone is insufficient to account for what appears to be a permanent main-
tenance of males’ extravagant secondary sexual traits. Note, on the other hand, that
the natural equilibrium given by the pair of strategies {I",, x,}, with fixation of the
viability-optimum x, of the male’s x-trait, is always evolutionarily stable under the
assumption of Fisher’s model.
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3. Long-term analysis of Zahavi’s Handicap Principle

Following Zahavi we now assume that the viability of a male is a function =
n{g,x} of both its investment x in advertisement and some genetically inherited
feature ¢, referred to as guality, n being continuous and differentiable to the second
degree, with

3
ﬁn(q,x) > 0. 3.1

For any fixed value of the quality g it is assumed that # is a unimodal function
of x, obtaining its maximum at a point xg and tending to zero as x —» 00. A crucial
prerequisite for Zzhavi’s argument is that the cost of advertisement should, in some
way, be more painful to individuals of low quality than to those of high quality.
This was interpreted by Grafen (1990) as

32
aqaxn(q',x) >0, (3.2)

Assumption (3.2), however, may prove unrealistically (and as we shall see,
unnecessarily) strong as it implies that for all ¢ > gy, %{n(q, x) — n(go, x)] =
0. This means that for any trait-value x*, lim , , ,n(g,x) > lim roooltg, x) —
limy00 7(qo, x) > n(g, x*) — n(go, x*) > 0, contradicting the most natural

- assumption, given above, that for any value of ¢, lim ,_, . #(g, x) = 0. The unac-

.ceptability of condition (3.2) to realistic situations is intuitively clear since a male
of the lowest quality cannot possibly loose, in absolute value, more than all its via-
bility, which may be very small to start with. Hence, condition (3.2) tacitly requires
that a male of high quality cannot possibly loose mote than a small portion of its
viability even if it grows, say, a tail, thousand kilometers long. In this section we
shall demonstrate a more realistic requirement that is shown to be both a neces-
sary and sufficient condition for the evolution of males’ exaggerated investment in
advertisement.

Another crucial prerequisite for Zahavi’s argument is that, despite purifying se-
lection for high quality, a substantial heritable variance in heritable males’ quality
is permanently maintained in the population, e.g, due to mutation-selection balance
in many loci. We therefore assume that some distribution G of the male’s quality
q is permanently maintained in the population, G being a continuous distribution
with positive density over some interval [go, 4*].

As in the previous section it is assumed that, given the male’s quality g, natural
selection on the male’s x-trait operates to increase the male’s fitness as given by
(2.1). Restricting our attention to polygenous populations in which the male’s role
is limited to fertilization, it is assumed, on the other hand, that the fertility of a
female is independent of either the quality of its mate or the investment of this mate
in advertisement. It is assumed, though, that both quality and tendency to advertise
are at least partly heritable, hence natural selection operates in favor of female’s
mate-choice that increases the average male offspring’s fitness, Females, however,
are not able to directly measure either the fitness or the quality ¢ of a male, but
they are provided with full information about its secondary trait x, Thus, as in the
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previous section, a female’s strategy I" is any rule of mate-preference based on the
male’s trait x, [t being the female’s preference of high values of this trait,
Contrary to the assumption of the previous section, we now assume that males
are able to adjust their secondary trait x to their quality. A male’s pure strategy is,
thus, a measurable mapping x (g) of qualities g € [qu, q*] into trait-values. A gen-
eral (mixed) male’s strategy is a mixture of such mappings, determining an induced
mapping { F,(x) }qﬂ <g<q* of male-qualities into distributions of trait-values. Since
in this work we resort only to those properties of mixed strategies that are given by
their induced mappings {Fq (x)}qﬂ <q<qr WE identify mixed strategies with their
induced mappings. We employ an induced mapping, all the same, to characterize
a population strategy, in which case we know also the distribution G of the male’s
quality g. Thus, given the population strategy {Fq (x)} do<q<q*’ the distribution of

the trait-value x among all males in the population is given by

Fx) = /Fq(x)dG(q). (3.3)

As in the previous section, we start by assuming fixation of the females’ mate-
preference 't and ask about all possible males’ strategies { (x)}qo <g<q+ thatare
long-term stable against I'*. Then we ask about the mutual evolutionary stabil-

ity of the pair (F"‘, {Fq (x)}q), guaranteeing permanent maintenance of females’

preference for males’ extravagance,

If, given I'*, the males’ strategy {Fq (x)}q is at equilibrivm, then, using argu-
ments similar to those given in the previous section, one can easily verify that the
distribution F, defined by (3.3}, cannot possibly have a positive probabilistic weight
concentrated on a single point x. Being interested in males’ strategies which, given
', are evolutionarily stable (and are, thus, indeed at equilibrium), we therefore
restrict our attention to the case in which F is a continuous distribution of the male’s
secondary trait with density F/ = f, f being continuous except, maybe, for a set
of isolated points. In such a case (still given the females’ mate-preference I'T), the
fitness of a (g, x)-male is given, in exactly the same way as in the previous section,
by:

w{g, x) =wr (g, x) =n(g, x) ¢ (F (x)} (34

where ¢ (F (x)) represents the expected reproductive success of an adult male. A
males strategy {Fq (x)} p is in equilibrivm (given ') if for all ¢ € [qo, q*], there
is a constant ¢4 such that:

i) For all x € SuppFy, wr (g, x) = cq.
ii) For all x ¢ SuppF,, wr (g, x) < cg.

A necessary condition for the equilibrium property of {Fq (x)}q is that, in ad-
dition to (i), requirement (ii) holds at least as a weak inequality. The first condition
is indeed necessary and sufficient for preventing short-term natural selection from
re-shaping F,;. The second condition is responsible for long-term stability of this
distribution against invading mutant strategies. From (i) and (ii) together it follows
that for any value x € SuppFy,
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- +

d
® g, x)z0> g—xw (g.x), (3.5)

where %% and % stand for the left and right derivatives respectively. At a point
X € SuppF, in which the density function f(x) is continuous, this becomes

iw (g, x)=0. (3.9)
ax

Lemma 3.1. Suppose that, given I'Y, the male’s strategy | F, (x)} is at equilibri-
um, then for all g € [qo, ] SuppF, C {xo, ©0).

Proof. Suppose x € SuppF,. Assume for simplicity that at this point f(x) is
continuous, then it follows from (3.4) and (3.6) that

3 3 | '
(:Ew(q, x)= P (@, x}¢(Fx) +n(g, x) fx) (Fx) =0 (3.7

This implies 27 (g, x) = —n (g, x) FX)P' (F (x)) /¢ (F (x)) < 0 with sharp

* inequality whenever f(x) is strictly pos1t1ve Recalling that n = 5 (g, x) is a uni-

: modal function of x with a maximum at xo , it follows from the last inequality that
x> x0 with sharp inequality whenever £(x) > 0. With some technical elaboration,
% employing (3.5), this simple argument can be readily generalized to discontinuity-
‘= points of f.

Proposition 3.1, A necessary condition for the Evolutionary Stability of the pair
(l"’r, {Fq (x)} q) (for both short and long-term evolution) is that for any value

€ (g0, ¢*] and for all x € SuppF,,

2
dgox

Inn(g, x) = 0. (3.8)

Proof of Proposition 3.1. Suppose first that, given I't, {Fq {x) }q is Evolutionarily
Stable and, thus, indeed, in equilibrium. In this case (3.7) holds for all x € SuppF,.
This yields

FO)¢' (F(x)) = -

1
(g, %) 3% n(q x)$(F (x)). (39)

It also follows from (3.7} that for all x and g,

Pw(g,x)  #?
dgdx  8g8

3
~1(a,x) ¢ (F @)+ EH(Q,X)f(x)cb’ F)y  Glo

Inserting (3.9) into (3.10) we, thus, get, forall x € SuppFy
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ézw(q.x) @2 1 3
9405 _aqaxn(q,x)¢(F(x))— voe x)aq"(q‘ )xn(q,x)qﬁ(F(x))
62
=n(q,x)¢(F(x))a > Inn(g, x). (3.11)
X

Out of continuity arguments it is sufficient to prove (3.8) for all values of g
in the open interval (go, ¢*1. Thus, suppose that for some value ¢~ € (g0, ¢"]
and for some x™ € SuppFg~, the condition (3.8) is not satisfied, thus at (g™, x™),

5a0% qax innig, x)y < 0. From (3.11) it would, then, follow, that at this point —“’(’ﬂ) <
0 while indeed H“’ (g, x) = 0. This means that for some value g.. < q sufﬁ—

ciently close to g™, and for x = x™, we get Mﬂ’a%ﬁfl > (. But we know also that
as x — 00, 1 (g, x) — 0 and, therefore, w (g, x) — 0, hence w (g, x) must get
its maximum at some point x~ > x”. This means that the females’ strategy I'*
would prescribe the preference of a (g~, x~)-male over the (g™, x™)-male, whose
quality was chosen to be higher. Moreover, having x™ € Suppfg~, we know that,
given ', w(g™, x™) > w(g™, x) for any value of x (otherwise it would be disad-
vantageous for a male of quality ¢™ to choose the trait-value x = x™); hence, as
a special case, w(¢™, x™) > w(g™, x~). But from g~ < ¢™ and (3.1) we indeed
know that w(g™, x~) > w(g~, x~), hence w{g™, x™) > w{g~, x~).

* We thus end up with the conclusion that if (3. 8) does not hold, then the females’
strategy I'* should prescribe the preference of a male (g~, x~) with arelatively low-
er fitness over a male (g, x™) with a relatively higher fitness (given r't), Hence,
given {Fq (x) }q, 't cannot possibly be the best mate-preference for a female and

therefore the pair {T'*, { F,(x)} ) cannot be evolutionarily stable. O
g

Note that both condition (3.8) and condition (3.2), previously suggested by Gra-
fen, seem to stand in agreement with the verbal argument of Zahavi, that a trustful
signal for quality requires a cost of investment which decreases with quality. Con-
dition (3.8), however, requires that the relative cost of advertisement should be de-
creasing with g. Instead, condition (3.2) requires a decrease in the absolute cost of
advertisement, an unrealistic requirement as it was shown above. Recal]mg ik 0

2 2
and (as concerning x > x) 51 23 - 0, we have nﬁ‘;’l ~"-3-5'1- 1 %'Lgﬂ aa—q;?;,
hence condition (3.8) is mdeed weaker than condltlon 3.2). the main result of this
section is, thus, given in the following proposition.

Proposition 3.2, Assume females’ mate-preference T'Y, and assume that for any
pair of values q and x, the viability-function n(q, x) satisfies a sharp version of the
condition (3.8), say:

2
dqox

Innlg,x) >0, (3.12)

then.
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i} Any males’ equilibrium-strategy is given by u continuous, monotone increasing
one-to-one mapping x(q) of the male’s quality q into the males secondary trait
x, with x(go) = x".

ii) The fitness o (g, x(q)) of a male of quality q is then an increasing function of
its quality q and hence of its observed secondary trait x(q). This, in turn, makes

females’ mate-preference 'V evolutionarily stable. :

In order to prove Proposition 3.2, we first prove the following Lemmas:

Lemma 3.2, Assume condition (3.12) (for any x and q) and suppose that, given
rt, {Fqr (x)}q is an equillbrium-strategy, then

i) { Fy(x) } g is separating, prescribing different secondary traits x to different
male-qualities q.

#) If g1 < g2, 91,92 € [qo, @*], then for any secondary trait-value x; € SuppF,,,
there is a secondary trait-value xa € SuppFy, such that x3 > x1; for any sec-
ondary trait-value xa € SuppFy,, there is a secondary trait-value x| € SuppFy,
such that x3 > x.

Proof of Lemma 3.2. 1) Inequality (3.12) implies that for any value of x, %w (g, x)
is a strictly increasing function of g, hence, given x, the condition (3.6) for x &
SuppF,;, namely g‘}a) (g,x) = 0, cannot hold simultaneously for two different

values of g.
i) If g2 > g1,x1 € SuppF,,, we already know that Ma%a_’x_) > 0.

X=X
Recalling that for all ¢, @ (g, x) = O as x — o0, it follows that w (g2, x)lgets its

maximum at some pointx > x1, x2 € SuppFy,. In the same way, if x € SuppF,,,

Maq}‘—ﬂ < 0. Butw (g1, x) is indeed an increasing function of x for x < xg L
xX=Xx2
hence (g1, x) obtains a maximum at some point x; < x3, x1 € SuppFy,. ]

Lemma 3.3. Assume condition (3.12) and suppose that, given I't, {Fq (x)}‘]F is an
equilibrium-strategy, then SuppF must be an interval, say SuppF = [xg, x*].

Proof of Lemma 3.3. Suppose x1 < x2, x; € SuppF, x2 ¢ SuppF. It is enough to
show that for all x > x3, x ¢ Supp¥. Suppose, on the contrary, x € SuppF exists
such that x > x3, then there must be a value x3 > x5 such that x3 € SuppF, but
X ¢ SuppF for all x3 < x < x3. From x3 € SuppF it follows that x3 € SuppFy,
for some g3 € SuppG. From the fact that x ¢ Supp# forall x3 < x < x3 it follows
that f(x) = 0 on some left-vicinity of x3. From Lemma 3.1 it, therefore, follows
that x3 = x°.

In the same way: from x1 € SuppF it follows that x; € SuppF,, for some
41 € [0, ¢* |. From Lemma 3.1 it then follows that il < <x= x4’ . But con-
dition (3.12) immediately implies that the value x = xg at which (g, x} achieves
its maximum is an increasing function of g, hence g; < g3. We thus infer that for
any positive value & > 0 there exists a value g € [qo, ¢*] with ¢3 — & < ¢ < g5.
From the continuity of x{ it therefore follows that a value g € [qo, q*] exists such
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thatg < gz and x3 < xU < xg3 = x3. But since ¢ < g3 we know from Lemma 3.2

that a value x € Supqu exists with x < x3.

Employing, again, Lemma 3.1, we infer that xa < xo < x,hence xa < x < x3
where x € SuppF, in contradiction with the assumption that x- ¢ SuppF for all
X2 < x < x3. Hence SuppF must be a connected interval. _ 1

Immediately from Lemmas 3.2 and 3.3 we get:

Lemma 3.4. Given (3.12), condition (3.6) is not only necessary, but also sufficient
for x € SuppF,.

Proof of Lemma 3.4. Assume condition (3.12) and suppose that, glven
r+, { Fy (x)} is an equilibrium-strategy. Suppose, moreover, that - @ {g.x)=

for some g [qg, q ] then it immediately follows from Lemmas 3.2 and 3.3 that
x € SuppF,. O
With these results we now return to the proof of the proposition.

Proof of Proposition 3.2. i) Any male equilibrium strategy determines a unique
distribution F of males’ trait values. This, in turn, determines the fitness func-
tion w (g, x) = wr (g, x) = 1 (g, x) ¢ (F (x)). From Lemma 3.4 it follows that,

given F, males’ equilibrium strategies are determined by the points that satisfy
%w (g. x) = O.or, equivalently (since e is indeed positive on SuppF),

i]n.a.v(q,x):O. (3.13)
dx

From formula (3.1) it follows that # (since it is positive on SuppF} satisfies
5% Inn (g, x) > 0. This, together with the definition (3.4) of w implies that

;—q— Inew(g,x)>0. (3.14)
This same definition, together with (3.12) implies
32
Inew (g, x) > 0. (3.15)
dqox

From (3.14) and the Implicit Function Theorem it follows that the solution of
(3.13) on the compact interval [go, %] can be written as a unique continuous func-
tion x = x(g) of g. Given F, and therefore w, there can be only one such function,
since (3.15) implies that for each given g there is at most a single value x = x(g)
for which (3.13) is satisfied. From Lemma 3.2 it follows that the solution must
be monotone increasing. Hence, given condition (3.12) and assuming the females’
mate-preference I't, any equilibrium-strategy (and thus, indeed, any evolutionarily
stable strategy) of the males is given by a continuous, monotone increasing one-
to-one mapping x(q) of the male’s quality ¢ on the males secondary trait x. The
restriction x{gp) = xo then follows immediately from Lemma 3.1.

ii) Suppose g1 > g2, 41,92 € SuppG. We know that x(g1) is maximizing
w(g1, x), hence wigi, x(q1)) = w(g1, x(g2)). But for any value of x, the fit-
ness w(g,x) = n(g,x)¢ (F (x)) is a strictly increasing function of g, hence
w(q1, x(g2)) > (g2, x(g2)) and we get w(q1, x(q1)) > w(q2, x(¢2)). [}
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4. The case of random encounters

As in Sect. 2, let us assume now random encounters among males and females,
in which case we already know that the number of competitors encountered by a
random courting male has a Poisson distribution with a generating function:

(o o] )"k
TOES :e-lﬁsk =MD (4.1)
k=0

where the parameter A stand for the intensity of encounters, interpreted as the
population density. As in the previous section assume, for simplicity, xg = ( for
all g € [go, 9*) and Iet us Turther measure the male’s investment x in units of a
logarithmic cost for the lowest-quality -male, thus n(go, x) = ¢~*. For any value
g > qp, we most generally assume

n(g, x) = c(g)e @, (42)

where ¢ and r are positive and differentiable functions of ¢, ¢ > 0 and ' < 0,
c(qo} = r{go) =-1. We further assume that the quality-distribution G{(g) is contin-
uous with a positive density G'(g) = g(g) > O forall gy < ¢ < g*.

= From (4.2) it follows that aa;x Inn(g, x) = —r'(g) > 0, regardless of c(g),
hence # satisfies the condition (g. 12). From Proposition 3.2 we thus infer the exis-
- tence of a mapping x(g) of quality over advertisement such that the pair (I“", x{g ))
is evolutionarily stable, x(¢q) and w(q, x(g)) being monotone increasing functions

of g.

' Given I'T, one can eniploy (3.4) to obtain -‘% Inw(g, x} = Af(x) —r(g). Thus,
at a point x = x(g)at which %w(q, x) =0, we get

Af(x) =r(g). 4.3)

Now, from the monotone increasing of x(g) we get ¥ (x(g)) = p{x(Q) <

x(q)} = p{@ < q} = G(g), hence, by differentiating, f(x(¢))x'(g) = 2(g).
Inserting into (4.3), we thus get the differential equation

¥(q) = 152 (44)

r(g)’
With the restriction x(gq) = xg“ = {), this equation has a unique solution on

the interval g < g < g*:

q

dG(y)
=A ) 4.5
x{q) f ") 4.5)

a0

Corollary 4.1 (the case of random encounters). Given all other parameters of
the model, the logarithm of the Evolutionarily Stable viability-cost of male’s adver-
tisement, whichis anincreasing function of the male’s quality g, is also proportional
to the intensity A of male-competition.
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Note that at least when concerning the case of random encounters in dense
populations, this corollary leads to the inevitable conclusion that, as having been
suspected by Maynard Smith (1976), the cost of advertisement of a top male can
only be partly compensated by its quality. More specifically it follows from (4.2)
and (4.5) that forall g < g < g™

4 _om o[ - ~x(@)r(@)
dq n(g,x(q)) = 54 +x (q)ax —[ r{g)x(q) lg(q)] c(g)e ¥

clg)
(4.6)

Recalling that ¢'{¢) > 0, r'(g) < 0, and g(g) > @, it follows that for any

value g9 < g < g%, there is a value A; = < );"(;)gr(g) 2@) ., such that

(—f—n(q,x(q)) > Ofor A < Ag and Edan(q,x(q)) < 0 for A > Ag. Denote Ly =
M ingy<g<q*hq and Ay = Maxg <g<,thy, We get:

Corollary 4.2 (the case of random encounters). Given all other parameters of
the model, there are two values, Al and ha, Ay = A = 0, such that

i) If the population density Is sufficiently low, say A < L, then the male’s viability
g, x(q)) is an increasing function of its quality (and, hence of its observed
" .evolutionarily stable investment x in advertisement).
it) Ifthe population density is sufficiently high, say b > Az, then the males’viability
is a decreasing function of its quality (and, hence of its observed evolutionarily
stable investment in advertisement),

We, thus, see that in the a case of dense populations, although male’s extrava-
gant advertisement indeed serves as a trustful proof of quality, the direct advantage
of high quality can only partly compensate for the viability cost of advertisement.
Proposition 3.2 asserts, on the other hand, that even in this case, as long as the
females’ mate-preference I' prevails in the population, it remains selectively ad-
vantageous for any single female to follow the majority-rule, thus to prefer highly
advertising males, even though thereby decreasing the expected viability of its off-
spring. But then, the selective advantage, accrued to a female by choosing such a
male can only stem from the perspective of thereby increasing the offspring’s sexual
success, a success guaranteed only if large enough majority of females in the pop-
ulation indeed follows the mate-preference I't. Hence, a quantitative examination
of Zahavi’s argument in this case tacitly leads us back to Fisher’s argument of the
Sexy Son! For a more thorough discussion of the intricate connections between the
two theories of sexual selection and a suggested first step toward their unification
see Eshel et al. (2000).

5. Summary

A long-term-evolution model of sexual selection in polygenous populations was
analyzed, in which females were assumed to choose each a mate from a random
group of males. Natural selection on male’s genotype was assumed to operate in
favor of male’s fitness, which was defined as the product of viability and expected
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reproductive success in maturity, if reached. Assuming, though, independence of
progeny size on female’s mate choice (see Eshel et al. 2000 for discussion), fe-
male’s choice was assumed 1o be selected in favor of offspring’s fitness, as affected
by father’s genes. Naturally assuming that females are unable to directly recognize
male’s genes, females’ mate choice was supposed to be exclusively based on a
quantitative secondary trait of the male’s phenotype. The model was employed to
quantitatively study two principles suggested to explain the evolution and persis-
tence of females’ preference for males’ extravagance.

In Sect. 2, following Fisher’s “Sexy Son™ argument, it was assumed that costly
male’s extravagance could only be favorable because of female’s preference for
it, and female’s preference for male’s extravagance, when fixed in the popula-
tion, could only be favorable because of expected sexual success of extravagant
offspring, In agreement with Fisher it was shown that once females’ preference
for males extravagance is established in the population, a “Runaway Process” is
expected to perpetuate itself, thereby stabilizing females’ preference for males’ ex-
travagance. The process was shown to continue, undisturbed, up to a level in which
the cost of advertisement for the most extravagant male drops below the chance
of the least favorable male to find a female uncourted by other males. Contrary to
the prediction of Fisher it was shown that the population dynamics, in such a case,

_ couldn’t possibly lead to a long-term stable equilibrium. The establishment of any

g

ethbnum of the males’ extravagant behavior, which is stable in face of females’
mate preference for it, was shown to result in the destabilization of females’ prefer-
‘ence for extravagant males and, hence, the reversion of the process. The only stable

* end-result of the long-term process was shown to allow no males’ exaggeration.

In Sect. 3, followmg Zahavi’s argument of the Handicap Principle, it was shown

' that the sitnation is different if males are able to adjust their level of advertisement

to their varied qualities. In such a case, a necessary and sufficient condition, say
(3.12), was found, under which an evolutionarily stable equilibrium exists in the
population, in which females prefer advertising males. In this case it was shown
that male’s advertisement must be a deterministic, monotone increasing function
of individual quality, hence a trustful signal of it. More importantly for the evolu-
tion of female’s preference, it was shown that despite of the cost of the signal, the
total reproductive success of a male remains an increasing function of its quality,
hence of the level of advestisement observed by the courted female. In agreement
with the verbal argument of Zahavi, condition (3.12) requires that the relative cost
of investment should be decreasing with quality (Based on a different model, a
somehow stronger sufficient condition was suggested by Grafen, 1990, according
to which the absolute cost of investment should be decreasing with quality).

In agreement with Grafen (1990) we have assumed that the choice of a less
attractive mate, when it occurs, should result from the lack of availability and not
from misjudgment on the side of the female (e.g. Kirkpatrick 1987, Iwasa and
Pomiankowski 1995, Pomiankowski and Iwasa 1998 and references there). This
makes the intensity of sexual selection, and hence the male’s optimal investment
in advertisement, an increasing function of the population density (see also Eshel
1979). In Sect. 4, concentrating on the case of random encounters between males
and females, it was thus shown that while male’s viability in sparse population,
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despite the cost of advertisement, is an increasing function of quality, this is not
the case when the population density is sufficiently high. In the latter case it was
shown that male’s advertisement becomes costly enough as to turn male’s viability
into a decreasing function of quality. In such case, as it appears from the analysis,
females® preference for high male’s advertisement could only remain stable in the
population due to the tacit effect of offspring sexual success. Fisher’s argument of
the Sexy Son, although by itself proved insufficient to account for the persistence
of males’ extravagance, was shown in this case to be an indispensable though tac-
it component in the evolution and maintenance of this phenomenon according to
Zahavi’s Handicap Principle.
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