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Abstract. Asymptotic stability under the replicator dynamics over a continuum of pure
strategies is shown to crucially depend on the choice of topology over the space of mixed
population strategies, namely probability measures over the real line. Thus, Strong Uninva-
dability, proved by Bomze (1990) to be a sufficient condition for asymptotic stability under
the topology of variational distance between probability measures, implies convergence to
fixation over a pure strategy x∗ only when starting from a population strategy which assigns
to x∗ a probability sufficiently close to one. It does not imply convergence to x∗ when starting
from a distribution of small deviations from x∗, regardless of how small these deviations
are. It is, therefore, suggested that when a metric space of pure strategies is involved, an-
other topology, hence another stability condition, may prove more relevant to the process
of natural selection. Concentrating on the case of a one dimensional continuous quantitative
trait, we resort to the natural Maximum Shift Topology in which an ε-vicinity of the fixation
on a pure strategy x∗ consists of all mixed population strategies with support which includes
x∗ and is in the ε-neighborhood of x∗. Under this topology, a relatively simple necessary
and sufficient condition for replicator asymptotic stability, namely Continuous Replicator
Stability (CRSS), is demonstrated. This condition is closely related to the static stability
condition of Neighbor Invadability (Apaloo 1997), and slightly stronger than the condition
of Continuous Stability (Eshel and Motro 1981).

1. Introduction

An Evolutionarily Stable Strategy, ESS, has been originally defined for symmetric
two-person games (Maynard Smith and Price 1973. See also Hamilton 1967) as
a strategy that, once almost fixed in the population, is strictly advantageous over
any single mutant strategy when in sufficiently low frequency. Of a wider use is
the equivalent definition (Bishop and Cannings 1976. Maynard Smith 1982): A
strategy X is an ESS if it is both a best response to itself and, in case there is
another best response to it, say Y, then X is a better response to Y than Y itself.
It was further shown (Taylor and Jonkers 1978) that an ESS as a population state
in a finite population game, in which individuals are limited to the choice of pure
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strategies, is locally asymptotically stable in the corresponding replicator dynamics
with the natural Euclidean topology. As it has been established, however, in a bulk
of later works (Bomze and Pötscher 1989, Bomze 1990, Bomze 1991, Bomze and
van Damme 1992. See also Weibull 1995, Hofbauer and Sigmund 1998), further
requirements are needed to guarantee that an ESS would be asymptotically stable
in the replicator dynamics of a population game with infinitely many individual
strategies, especially in the case of infinitely many pure strategies.

In the latter case, the state of the population at any given moment is natural-
ly characterized by a probability measure µ over some σ -field on the set of pure
strategies. Sticking to the commonly used terminology, we refer to µ as to the
population strategy at that moment. Since general (mixed) individual strategies
(to be distinguished from population strategies) are, all the same, characterized by
probability measures over the same σ -field, the same notation V (µ,η) is generally
used for both the payoff of a µ-player against an η-player, and the expected payoff
of a µ-player in a linear population game with a population strategy η. However,
the very definition of asymptotic stability, in this case, crucially depends on the
choice of topology over the appropriate space of probability measures.

In the articles mentioned above, asymptotic stability was analyzed for the met-
ric topology determined by the variational norm ‖µ‖ = sup

‖f ‖∞≤1,f ∈c

∣
∣
∫

f dµ
∣
∣ (e.g.

Bomze 1990). Employing this topology (with some plausible regularity assump-
tions), a sufficient condition for the replicator asymptotic stability of a population
strategy µ was shown by Bomze to be the requirement of Strong Uninvadability,
namely the existence of a positive value ε > 0 such that for any strategy η with
0 < ‖η − µ‖ < ε, V (µ,η) > V (η, η). Note, however, that the variational met-
ric assumes no structure over the set of pure strategies, assigning a fixed dis-
tance 2 between any two of them. As a special case, the variational distance of
a strategy µ from the fixation on a pure strategy x∗, say δx∗ , is readily given by
‖µ − δx∗‖ = ∫ |µ − δx∗ | (dx) = 2[1−µ({x∗})], hence the only strategies µ which
are ε-close to δx∗ in this metric are those assigning probability µ({x∗}) ≥ 1 − ε/2
to the exact value of x∗.

Concentrating on the case of a quantitative trait with a continuum of pure strat-
egies, we shall see, thus, that x∗ may be Strongly Uninvadable, while for any
neighborhood U of x∗ there is a population strategy µ with suppµ ∈ U , such
that starting from µ, the replicator dynamics would converge rather to a point in
suppµ, which is the furthest possible from x∗. This makes Strong Uninvadability
incompatible with the static stability concepts of a Continuously Stable Strategy,
CSS (Eshel and Motro 1981) and Neighbor Invader Strategy, NIS (Apaloo 1997),
defined for a pure trait in a continuum.

Continuous Stability adds to the simple ESS condition, an extra requirement
(independent of that of ESS) that a value ε > 0 exists such that if the entire popu-
lation deviates from x∗ to x∗ + θ where 0< |θ |<ε, then mutations of a sufficiently
small effect would be advantageous if and only if in the direction of x∗. Neighbor
Invadability requires that in such a situation, a back mutation to x∗ itself would
be favorable. As we shall see, this is a slightly stronger requirement than contin-
uous stability. Identifying pure strategies with points in R and, thus, representing
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a general (mixed) strategy by a distribution function on R, we see that both these
concepts correspond to the maximal shift topology, determined by the distance
d(F, G) = �(F, G) + �(G, F) between any two strategies F and G, given by

�(F, G) = Inf {ε ≥ 0 : ∀s ∈ R, F (s − ε) ≤ G(s) ≤ F(s + ε)} , (1.1)

and in which the ε-vicinity of the fixation δx∗ on x∗ consists of all probability
distributions with support in the ε-neighborhood of x∗.

In order to unify the two approaches and, at the same time, to generalize the
concepts of CSS and NIS to mixed strategies, it was suggested by Öechssler and
Riedel (2002) that a more general stability condition should be based on the weak
topology, determined by the (asymmetric) distance

dw(F, G) = Inf {ε ≥ 0 : ∀s, F (s − ε) − ε ≤ G(s) ≤ F(s + ε) + ε} . (1.2)

In this topology, a distribution function F is ε-close to the fixation δx∗ if it
assigns probability of at least 1 − 2ε to the ε-neighborhood of x∗ on the real line,
not necessarily to {x∗} itself. Based on this topology, Öechssler and Riedel have
suggested the stability criterion of Evolutionary Robustness (ER) of a general strat-
egy F , requiring (much analogously to the requirement of Strong Uninvadability
in the case of the variational distance) that a positive value ε > 0 exists, such that
for any strategy G �= F in the weak-topology-ε-vicinity of F ,

V (F, G) > V (G, G). (1.3)

It was further conjectured by Öechssler and Riedel that ER is a sufficient condition
for asymptotic stability in the weak topology. At the moment, however, it seems
difficult not only to establish this conjecture, but even to demonstrate a non trivial
mixed ER strategy.

In the present work we restrict our attention to replicator fixation stability
under the maximal shift topology (1.1) over probability distributions on the real
line. Under this topology, a relatively simple necessary condition for fixation-
stability is demonstrated, namely Continuous Replicator Stability, CRSS, which
is, indeed, a necessary condition for fixation stability under the weak topology.
Moreover, by replacing weak inequalities by strict ones, this condition become
sufficient. Continuous Replicator Stability is shown to be almost, but not quite,
equivalent to the combination of static stability conditions of ESS and NIS, namely
to ESNIS (Apaloo 1997); and it is slightly stronger than the static stability condi-
tion of a CSS, which shown to be necessary and sufficient for long term stability
of x∗ (Eshel et al. 1997). It is shown that none of these closely related stability
criteria imply, nor is implied by the condition of Strong Uninvadability. They are
all implied, though, by Evolution Robustness.

2. One difficulty and three approaches to fixation-stability in continuous
population game dynamics

Concentrating on a population game with a continuum of pure strategies, referred
to as a continuous population game, we identify pure strategies with points on R
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with the Borel σ -algebra. We characterize a general strategy by the one dimen-
sional (cumulative) distribution function F , with V (F, G) being the payoff of an
F -strategist when playing against a G-strategist. We denote by Hx the distribution
function corresponding to the point-distribution δx , namely

Hx(u) =
{

0
1

if u < x

if u ≥ x
for all − ∞ < x < ∞.

We further denote by v(x, y) = V (Hx, Hy) the restriction of this function to
pure strategies, assuming that all partial derivatives of v(x, y) up to the third degree
exist and are continuous. Assuming, further, a linear payoff for mixed strategies,
we know that

V (G, F) =
∫∫

v(x, y)dG(x)dF (y). (2.1)

As a special case, if F is a population strategy, then the expected payoff of an
x-strategist in this population is

V (Hx, F ) =
∫

v(x, y)dF (y). (2.2)

Assume now that all individuals in the population are pure strategists, each
reproducing offspring equal to itself with a rate equal to its current payoff, and that
a per capita death rate, average to the per capita birth rate, keeps the total population
size normalized. For any t ≥ 0, the distribution Ft , given F0, is then determined
by the continuous-state replicator dynamics

∂

∂t
Ft (x) =

∫ x

−∞
[V (Hu, Ft ) − V (Ft , Ft )]dFt (u), (2.3)

whenever (2.3) has a solution and whenever this solution is unique. In the case
of continuous distributions with densities ft = F ′

t , this can be written, more con-
veniently as:

∂

∂t
ft (x) = ft (x)[V (Hx, Ft ) − V (Ft , Ft )].

Unfortunately, there is a serious difficulty concerning the very concept of local
asymptotic stability of a pure strategy x∗ under the replicator dynamics defined
by (2.3), with either the weak topology (1.2) or the maximal shift topology (1.1).
Naturally, one would indeed like to consider conditions under which, for some
ε > 0 and for all F0 with suppF0 ∈ (x∗ − ε, x∗ + ε), the dynamics (2.3) would
converge (say weakly) to Hx∗ . Note, though, that suppFt is an invariant of the dy-
namics (2.3) (Bomze 1991). Consequently, these dynamics only allow convergence
to Hx∗ from probability distributions F0 such that

∫

U
dF0(x) > 0 for any neigh-

borhood U of x∗, a requirement which is not implied by suppF0 ∈ (x∗−ε, x∗+ε).
This is not surprising, given that the replicator dynamics allows only for changes
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in the frequencies of pure strategies, already existing in the population. The re-
quirement that

∫

U
dF0(x) > 0 for any neighborhood U of x∗, is therefore, equiv-

alent to the classic restraint of genetic availability as pre-requisite for evolutionary
change.

One way to resolve this difficulty is to superimpose on (2.3) small perturba-
tions due to rare mutations (e.g. Turelli 1984, Bürger 1989, Bomze and Bürger
1995, Bürger and Bomze 1996). Applying this approach to natural populations re-
quires, though, a population size which is sufficiently large as to guarantee, each
generation anew, a steady (though with a rate tending to zero) flux of all sort of
relevant mutations.

As being argued elsewhere (Eshel 1991, 1996; see also Hemmerstein 1996,
Metz et al. 1996, Geritz et al. 1998, Diekmann et al. 2002), we believe (though
this is, indeed, an open subject for a debate) that advantageous mutations occur
very rarely, one at a time, even in populations which, for other aspects, are large
enough as to justify the mathematically convenient assumption of an infinite size.
Under this assumption, a distinction was made (Eshel 1991, 1996) between the pro-
cess of short-term evolution, concerning deterministic changes in the frequencies
of existing genotypes, and the stochastic process of long-term evolution, in which
random mutations, introduced, one at a time, into a population close to short-term
stable equilibrium, may or may not be rejected by natural selection, initiating a new
process of short-term evolution in the latter case. Long-term fixation-stability of x∗
is, then, defined as convergence of the long-term process to x∗ in probability as
close to one as desired, when starting from a sufficiently small neighborhood of x∗
(e.g. Eshel et al. 1997, 1998, Eshel and Feldman 2001). While the dynamics (2.3)
falls, according to this approach, under the category of a short-term process, it was
shown that the long-term convergence to x∗ does not require any assumption about
the genetic availability of x∗.

Finally, sticking to the replicator dynamics (2.3), a third, mathematically straight-
forward, approach is to ignore whatsoever all sorts of mutations, thus to restrict
our discussion to those initial probability-measures that apply positive probability
weight to any small neighborhood of x∗, thus allowing convergence to x∗, if favored
by natural selection. This corresponds to the alternative, empiricist approach, re-
garding observed genetic availability as pre-requisite for evolutionary change (e.g.
Lewontin 1974).

Resorting to either the weak or the maximal shift topology, we were not able to
characterize conditions for fixation-stability under the first approach. We shall see,
though, that, quite surprisingly, at least the latter two approaches lead to somehow
different conditions for fixation-stability, corresponding to different time scales of
the evolutionary process, the short-term, deterministic one, characterized by chang-
es in the frequencies of the existing genotypes, and the long-term, stochastic one,
allowing new mutations to renew the short-term process each time anew.

Thus, on one hand it was already shown (Eshel et al. 1997) that a necessary
condition for the long-term fixation stability of a pure strategy x∗ under the as-
sumption of small effect mutations (given that any mutation with effect less than
a sufficiently small value ε > 0 is possible in the long run) is that the appropriate
first and second derivatives v∗

x , v∗
xx and v∗

xy of v(x, y) at x = y = x∗ would satisfy
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the following three requirements:

v∗
x = 0 (2.4)

v∗
xx ≤ 0 (2.5)

v∗
xx + v∗

xy ≤ 0, (2.6)

regardless of the distribution of the mutations; a sufficient condition for it being (2.4)
with a strict inequality version of (2.5)–(2.6). Quite interestingly, this is equivalent
to the static stability requirement of CSS (Eshel 1982).

On the other hand, assuming the replicator dynamics (2.3) without mutations
but restricting our attention to probability distributions F0 such that

∫

U
dF0(x) > 0

for any neighborhood U of x∗, we shall see now that a somehow stronger necessary
and almost sufficient stability condition is required, in which (2.6) is to be replaced
by the inequality v∗

xx +2v∗
xy ≤ 0, which, together with (2.4) and (2.5), is equivalent

to the requirement of the NIS condition (Apaloo 1997).

3. Fixation stability under the continuous-state replicator dynamic

Notation 1. Dε(x
∗) = {F : d(F, Hx∗) < ε, x∗ ∈ sup dF } where the distance

d(F, G) of the distribution F from the distribution G is given by (1,1).

Dε(x
∗) is the set of all strategies with support in the ε-neighborhood of x∗,

with x∗ itself within this support. The requirement that x∗ ∈ sup dF means that
x∗ is genetically available when starting from a distribution F of (pure) individual
strategies in the population.

Definition 2. The pure strategy x∗ is said to be a Continuously Replicator Stable
Strategy, say CRSS, if there exists a positive value ε > 0 such that for any initial
population strategy F0 ∈ Dε(x

∗), the replicator dynamics (2.3) converges weakly
(i.e. almost anywhere) to Hx∗

Note, though, that since the replicator dynamics (2.3) is characterized by a set
{Ft }t≥0 of distribution functions with equally bounded support, its weak conver-
gence to Hx∗ is equivalent to its convergence in second moment to Hx∗ , namely to
lim

∫

(x − x∗)2dFt (x) = 0.

Employing the Taylor expansion of v(x, y) around x = y = x∗ and denote
v(x∗, x∗) = v∗, (2.1) becomes:

V (G, F) =
∫

[v∗ + (x − x∗)v∗
x + (y − x∗)v∗

y + 1

2
(x − x∗)2v∗

xx

+(x − x∗)(y − x∗)v∗
xy + 1

2
(y − x∗)2v∗

yy]dG(x)dF (y) + o(ε2)

= v∗ + (EX − x∗)v∗
x + (EY − x∗)v∗

y + 1

2
E(X − x∗)2v∗

xx

+(EX − x∗)(EY − x∗)v∗
xy + 1

2
E(Y − x∗)2v∗

yy + o(ε2), (3.1)
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where the derivatives are taken at x = y = x∗, and X and Y are random variables,
distributed G and F respectively.

In the same way, (2.2) yields:

V (Hx, F ) = v + (x − x∗)vx + (EY − x∗)vy + 1

2
(x − x∗)2vxx

+(x − x∗)(EY − x∗)vxy + 1

2
E(Y − x∗)2vyy + o(ε2). (3.2)

Inserting (3.1) and (3.2) into (2.3), we get:

∂

∂t
Ft (x) =

∫ x

−∞
{(u − EXt)v

∗
x + 1

2
[(u − x∗)2 − E(Xt − x∗)2]v∗

xx

+(u − EXt)(EXt − x∗)v∗
xy}dFt (u) + o(ε2), (3.3)

where Xt is a random variable, distributed Ft .

Theorem 3. (a) A necessary condition for the Continuous Replicator Stability of
x∗ is given by (2.4)–(2.5) and

v∗
xx + 2v∗

xy ≤ 0. (3.4)

(b) (2.4) with the strict version of (2.5) and (3.4) is sufficient for the Continuous
Replicator Stability of x∗.

Note that, given (2.5), the requirement (3.4) is stronger than the CSS require-
ment (2.6).

Proof. (a) It is easy to see that the requirements (2.4)–(2.5) are necessary for the
replicator-stability of x∗ against any mutation of a sufficiently small effect, when in
a sufficiently small frequency (e.g. Eshel et al. 1997). Let us, thus, choose for F0 the
discrete distribution function which attributes the probabilities p0(x

∗) = 1−h0 > 0
and p0(x

∗+θ) = h0 > 0 to the points x∗ and x∗+θ respectively, where 0 < θ < ε,
indeed F0 ∈ Dε(x

∗). But starting from F0, we know that a second moment con-
vergence to Hx∗ does not occur unless both (2.4) and (2.5) are satisfied, in which
case x∗ cannot be CRSS.

Let us assume now that (2.4)–(2.5) does, but (3.4) does not hold at x∗. We show
that in this case, for any given ε > 0, there is a distribution F0 ∈ Dε(x

∗), starting
from which, second moment convergence to Hx∗ does not occur. For this we choose
a discrete distribution function F0, attributing the probabilities p0(x

∗) = h0 > 0
and p0(x

∗ + θ) = 1 − h0 > 0 to the points x∗ and x∗ + θ respectively, where
0 < θ < ε. The (discrete) replicator dynamics {Ft } is then given by probabilities
pt (x

∗) = ht and pt (x
∗ + θ) = 1 − ht for any t ≥ 0. Given (2.4), namely vx = 0,

the discrete version of (3.3) readily yields

∂

∂t
ht = −ht

2
[v∗

xxV arXt + (vxx + 2v∗
xy)(EXt − x∗)2] + o(ε2).

Having then EXt = x∗ + (1 −ht )θ and V arXt = ht (1 −ht )θ
2, this becomes:

∂

∂t
ht = −θ2 ht (1 − ht )

2
[v∗

xxht + (v∗
xx + 2v∗

xy)(1 − ht )] + o(ε2). (3.5)
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But having assumed that (3.4) does not hold, we know that vxx +2vxy > 0. For
a sufficiently small ht , (3.5) thus yields ∂

∂t
ht < 0. Choosing a sufficiently small

value of h0 > 0, this can be guaranteed for t = 0, hence for all t in some open
interval [0, t0), where t0 ≥ 0. This implies ht0 < h0. Thus, by transfinite induction
it follows that ht < h0 and ∂

∂t
ht < 0 for all t ≥ 0. This implies that the second

moment
∫

(x − x∗)2dFt (x) = θ2(1 − ht ) of Ft about x∗ can only increase in time,
and second moment convergence to x∗ is, therefore, impossible.

(b) Let us assume now a strict version of (2.4), (2.5) and (3.4), and show that
a value ε > 0 exists, so that for any choice of F0 ∈ Dε(x

∗), lim
∫

(x − x∗)2

dFt (x) = 0.
In a previous article (Eshel et al. 1997) it was shown that for any point x∗ at

which v∗
x = vx(x

∗, x∗) = 0 and v∗
xx = vxx(x

∗, x∗) �= 0, there is a value ε > 0 such
that, starting from any distribution function F0 ∈ Dε(x

∗), the replicator dynamics
(2.3) weakly converges either to a single point or to a pair of points in sup pF0.
Since the dynamics is restricted to a bounded support, this implies convergence in
second moment as well. For this value of ε, let us assume that, starting from some
F0 ∈ Dε(x

∗), the random variable Xt , distributed Ft , does not converge in second
moment to x∗. Since Xt then converges to another discrete distribution, we know
that lim

t→∞E(Xt − x∗)2 > 0. But since E(Xt − x∗)2 = V arXt + (EXt − x∗)2, this

means that lim
t→∞V arXt > 0, or lim

t→∞(EXt − x∗)2 > 0. From the strict version of

(2.5) and (3.4) it, therefore, follows that there is a positive value R > 0 such that
for some t0 > 0 and for all t ≥ t0, v∗

xxV arXt + (v∗
xx + 2v∗

xy)(EXt − x∗)2 < −R.
But with equality (2.4), (3.3) can readily be written as:

∂

∂t
Ft (x)

=
∫ x

−∞

{
1

2
[(u − x∗)2 − E(Xt − x∗)2]v∗

xx + (u − EXt)(EXt − x∗)v∗
xy

}

dFt (x)

+ o(ε2) = −1

2

∫ x

−∞

{

v∗
xxV arXt + (v∗

xx + 2v∗
xy)(EXt − x∗)2

−(x∗ − u)
[

(x∗ − u)v∗
xx − 2(EXt − x∗)v∗

xy

]
}

dFt (x) + o(ε2).

Denote L(u, EXt) = [(x∗ − u)v∗
xx − 2(EXt − x∗)v∗

xy], this can be written as:

∂

∂t
Ft (x) = 1

2

∫ x

−∞
{(x∗ − u)L(u, EXt) − v∗

xxV arXt

− (v∗
xx + 2v∗

xy)(EXt − x∗)2}dFt (u) + o(ε2). (3.6)

But for Ft ∈ Dε(x
∗), |L(u, EX)| < εv∗

xx , hence for a sufficiently small value
h > 0 and for all |u−x∗| < h, |(x∗−u)L(u, EX)| < R

2 . Recalling thatv∗
xxV arXt+

(v∗
xx + 2v∗

xy)(EXt − x∗)2 < −R, it follows that for all such u,

(x∗ − u)L(u, EXt) − [vxxV arXt + (vxx + 2vxy)(EXt − x∗)2] ≥ R

2
.
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From this and (3.6) it follows that:

∂

∂t
[Ft(x

∗ + h) − Ft(x
∗ − h)] = ∂

∂t

∫ x∗+h

x∗−h

dFt (u) ≥ R

4

∫ x∗+h

x∗−h

dFt (u)

= R

4
[Ft(x

∗ + h) − Ft(x
∗ − h)],

which implies:

Ft(x
∗ + h) ≥ [Ft(x

∗ + h) − Ft(x
∗ − h)] ≥ e

R
4 t [F0(x

∗ + h) − F0(x
∗ − h)].

(3.7)

But having F0 ∈ Dε(x
∗), thus x∗ ∈ sup dF , we know that

∫

U
dF0(u) > 0 for

any neighborhood U of x∗, hence [F0(x
∗ + h) − F0(x

∗ − h)] > 0. It, therefore,
follows from (3.10) that Ft(x

∗ + h) → ∞ as t → ∞, which is indeed impossible
since Ft(x

∗ +h) ≤ 1. This completes the proof, leaving lim
∫

(x−x∗)2dFt (x) = 0
as the only possibility. ��

The CRSS condition (2.4), (2.5), (3.4) is necessary but not sufficient for fix-
ation stability under the weak topology (1.2), an obvious additional condition for
the latter being the general Uninvadability condition, guaranteeing stability against
any deviation of any mutant, when in frequency smaller than some ε > 0. An open
question is whether the combination of both is also sufficient for fixation stability
in the weak topology.

4. Game theoretical interpretation of continuous replicator stability
and related concepts

4.1. CRSS and NIS

Employing the Taylor expansion of v(y, y) − v (x∗, y) as a function of y around
x∗, together with the requirement (2.4), we get:

v(y, y) − v
(

x∗, y
) = 1

2
(y − x∗)2(v∗

xx + 2v∗
xy) + o(y − x∗)2. (4.1)

The combination of conditions (2.4) and (3.4) is thus necessary and, as a strict
inequality, sufficient for the requirement that for any y in some ε-neighborhood of
x∗, v(y, y) − v (x∗, y) < 0, which is exactly the NIS requirement for x∗ (Apaloo
1997). At the same time, the combination of conditions (2.4) and (2.5) is necessary
and, as a strict inequality, sufficient for the requirement of Evolutionary Stability
against mutations of sufficiently small effect, say Limited Evolutionary Stability.
This means that, except, maybe, for the case where either (2.4) or (2.5) holds as an
equality, CRSS is equivalent to the combination of NIS and Limited Evolutionary
Stability. The following example indicates, however, that in the most general case,
a pure strategy can be both ESS and NIS, but not CRSS.
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Example . Let v(x, y) = (x − y)4 − 2x4. Having v(0, 0) = 0 and for all x �= 0,
v(x, 0) = −x4 < 0, we know that x∗ = 0 is an ESS. Moreover, for any y �= 0,
v(y, y) = −2y4 < y4 = v(0, y), hence x∗ = 0 is also a NIS. Consider now the
replicator dynamics Ft = ptδ−h + (1 − 2pt )δ0 + ptδh, (t ≥ 0), as determined
by (2.3) with 0 < p0 < 1/2. Choosing 0 < h < ε, F0 (and all Ft) has a support
in the ε-neighborhood of x∗ = 0. But employing (2.3), one can straightforwardly
calculate ∂

∂t
pt = pt (1 − 2pt )(12pt − 1)h4. Starting from 1/6 < p0 < 1/2, pt is

monotone increasing, and the replicator dynamics would, then, carry the distribu-
tion Ft away from 0. In this case, the ESS and NIS x∗ = 0 cannot be asymptotically
stable in the maximal shift topology.

4.2. CRSS, NIS and CSS

Denote f (x) = { ∂
∂x

v(x, y)|y=x}, one can readily get f
′
(x∗) = v∗

xx + v∗
xy .

Employing the Taylor expansion of f (x) = ∂
∂x

{v(x, y)|y=x} around x = x∗,
together with the requirement (2.4), one obtains:

∂

∂x
{v(x, y)|y=x=x∗} = (x − x∗)(v∗

xx + v∗
xy) + o(x − x∗). (4.2)

The combination of conditions (2.4) and (2.6) is, thus, necessary and, as a
strict inequality, sufficient for the requirement (not guaranteed by the ESS condi-
tion) that a positive value ε > 0 exists, such that { ∂

∂x
v(x, y)|y=x} is negative for

x∗ < x < x∗ + ε and positive for x∗ > x > x∗ − ε. This, in turn, is equivalent
to the CSS condition that if the entire population slightly deviates from x∗, then
a new mutation of a sufficiently small effect would be favorable if and only if in
the direction of x∗, not necessarily to x∗ itself (Eshel 1982), a requirement named
m-stability by Taylor (1989).

Let us now concentrate on the case where for any pure strategy y there is a
unique best response x = x(y), such that

vx(x(y), y) = 0, (4.3)

vxx(x(y), y) < 0. (4.4)

From the definition of x(y) as the unique best response against the pure strategy
y, it follows that any real value y = x(y), if it exists, at which x(y) intersects the
main diagonal, is a unique best response against itself and hence a pure ESS of
the population game. On the other hand, any pure ESS y of the population game,
if it exists, must be a best response against itself, hence, from the assumption of
the model we know it is a unique best response, thus y = x(y) is an intersection
of x(y) with the main diagonal. From (4.3)–(4.4) and the theorem of the implicit
functions it follows, further, that x(y) is continuous and differentiable with,

dx

dy
= −

d
dy

vx(x(y), y)

d
dx

vx(x(y), y)
= −vxy(x(y), y)

vxx(x(y), y)
.
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At the intersection (x(y), y) = (x∗, x∗), this yields:

dx

dy
= −v∗

xy

v∗
xx

. (4.5)

Recalling that vxx < 0, the additional CSS condition (2.6) thus readily becomes:

dx

dy
≤ 1. (4.6)

In the same way it follows from (3.5) that the NIS (or CRSS) condition (3.4) is
equivalent to

dx

dy
≤ 1

2
. (4.7)

Ignoring for the moment the case dx/dy = 1, we get:

Corollary. A CSS is any value, if it exists, at which the curve x(y) intersects the
main diagonal x = y from above. A CRSS, which in this case is equivalent to ESNIS
(i.e. NIS and ESS, see above), is a value x∗ at which the curve x(y) intersects the
main diagonal from above at a slope smaller than arctg 1

2 .

Indeed, an intersection from above of the curve x(y) with the main diagonal
at x∗ (including the case dx/dy = 1) means, in this case, that the best response
x(y) to a pure strategy y, sufficiently close to x∗, would be in the direction of x∗.
An intersection from above at a slope smaller than arctg 1

2 guarantees that, for y

sufficiently close to x∗, the best response x(y) would be closer to x∗ than to y.
If the best responses to the most extreme strategies are less extreme, namely if

the curve x (y) starts from above and ends below the main diagonal, then at least
one intersection from above is inevitable, hence there must exist at least one CSS
(Eshel and Motro 1981). Employing the second part of the corollary, on the other
hand, one can easily construct an example in which no CRSS or ESNIS exists under
these conditions.

4.3. CRSS, CSS and NIS versus Uninvadability and Strong Uninvadability

As we recall, a strategy µ in a general population game is Strongly Uninvadable if
a positive value ε > 0 exists such that for any strategy η with 0 < ‖η − µ‖ < ε in
the variational norm, v(µ, η) > v(η, η). In the special case of a pure strategy x∗,
the requirement ‖δx∗ − η‖ < ε is equivalent to η = (1 − h)δx∗ + hµ, where µ is
any probability measure and 0 < h < ε. Strong Uninvadability is, then, readily
shown to be equivalent to the existence of a positive value ε > 0 such that for any
probability measure µ, essentially different from δx∗ and for any 0 < h < ε,

V [δx∗ , (1 − h)δx∗ + hµ] > V [µ, (1 − h)δx∗ + hµ], (4.8)

which is just the condition for Uninvadability (Vickers and Cannings 1987).
Obviously (4.8), being applied to all probability distributions on the real line,

cannot possibly be implied by the CRSS condition, which is restricted to some
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ε-neighborhood of x∗. On the other hand, the following example indicates that
the Uninvadability condition (4.8) (hence, in this case, the Strong Uninvadability
condition) does not imply the CRSS condition, nor even the weaker CSS condition:

Example. Define v(x, y) = −(1 − θ)x2 − θ(x − y)2. At x∗ = 0 we get v∗
x = 0,

v∗
xx = −2, and v∗

xy = 2θ . Consequently x∗ = 0 is a CSS if θ < 1 and only
if θ ≤ 1. It is CRSS and NIS if θ < 1/2 and only if θ ≤ 1/2. But for any
random variable X with distribution function G, one can readily calculate then
V (δ0, δ0) − V (G, δ0) = EX2 and V (G, G) − V (δ0, G) = −EX2 + 2θ(EX)2.
The requirement (4.8) for either Uninvadability or Strong Uninvadability is, in this
case, that for some ε > 0 and for all random variables X,

EX2 > 2θε(EX)2. (4.9)

Having EX2 > (EX)2, it follows that (4.9) is satisfied for any ε < 1/2θ . The
pure strategy x∗ = 0 is, therefore, Strongly Uninvadable for any value of θ , but it
is CRSS only for θ ≤ 1/2, and CSS only for θ ≤ 1.

We, thus, see, that neither CRSS, CSS or NIS implies, nor is implied by Unin-
vadability or Strong Uninvadability.

5. Discussion

The replicator dynamics corresponds to the process of short-term evolution in large
asexual populations, where each individual continuously reproduces copies of itself
with differential net success. On the other hand, the concept of ESS (Maynard Smith
and Price 1973), as well as related concepts like Unbeatable Strategy (Hamilton
1967), CSS (Eshel and Motro 1981), or NIS (Apaloo 1997), by their very definition,
correspond to the stochastic process of long-term evolution, where rare mutations,
randomly being introduced into the population, may and may not be selected for,
thus repeatedly shifting the balance of short-term stable equilibria (Eshel 1991,
1996, Hemmerstein 1996).

As demonstrated by the analysis of multilocus sexual population dynamics, the
long-term process of evolution may well lead to stable equilibria which are radically
different from those determined by the short-term process, the first but not the lat-
ter generally corresponding to local optima (in the case of frequency independent
selection) or ESS (in the case of frequency dependent selection. Eshel 1991, 1996,
Hemmerstein and Selten 1993, Eshel et al. 1998). The finding that at least when
concerning asexual population dynamics on a finite set of individual strategies, the
(long-term) ESS condition is sufficient for the (short-term) asymptotic stability
under the replicator dynamics (Taylor and Jonkers 1978) is, thus, by no means
trivially expected. As we have seen, this finding may not hold even for asexual
population dynamics when concerning a continuum of pure strategies. Asymptotic
stability, in this case, crucially depends, however, on the choice of topology over
the space of mixed strategies.

In the present work, following the static stability concepts of CSS (Eshel and
Motro 1981) and NIS (Apaloo 1997), we have adopted the maximal shift topol-
ogy (1.1), in which the ε-vicinity of the fixation δx∗ on a pure strategy x∗ in the
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space of general (mixed) strategies consists of all mixed strategies with support
in the ε-neighborhood of x∗, and for which x∗ is genetically available. Under this
topology, a necessary and almost sufficient condition for replicator asymptotic sta-
bility, called Continuous Replicator Stability, CRSS, has been demonstrated. The
conditions for CRSS were shown to be very close, though not quite equivalent to
those of NIS (Apaloo 1997), with the additional requirement of limited evolution-
ary stability against small effect mutations. Recall that a pure strategy x∗ is NIS if
for any deviation of the entire population to a sufficiently close pure strategy x, a
back-mutation to x∗ is advantageous. This is a slightly strong variant of Continu-
ous Stability (Eshel and Motro 1981), requiring, in addition to limited evolutionary
stability against small effect mutations, that for any monomorphic deviation of the
entire population from x∗ to a sufficiently close pure strategy x, a back-mutation
in the direction of x∗, but not necessarily to x∗ itself, is advantageous. The (short
term) CRSS condition is, therefore, stronger than the CSS condition, previously
proved necessary and sufficient for Long Term Stability (Eshel et al. 1997).

The stability conditions of CRSS, CSS, NIS and ESNIS were shown not to
imply, nor to be implied, by the stability conditions of either Uninvadability (Vickers
and Cannings 1987) or Strong Uninvadability (Bomze 1990). This is not surprising,
given that the latter two, being most generally applicable to any infinite space of
strategies, do not take into consideration the specific metric structure of quantita-
tive traits on the continuum, hence the evolutionary fundamental concept of a small
quantitative change. All the stability conditions mentioned above are implied, how-
ever, by the extremely strong, still to be further studied, condition of Evolutionary
Robustness (Öechssler and Riedel 2002).

For closely related approaches to the concept of stability in continuous popu-
lation games see Taylor (1989), Christiansen (1991), Motro (1994), Matessi and
de Pasquale (1996), Metz et al. (1996), Geritz et al. (1998), Dieckmann and Law
1996, Diekmann et al. (2002).
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