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1. Introduction 
 
    Among the numerous contributions of Maynard Smith to the theory of evolution, 
maybe the most widely recognized one concerns a not less important contribution to a 
different field of research, namely that of Game Theory.  
    In 1973, attempting to characterize candidates for stable resolutions of a conflict 
within animal populations, Maynard Smith and Price have first introduced the concept of 
an Evolutionarily Stable Strategy, ESS. In order to define it, they have assumed that 
individuals in the population encounter each other at random (this assumption was later 
relaxed, e.g. Bomze 1986, Vickers and Cannings 1987, Lessard 1990 and references 
there), that, once encountered, each individual (player) has the same set of strategies 
(rules of behavior, later to be replaced, more generally, by phenotypes), and that the 
expected payoff (survival probability, fitness, or inclusive fitness), gained by an 
individual at the end of the encounter, is determined by both its own strategy and that of 
its opponent. Assuming such a structure, Maynard Smith and Price have opened a new 
field of research, namely that of Population Game Theory, now a solid branch of game 
theory (e.g. see Hammerstain and Selten 1993, Weibull 1995, Hofbauer and Sigmund 
1998). Concentrating on symmetric population games, and following Hamilton’s concept 
of Unbeatable Strategy (Hamilton 1967), they have defined an ESS as a strategy that 
strictly outcompetes (yields higher expected payoff than) any single alternative (mutant) 
strategy that occurs in low enough, but positive, frequency in the population (For 
equivalent definitions and further developments of the concept see Maynard Smith 1974, 
Bishop and Cannings 1976, Eshel and Motro 1981, Bomze 1986, 1990, Bomze and 
Potscher 1989, Bomze and Burger 1995, Vickers and Cannings 1987, Taylor 1989, and a 
most extensive survey by Lessard 1990). 



    Indeed, the situation in which each individual in a population has to best adjust its or 
his or her behavior to that of an anonymous random opponent from the same population, 
is by no means restricted to the biological context of natural selection. Such a situation 
may be, all the same, typical to a population of rational individuals, seeking each to 
maximize his or her own payoff. Population game theory as a useful model for the 
investigation of conflicts within a population of rational players has thus become widely 
employed in micro-economy and other social sciences.  
    Rather controversial remained just the original attempt of Maynard Smith and Price (as 
well as that of Williams, Hamilton, Wilson and other) to explain phenomena of animal 
behavior on a pure phenotypic basis, ignoring inevitable restrictions, imposed by the 
genetic structures (e.g. Feldman and Cavalli Sforza, 1981). This controversy has been 
relaxed with later studies, in which plausible (though not universal) conditions have been 
established for long-term convergence to an ESS, if exists. 
    Having expressed my view on the subject elsewhere, it is not my intention to return 
here to this controversy. Instead, I wish to concentrate on another, rather overlooked, 
difficulty in applying models of population game theory to natural populations, regardless 
of whether they consist of rational human players, or of biological organisms under 
natural selection. Part of this difficulty follows from the simple fact that individuals in 
natural populations are quite often different from one another in some conspicuous 
parameter. A qualitatively more serious difficulty stems, as we shall see, from the fact 
that such individuals are usually different from one another in many parameters, even if 
differences are small.  
 
 
2. Asymmetric Population Games And Evolutionary Paths. 
 
    A first crucial step toward the understanding of some difficulties, concerning 
evolutionarily stable resolutions of asymmetric conflicts, was made in a later seminal 
work of Maynard Smith, this time with Parker (1976). In that work, concentrating on the 
simplest situation of an asymmetric conflict, where encounters are limited to individuals 
of two different roles (e.g. male or female, owner or intruder), Maynard Smith and Parker 
have demonstrated Asymmetric Population Games as a qualitatively new subject of 
research. In order to generalize the concept of ESS to such a situation, they have defined 
a pure strategy of an individual, regardless of its role, as a behavioral rule that determines 
its behavior under each of the roles it may assume. This way, any asymmetric population 
game is formally transformed into a symmetric one (though with a richer space of 
strategies). An Asymmetric ESS of the original (asymmetric) population game, was 
naturally defined in the traditional way, as an ESS of the symmetrized, richer space form 
of the population game, namely as a strategy that strictly out-competes any alternative 
strategy that occurs in low enough, but positive, frequency in the population. 
     One revolutionary result of the work of Maynard Smith and Parker was the finding 
that even the most minor asymmetry between players may drastically change the set of 
ESS’s corresponding to a conflict. Following that work, it was shown, more generally, by 
Selten (1980) that an ESS of an asymmetric population game can only be obtained in 
pure strategies. For the bulk of well studied (symmetric) population games that allow 
only for mixed ESS’s, this finding indeed implies that even the slightest asymmetry, 



when introduced into a population game, may drastically change its outcome. For a 
parallel, dynamic version of Selten’s theorem see Eshel and Akin (1983). For a further 
study of asymmetric ESS, see Taylor (1979), Hammerstain (1981), Samuelson and Zhang 
(1992).  
    A first, somehow disturbing, problem for the mainstream (symmetric) theory of 
population games has, thus, followed from the fact that most, if not practically all, natural 
conflicts involve at least some sort of asymmetry between the participants, e.g. in age, in 
height or, say, in color. Selten’s theorem implies that in any such a case, previous 
analysis, ignoring the effect of such minor asymmetries, should be revised, with possibly 
radical changes in the predicted outcome of the conflict.  
    But then, an essentially more serious problem stems from the fact that most (if not 
practically all) natural conflicts involve many sorts of asymmetries. While this may not 
create an apparent difficulty in the construction of a theoretical model, as long as one 
arbitrarily concentrates on one single parameter of asymmetry (e.g. Ownership, as the 
only source of asymmetry in the work of Maynard Smith and Parker), the situation is 
different when multiple asymmetry is involved (Eshel and Sansone 2002). The problem 
is even more serious when concerning predictions about the outcome of a conflict within 
a natural population. In such a case, it is not necessarily clear which, out of the 
innumerable parameters of asymmetry that express themselves in the population, are 
actually observed by the participants as relevant to the conflict. Yet, concentrating on 
different sets of asymmetries, a population game analysis of the conflict may lead to 
radically different predictions. 
    Unfortunately, there is no hope to build, notwithstanding to analyze, a population game 
model that would take into consideration all possible asymmetries among individuals in a 
natural population. Moreover, such an endeavor, even if successful, would not be realistic 
because it is quite unlikely that the participants themselves are actually able to take into 
consideration all conceivable asymmetries between them. As a simple example, it is easy 
to see that in any Hawk-Dove conflict within a human society, a behavioral rule of giving 
priority to the contender with, say, longest thumb can well replace Ownership-Priority, 
demonstrated by Maynard Smith and Parker as a strict, asymmetric ESS. Moreover, 
Thumb-Priority would be as efficient as Ownership-Priority in preventing aggressive 
confrontations within the population. Yet as far as we know, this sort of asymmetry, like 
many others, is a most unlikely factor to be observed in real conflicts within human 
populations. 
    Concerning conflicts within natural populations, a preliminary question to be asked is, 
therefore: What is the set of relevant asymmetries, expected to be observed by individuals 
in a given population?  
      To a certain level, the answer to this question is almost obvious, though maybe not 
quite satisfactory: Given an evolutionarily stable situation, any individual in the relevant 
population is better off observing exactly those parameters of asymmetry that are 
traditionally observed by the other. Indeed, migrant from a population with the behavioral 
rule of Thumb-Priority, would suffer twice when facing a population in which the 
behavioral rule is that of Ownership-Priority: As a potential intruder, he would suffer the 
danger of aggressive encounters with shorter-thumb owners, and as an owner, he would 
loose by unnecessarily renouncing his rights of ownership to potential intruders with 



longer thumbs. Yet, the same is true for a migrant from an Ownership-Priority 
population, to a Thumb-Priority one.   
    On a somehow higher level, a more meaningful question would, therefore, be: Why is 
it, that a certain asymmetry, or set of asymmetries (and, consequently, a certain ESS), out 
of innumerable possible combinations, has been established as relevant in a certain 
population. 
     I indeed do not claim that the establishment of Ownership Priority rather than Thumb 
Priority populations as a common evolutionarily stable rule in human and in other is a 
surprising phenomenon. No doubt, there are simple explanations why the first is more 
likely to establish itself in real populations than the latter. Other evolutionarily stable 
rules, based on specific asymmetries rather than on other, may or may not be that simple 
to explain. My main claim is that, given the high dimensionality of asymmetry in natural 
populations, none of the behavioral rules, observed in such populations, can be explained 
on the pure basis of population game theory, without resorting to further information 
about historical facts and evolutionary paths. This is so because virtually almost any set 
of asymmetries, once established as relevant in large enough majority of the population, 
can lead to an evolutionarily stable situation (for a different view, based on arguments of 
group selection, see Binmore 2004). 
    From this point of view, it seems that a circle was closed. While the pioneering work 
of Maynard Smith and Price has first provided a, still most useful, tool for examining 
candidates for evolutionary stable resolutions of a conflict within a population, it was the, 
as well pioneering, work of Maynard Smith and Parker to suggest a first step toward 
further understanding of the limitation of this important tool, when not backed by further 
knowledge of evolutionary paths.  
 
 
3. The Example of the Hawk-Dove Game: One Payoff Matrix, 
Many Interpretations. 
 
    Following Maynard Smith and Parker, we now concentrate on the simple payoff 
matrix of the Hawk-Dove game, as shown in figure I.  
 
 
Figure I: The hawk-Dove Payoff Matrix 
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 where ν θ<  and 1p q= − . We see that this same payoff matrix, when corresponding to 
different sorts of a conflict, may lead to different sets of “rational” outcomes. 



 
3.1 Interpretation I: A two-player symmetric game. 
 
    Story: Two persons are holding a 100$ bill they have found on the street, when a 
policeman arrives. Each of the two can play either a Dove, telling the truth, or a Hawk, 
claiming ownership of the bill. If both tell the truth, the sum of 100$ would be equally 
split between them. If only one claims ownership, he would get it all. If both claims 
ownership, a decision would have to be made in court, the winner would then get the 
amount of 100$, and the other would have to pay expanses of 100$θ > .  
    This situation is characterized by a simple Hawk-Dove game, in which 1/ 2p q= = , 
and 100$ν θ= < . As it is well known, the equilibria of this game are: 
 

i) (0,1)  - First player claims ownership. The other yields. 

ii) (1,0)  - Second player claims ownership. First player yields. 

iii) ( ),x x   - Each of the two plays Dove in positive probability 1 / 1x ν θ= − < .  

 
       The first two are pure, strict, and efficient equilibria (i.e. they are maximizing the 
total payoff). The third one is neither strict, nor efficient, allowing a positive probability 
of a costly conflict. 
 
3.2 Interpretation II: A symmetric population game (Maynard Smith and 
Price 1972). 
 
    Story: The same as before, except for the fact that each of the two contenders is 
interrogated separately, and that they have no previous information about one another, 
except for the fact that they both belong to the same population. Consequently, their 
decisions should be made, independently of one another, on the mere basis of some 
behavioral rule, prevailing in this population. 

    Suppose a behavioral rule that determines a probability 0 1y≤ ≤  for playing Dove. By 
straightforward calculations one can verify that if y> 1 /x ν θ= − , then it is advantageous 
to decrease one’s probability of playing Dove, and vice versa if y< 1 /x ν θ= − . It follows 
that if players only want to increase their personal payoffs (or, maybe, if they are so 
selected to), a probability 1 /x ν θ= −  of Dove-playing is the only one that can remain at 
equilibrium in the population. Moreover, this equilibrium is now Evolutionarily Stable, in 
the sense that any deviation from it, renders it advantageous for any individual in the 
population to change his behavior in a direction opposite to the original deviation. 
 
3.3-a Interpretation III-a: A population game with asymmetry in respect to 
ownership (Maynard Smith and Parker 1976). 
 



    Story: The same as the previous case, except for the fact that one of the two 
contenders is actually the owner of the bill, and both (but not the police) know it. 
 
      A behavioral rule, in this case, may naturally be different for owner and for non-
owner. Consequently, even in the case 1/ 2p =  (e.g. Grafen 1987), the ESS ( ),x x of the 
symmetric Hawk-Dove conflict is no more stable: Since encounters only occur between 
owners and intruders, any deviation of the owners from ( ),x x would render only it 
advantageous for non-owners to deviate in the opposite direction, and vice versa. Once 
deviating from ( ),x x , the population is, therefore, bound to end up either in (0,1) or in 
(1,0). 
    On the other hand, once the population strategy (0,1) of Ownership Priority (coined 
the Bourgeois Principle by Maynard Smith and Parker) is established as a behavioral rule 
in the population, an owner can only gain by claiming his rights, knowing that his 
opponent would then always yield, and an intruder can only loose by doing so, knowing 
that his opponent would never yield. Ownership Priority is, therefore, a strict equilibrium, 
hence an ESS. By the same argument, however, so is also the “Paradoxical” rule (1,0) of 
“Owner always gives up”.  
    Assuming, more generally, that the owner has a better chance 1/ 2p ≥  to win in a 
discord conflict, Ownership Priority (0,1) always remains an ESS, while the Paradoxical 
rule (1,0) remains so if and only if /( )p θ θ ν< + .       
 
3.3-b Interpretation III-b: A population game with asymmetry in respect to 
body-size (still a version of Maynard Smith and Parker 1976). 
 
    Story: The same as in 3.2, except for the fact that this time, no policeman is seen 
around. If both claim ownership, they just have to fight, with damage θ  to the loser. One 
of the two is larger, and thus is expected to have a higher chance 1/ 2p >  to win. 
 
     The analysis and results of this case are exactly as in the previous one, 3.3-a, with 
Body Size Priority replacing Ownership Priority with 1/ 2p > . 
 
3.4 Interpretation IV: A population game with asymmetry in respect to both 
ownership and body-size. 
 
    As before, two persons are holding a 100$ bill. There is no policeman at the vicinity. 
One of the two is larger than the other, but the other is now the owner of the bill.  
 
    Following Maynard Smith and Parker, a pure strategy is defined, in this case, as a 
behavioral rule that determines one’s action, given his status as owner or intruder, his 
own body size, and that of his opponent. It is easy to see that Body Size Priority is always 
an ESS, in this case. The question is: What other ESS’s can be maintained in the 
population, especially – Can Ownership Priority still be then an ESS? 



     For any 1/ 2k ≥ , let Γk be the strategy: “Obey Owner Priority if and only if the 
intruder’s probability of winning a fight is smaller than k , otherwise obey Body Size 
Priority”. One can readily recognize 1/ 2Γ  as the pure Body Size Priority, while for k  
larger than the maximal probability of one member of the population to defeat another, 
Γk is the Ownership Priority. For any value of k in between, Γk is the strategy of giving 
priority to the owner, if difference in body size is not too large. 
     It is easy to verify that Γk is an ESS if and only if /( )k θ θ ν< + . As a special case we 
see that Total Ownership Priority can still remain evolutionarily stable in face of 
differences in body size, provided no individual in the population can entertain a 
probability larger than /( )θ θ ν+  to win a discord conflict with another. This is possible 
if fighting is hazardous, and if the value ν  of the good under contention is small relative 
to the damageθ , inflicted on the loser. As the value ν  in stake increases relative toθ , the 
maximal value of k , for which Γk is still an ESS, decreases, hence the range of Body Size 
Priority increases on the expense of Ownership Priority. Any respect to ownership 
disappears as ν  reaches the valueθ  and above. Forν θ= , Body Size Priority is the only 
ESS. When ν  grows larger thanθ , even Body Size Priority is no more anywhere-
respected. Smaller contenders are then expected to challenge slightly bigger ones.     
 
   For a (non linear) biologically oriented variation of this model, where competition is 
about breeding territories, see Eshel and Sansone (2002). The paper assumes that the 
loser, if survives, still has a positive probability to get hold of another territory in the 
future, depending, in turn, on the population strategy, but also on its body size. 
Differently from the more simplistic model described above, the value ν  of a territory 
appears to be different for different players, depending on one’s perspective of getting 
hold of territory in the future. Instead, it is shown that the set of ESS’s depends then on a 
single parameterα , which is determined, in turn, by the availability of new habitats, by 
the population density, by the expected longevity of owners and of intruders, and by the 
damageθ , inflicted on the loser. It is shown that for high values of α  (corresponding, 
among other, on high availability of new habitats), Ownership Priority is evolutionarily 
stable. As α  decreases, the range of Body Size Priority increases on the expense of 
Ownership Priority. Ownership Priority remains the only ESS when α  reaches some 
critical value 0α . Below this level, even Body Size Priority is no more totally respected. In 
this case, differently from the case of the linear model, only individuals of a relatively 
low rank (small body size) challenge slightly larger ones. As long as α  does not drop 
further down, larger individuals still respect Body Size Priority, waiting their turn when 
confronted with even slightly larger opponents.  
 
3.5 Interpretation VI: A population game with multiple asymmetries - The 
importance of historical events and evolutionary dynamics. 
 
    Assume the same payoff matrix as before, with 1/ 2p = , and assume now a large 
number, say N , of inessential asymmetries (i.e. such that do not affect the payoff matrix). 
Any encounter is characterized, in this case, by a vector of N  pairs of values, measuring 
the asymmetry parameters of ego and opponent respectively. Let Ω  be the set of all such 



vectors. A pure strategy Γ  of is, then, a mapping of Ω  into the set{ , }D H , where ( )vΓ is 
the realization (i.e. a choice between D and H ) of the strategy Γ  at the encounter v∈Ω . 
For any encounter v∈Ω , denote by v∈Ω%  the adjacent encounter, in which the roles of 
participants have been exchanged. 
     
Proposition: The ESS’s of the Multiple Asymmetry Population Game are exactly the 
pure strategiesΓ , for which ( )vΓ ≠% ( )vΓ for essentially all v∈Ω .  
 
Proof: From Selten’s theorem it follows that the only possible ESS’s of this population-
game, are pure. Let, thus, Γ  be any pure strategy. For any encounter v∈Ω , it follows 
from the Hawk-Dove payoff matrix that the best response to ( )vΓ %  is playing D  if 

( )v HΓ =% , and playing H  if ( )v DΓ =% . Moreover, this best response is also strict. On 
one hand, this means that any pure strategy Γ , such that ( )vΓ ≠% ( )vΓ for essentially 
all v∈Ω ,  is a strict best response to itself, hence a strict equilibrium, hence an ESS. On 
the other hand, any pure strategyΓ , such that ( )vΓ =% ( )vΓ for a positive-measure set of 
encounters v∈Ω , cannot be a best response to itself, hence it cannot be an equilibrium, 
notwithstanding an ESS. 
 
    It follows that there is a one to one correspondence between the ESS’s Γ  of the 
population game, and those mappings of Ω  into{ , }D H , for which ( )vΓ ≠% ( )vΓ . It further 
follows that even if all asymmetries were based on a dichotomy (as is the case for Owner 
versus Intruder, but not for differences in Body-Size), the number of possible ESS’s 
were 2N . Concerning natural populations, in which the number N  of potential 
parameters of asymmetry is likely to be of the order of hundreds, the number 2N  of 
possible ESS’s must be of the order of billions of billions. Indeed, with this number of 
potential attractors, any mechanism of natural selection in asymmetric population games 
(e.g. Gaunersdorfer et al 1991, Hofbauer and Sigmund 1998), becomes useless as a 
means to predict which ESS is to be established in a population, without resorting to a 
further knowledge of social structure or historical events. Moreover, it is hard to imagine 
any evolutionary mechanism that would allow a population to converge, within a 
reasonable evolutionary time, to any specific ESS, as this means coming to agreement 
about a common behavioral rule, concerning any of the, at least 2N , possible sorts of an 
encounter. 
     One possible mechanism for this, as it appears to be the case in real situations of either 
human or animal conflict, is to concentrate on a small number of asymmetries, ignoring 
all other ones as irrelevant. This may leave us with a relatively not too big number of 
possible ESS’s (just two for a one dimensional dichotomy, as is the case in the Owner-
Intruder Conflict). It still leaves us with the question of how could a choice of specific 
small number of parameters out of many have evolved in a population. 
     The situation is different when, in addition to numerous inessential asymmetries, there 
exist few essential ones. From arguments, similar to the ones given in the previous 
section, it appears that in such a case, scarcity of the good under contention may 
eliminate any behavioural rule, which is not an essential, Strength-Oriented ESS. For 
this, a relatively short period of scarcity may be sufficient, as the newly established 



behavioural rule would then remain evolutionarily stable also in normal situations. This, 
however, still leaves us with a question about the ubiquity of Ownership Priority. 
 
 
4. Evolutionary Stability and Evolution – Back to Ownership 
Priority, a Brief Discussion. 
 
    When Maynard Smith and Parker (1976) introduced the Owner-Intruder Conflict as 
first example of an asymmetric population game, they have kept in mind a bulk of field 
observations, apparently indicating an essentially asymmetric situation, in which the 
owner has, by and large, a better chance than his opponent to win an aggressive 
confrontation, once the situation escalates to. Thus, their main claim was that even the 
most minor deviation from the symmetric case of the Hawk-Dove conflict is sufficient 
for a drastic change in the evolutionarily stable outcome of the conflict. As a rather 
mathematical curiosity, they have demonstrated it to be true also for the limit case of an 
inessential asymmetry. 
    In a later paper, Grafen (1987) has harshly criticized both the theoretical and empirical 
arguments, traditionally given for owner advantage in aggressive confrontations. 
Consequently, his claim was that the null hypothesis of an inessential owner-intruder 
asymmetry was never rejected. Without expressing an opinion about the actual debate, I 
find it productive, at this stage, to put forward the theoretical question of how crucial for 
the evolution of Ownership Priority is the alternative hypothesis of an essential (and, in 
fact, significant) owner-intruder asymmetry. I maintain that the answer to this question 
depends on the (maybe different) roles one attributes to Population Game Theory and to 
Population Game Dynamics, within the process of Evolution, either genetic or cultural. 
        Indeed, if ownership is an inessential factor in the conflict, Owner-Priority, as we 
have seen, must be just one out of a huge number of possible evolutionarily stable 
resolutions of the conflict, all of which being equally efficient in preventing aggressive 
confrontations. In such a case, it might be difficult to explain, on the mere basis of 
Population Game Dynamics, the establishment of one specific inessential ESS, out of the 
innumerable, inessential alternatives, and it is even more so with the most likely presence 
of some essential alternative (as, e.g. Body Size Priority); This, to be distinguished from 
the long-term stability of such a behavioral rule, once it has been already established in 
the population, for one reason or another. 
    A speculative explanation for the emergence of Ownership Priority, on the basis of a 
complex Population Game Dynamics, may be possible in some special cases. Concerning 
territorial contests, for example, one can think of a temporal period of scarcity which, if 
harsh enough, may be sufficient, as we have seen, to render inevitable the combination of 
Strength Priority and aggressive confrontations. During such a period, ownership may 
emerge as the most trustful marker of strength. We have further seen that with the 
relaxation of scarcity, aggressive confrontations are likely to be continuously replaced by 
efficient, concord strategies of Strength Priority. But in this case, differently from the 
situation described in 3.4 (and much in agreement with the original model, suggested by 
Maynard Smith and Parker, 1976) Strength Priority  is best represented by Ownership 
Priority. Indeed, once the latter is established as a non aggressive behavioral rule in the 
population, Ownership alone is sooner or later bound to lose its value as a marker of 



Strength. Thus, now in agreement with the observations of Grafen (1981), this might well 
be the commonplace in normal, stationary situations. Yet we know that in such situations, 
either full or partial Ownership Priority, once established in a population, remains 
Evolutionarily Stable, even if one out of innumerable alternative (all the same inessential) 
ESS’s. 
    I do not know whether such a speculative explanation can be actually served as a valid 
one for the emergence of Ownership Priority in some real situations, and I cannot think of 
any way to check it. It sure cannot be valid for other observed situations of Ownership 
Priority, in which ownership can never be a marker of strength. In addition to obvious 
phenomena of Ownership Priority, observed in virtually all human societies, this is the 
case, for example, when concerning meat (but not other sorts of food) in baboon troops. 
First priority is then reserved to the provider of the meat, even if low in rank and power. 
But Ownership Priority, in this case, as well as in most, if not all, other natural examples, 
cannot be separated from a more complex social structure, nor its path of evolution can 
be understood on the mere basis of Population Game Dynamics. 
    I believe that this is true for most, if not all Evolutionarily Stable Strategies, apparently 
observed in natural situations, either in human or in animal societies. Yet, in the 
perspective of more than thirty years, it appears that the very introduction of population 
game theory, even if often insufficient for the prediction of real evolutionary paths, 
especially in natural situations of multiple asymmetries, still provides us with an 
indispensable tool to understand which sort of animal (and maybe human) behavior can 
be long maintained in a population. This was the original objective of Maynard Smith 
and Price. I believe that even now, after thirty years of extensive development, this is 
what population game theory is mainly about.  
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