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Abstract

This note concerns a one locus, two allele, random mating diploid population, subject to frequency-dependent viability selection. It is
already known that in such a population, any evolutionarily stable strategies (ESS), if only accessible by the genotype-to-phenotype
mapping, is the phenotypic image of a stable genetic equilibrium (Eshel, 1. 1982, Evolutionarily stable strategies and viability selection in
Mendelian populations. Theor. Popul. Biol. 22(2}, 204-217; Cressman ¢t al. 1996. Evolutionary stability'in strategic models of single-
locus frequency-dependent Vldblllty selcctlon J. Math. Biol. 34, 707-733). The opposite is not true. We find necessary and sufficient
parametric ‘conditions for global convergence to the ESS, but we also demonstrate conditions under which, although a unique,
genetically accessible ESS exists, there is another, “non-phenotypic’ genetically stable equilibrium.

© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

A long-time controversy in modern theoretical popula-
tion biology concerns the legitimacy of evolutionary
predictions, made on the mere basis of phenotypic
observations (see, e.g. Feldman and Cavalli Sforza,
1981). The concepts of inclusive fitness {(Hamilton, 1964,
1972) and evolutionarily stable strategies (ESS) (Maynard
Smith and Price, 1973) were suggested specifically for this
purpose. A central question within this controversy is
whether and under what conditions does frequency-
dependent viability selection in random-mating diploid
populations lead to stable equilibria that determine an
average population strategy which is an ESS.

On one hand, it was shown that under wide conditions,
long-term evolution, combining standard selection forces
with a slow flux of random mutations, always tends to
stabilize an ESS, when it exists (Eshel, 1997; Eshel and
Feldman, 2001; Eshel et al,, 1998). On the other hand, at
least when concerning multilocus genetic systems, this is
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generally not true for the short-term evolutionary dy-
namics of changes in genotype-frequencies without the
effect of accumulated new mutations (e.g. Eshel, 1997).
But even in the case of short-term evolution, the
situation is different when the relevant phenotypic patterns
(strategies) are deterimined by a single locus. Employing a
discrete-time model, and assuming a population game of
two pure strategies, it was shown (Eshel, 1982) that any
ESS, accessible by a one locus multi-allele genotype-to-
phenotype mapping, is phenotypically stable in the sense
that it is the image of at least one stable genetic equilibrium
(note that an ESS of a population-game with more than
two pure strategies may not be stable under discrete-time
selection even in asexual population). Employing a
continuous-time model, this result was extended by Cress-
man et al. (1996) to any number of alternative pure
strategies, provided the genetic system allows for three
alleles at the most. In both cases, what remained to be
considered is the question of global convergence to an ESS.
In this note we show that convergence to ESS, even in
the case of two allele diploid population, although global
under specific parametric conditions, is not always so. For
a well-defined range of parameters, for which a mixed
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(hence unique) ESS exists and is accessible by the genotype-
to-phenotype mapping, there is also another, ‘“non-
phenotypic”, genetically stable equilibrium. Being inter-
ested in an existence statement {possible local stability of a
non-ESS equilibrium when a unique ESS exists and is
genctically accessible), we concentrate, for convenience, on
the case of weak selection.

2. The problem

Assume an infinite, one locus, two allele, random-
mating, diploid population, subject (o frequency-depen-
dent viability selection, characterized by the 2 x 2 payoff
matrix

where the payoff is taken to be an additive component of
the individual’s viability. More specifically, the viability of
an individual, playing the strategy i against an opponent
playing j, is assumed to be | + evy, where £> 0 measures the
intensity of selection in respect to the population-game Q.

Let xy1, x12, and x; be the strategies of genotype A4y,

A Ay, and A4, respectively, namely the probabilities that
any of these genotypes will choose the first pure strategy of
the population game. Let p be the frequency of the allele 4,
among newborn offspring in a given generation, and
g =1—p. Assuming Mendelian segregation, the average
population strategy is then
x(p) = pPxi1 + 2pgx iy + ¢ xn
= (x11 = 2212 + Xp)p* + 2012 — Xl + X33, e
For any 0<x,y<1, denote the payoff of an x-player
against a y-player by
(%, ) = onxy - vizx(l — y) + o (1 = x)p + v22(1 — x)(1 ~ ).
@
The viability of the genotype A4;4; (i,j =1,2) is thus
given by
0(p) = &) (p) = 1 + ey, X(p)). 3
Employing (1) and (3), the average viability of the
population is readily shown to be
W)= WOp) = 1 + eo(x(p), x(p)).

Following random mating and frequency-dependent
viability selection, the frequency of the allele A; in the
newborn population of the next generation will be

;o pou(p) + qui(p)

W)
1 + a[l)v(xll,x(P)) + Q‘U(xlz,x([)))] (4)
- 1+ eo(x(p), x(p)) '
In this note, we restrict our analysis to the case
D <vz1; U<ty (5)

where a mixed (hence unique) ESS exists, and is globally
stable in the replicator dynamics of asexual population.
The ESS is then given by

. _ Uiz —Up . (6)
vz — v v — U2

X

In order to avoid triviality we assume x; — 2x;2 +
x227#0 so that x(p) is a quadratic form of p, obtaining its
. A LM 2
extremum X = x(p) = (x11x22 — x§,)/(x11 — 2x)2 + x22) al
A X322 — X112

p=———F— (7

X1 —2xi2 + x22

(Note that in the special case xj — 2x13 + x2n = 0 of no
penetrance, the average population strategy x(p) becomes a
linear function of p, and natural selection then, much like
in the case of an asexual population, always shifts x(p) in
the direction of the mixed ESS x*. See the Appendix.)

For the sake of convenience we further concentrate on
the case of weak selection, in which £>0 is small. This is a
natural assumption when the outcome of the game € is one
out of many components that determine the individual’s
fitness. In such a case, (4) readily yields

7 —p = eplpo(xi1, X(p)) + qo(xi2, () .
= v(x(p), x())] + ole). ®

Chdo§ing 1 as the unit of time, (8) can be written as

plt+e) — p(®)
&

= plpv(xu, X)) + qulxiz, x@))

~ o), X + 0. 9)

Letting £ — 0, the frequency p(f) of the allele 4, among
adults at time ¢ is then given by the ordinary differential
equation

(1) = plpelei, x(p) + qulxiz, X(p))
— v(x(p), x(p))].

Inserting (1), (2}, (6) and (7), the last equality becomes,
after straightforward calculations:

P8 = p(1 — pi(xy — 2xi2 + x)(011 = 012 — 021 + U22)
x(x(@) = x*)p — p). (10

With the dynamics (10), we are now able to characterize
the necessary and sufficient conditions for global conver-
gence to the ESS, if accessible by the genotype-to-
phenotype mapping.

3. Analysis of genotypic and phenotypic stability

From (5) it follows that vy, — v12 — v21 + 22 < 0. Having
further assumed that x| — 2x13 + x273 #0, it follows from
(10) that the genetic equilibria of the population dynamics
are the values p=0, p=1, p= ‘3 (if within the unit
interval), and the solutions pf and pi of the quadratic
equation x(p) = x*, if real numbers within the unit interval.
The stable equilibria of the dynamics are those at which the
curve of p = f{p) intersects the p-axis from above. Without
loss of generality one can assume that x;; — 2x3 4+ x92 <0,
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so that the extremum ¥ = x(}}) of x(p) = (x ~ 2x2 +
Xa2)p? + 2(x12 — X22)p + X272 is a maximum (This can indeed
be guarantéed by exchanging the labels of the two pure
strategies of the population game)., From (10) it then
follows that

sign p = sign[x(p) — x*1(p — p).
As a result we get:

(1

Proposition 1. The frequency p of the allele A, is time-
increasing if [x(p) — x*p — P)=>0, and time-decreasing
if [x(p) — x*)p — P)<0. It is at equilibrivm when [x(p) — x*)
(p — D=0, and at stable equilibrium when the curve of
{x(p) — x*|(p — p) intersects the p-axis from above.

We can further assume, without loss of generality, that
xp0 = x(0)<x(1) = xp; (It can always be guaranteed by
exchanging the labels of the two alleles). This precludes the
possibility that the parabola x(p) will obtain its maximum
at a valueﬁ <0, whlch leaves  us with the two possibilities:
Either p =1, or 0<p <1.If p 21, we want to distinguish
between the following three cases: e1thel x*>x(1),
x(0)<x* <x(1) or x*<x(0). If 0<p <1, then
A{0)<x(1)<x(p) = %, and we want to dlstmgulsh between
the following four cases: x¥> x x(=sx*< x,
¥(0) = x* < x(1), and x* < x(0). Altogether, we have to deal
with';"':se\?en cases; '

(I) p =1 and x* > x(1).

(ITy p =1 and ¥(0)<x* < x(1).
(I p >1 and x* <x(0)
(IV)0<p<1 and x*> X.

(V) 0<p <1 and x(1}<x* g
(VD) 0<p <1 and x(0)<x* <x(1)
(VII) 0<p < and x* < x(0).

In each of the seven cases given above, Proposition 1
provides us with full decomposition of the unit interval into
domains of attraction.

In case (I) (see Fig. 1) the ESS x* is not accessible. Since
p =1, the curve x(p) is monotone increasing over the unit
1ntelval hence for all 0<p <], Ju(p)<x(l)<x From the
additional  requirement p<l<g p we  thus  get
[x(») ~ x*](p - p)>0. From Proposition 1, it therefore
follows that the value of p = p(f) , whatever it is on the
open interval 0 < p < 1, is time-decreasing, hence the genetic
equilibrium p =1 is globally stable, The average-popula-
tion-strategy thus globally converges to the value x(1),
which is the closest possible to the (genetically inaccessible)
ESS.

In case (II) (see Fig. 2) the ESS x* is genetically
accessible. Again, the curve x(p) is monotone increasing
on the unit interval, 1edching the value x* once, at the point
0<py<1. For any point p in the open interval (0, p}) we
get x(p)<x(pf) = x*. Given p<ls p, we get, for any
such a point, [x(p) — x*)(p — p)=>0, and it follows from
Proposition 1 that the value of p is time-increasing
whenever smaller than p}. In the same way, it is time~

X(p) 4

> D

0 - > 1

Fig. 1. The ESS x* is genetically inaccessible. The gene frequency p = 1,
rendering the average population strategy the closest possible to the ESS,
is globally stable (see the text).
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Fig. 2. The ESS x* is genetically accessible, The gene frequency pt,
determining the ESS as average population strategy, is globally stable (see
the text).

decreasing whenever larger than pj. It follows that the
genetic equilibrium p} is globally stable, and the average-
population-strategy thus globally converges to the ESS
value x(p]) = x*.

In case (II1) (see Fig. 3) the ESS x* is not accessible. The
curve x(p) is still monotone increasing on the unit interval,
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Fig. 3. The ESS x* is genetically inaccessible. The gene frequency p =0,
rendering the average population strategy the closest possible to the ESS,
is globally stable (see the text),

hence for all 0<p <1, x(p)> x(0)>x*. Given p<l< f), we
know that [x(p) — x*](p —p)<0, and it follows from
Proposition I that the value of p , whenever it is on the
open unit interval, is time-decreasing, hence the genetic
equilibrium p = 0 is globally stable. The average-popula-
tion-strategy thus globally converges to the value x(0),
which is the closest possible to the (genetically inaccessibie)
ESS x*.

In case (IV) (see Fig. 4) the ESS x* is not accessible. For
any p m the unit interval we have x(p) < X <x*, thus for
any p< p we get [x(p) — x*l(p — p)>0 and the value of p 1s
there time-increasing. For the same reason, for p> p,
[x(p) — x*(p — p)<0 and p is thele time-decreasing. It
follows that the genetic equilibrium p is globally stable, and
the average- populdtlon -strategy thus globally converges to
the value x(p) = X, which is the closest possible to the
{genetically inaccessible) ESS.

In case (V) (see Fig. 5) the ESS x* is genetically
accessible. The curve x(p) then mtelsects the constant line
x = x* twice, at 0 p} <p, and atp sp5<1, with pF<p}.
We can then divide the unit interval into four segments:

For p<p} we have x(p)<x* and p<p, hence
[x(z) — x*)(p — 7}=>0, and the value p is time-increasing
when in this intg\rval.

For py<p<p we have x(p)>x* and p<p, hence
[x(®) — x*](p — P)<0, and the value p is time-decreasing
on this interval.

For ﬁ <p<ps we have x(p)>x* and p>p, hence
[x(p) — x*](p ~ p) >0, and the value p is time-increasing
on this interval.

For pi<p<l we have x(p)<x* and p>p, hence
[x(@) — x*)(p — p) <0, and the value p is time-decreasing
on this interval.

x(p) >

> P

T f— — = —— —

S
rd

h.

Fig. 4..The ESS x* is genetically inaccessible. The gene frequency, fr),
rendering the average population strategy the closest possible to the ESS,
is globally stable (see the text).
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Fig. 5. The ESS x* is genetically accessible. Both the gene frequencies p}
and p3, determining the ESS as the average population strategy, are locally
stable, with global phenotypic convergence to the ESS (see the text).

It follows that the genotypic values p = p} and p = p3} are
both stable. Moreover, their regions of attraction cover the
entire open unit interval, hence the ESS value x* = x(p}) =
x(p3) is globally stable in the phenotypic space.

In case (VI) (sce Fig. 0) the ESS x* is, again, genetically
accessible. The curve x(p) mtelsects the constant value x*
once, from below, at 0 <pf < P. We can then divide the unit
interval into three non-empty segments:

For p<pt we have x(p)<x* and p<p, hence
[x(@) — x*1(p — p)=0, and the value p is time-increasing
on this interval,
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Fig. 6. The ESS x* is genetically accessible, yet both p} and p = 1 are
genetically stable. Starting from a gene-frequency larger than p, the
average population strategy converges to the value x(1), which is, Iocally,
the Furthest possible from the ESS (see the text).

For p} <p<i\7 we have x(p)>x* and p<p, hence
[x(p) — x*](p — P)<0, and the value p is time-decreasing
on this -ijlgterval.

For p<p<l we have x(p)>x* and. p>p, hence
[x(p) — x*](p — P) >0, and the value p is time-increasing
on this interval.

Tt follows that in this case both the genotypic values
p = ptand p = 1 are stable, hence the ESS value x* = x(p})
is phenotypically stable, but not globally so: when starting
with a frequency p>p, the allele 4, is bound to become
fixed in the population, and the average-population-
strategy converges to the value x(1)> x* which is the locally
Jurthest possible from the ESS.

In case (VII) (see Fig. 7) the ESS x* is not accessible.
x(p)>x* for all 0<p<1, hence [x(p) — x*(p — p)<0 for
p<p, and [x(p) — x*](p — p)>0 for p=>p. It follows that in
this case there are two stable genetic equilibria, p = 0 and
p=1, both locally minimizing the distance to the
genetically inaccessible ESS x*.

3.1. Conclusion

We have assumed a one locus, two allele, random-
mating, diploid population, subject to a weak frequency-
dependent viability-selection due to a two-strategy popula-
tion-game £ with a mixed (hence unique) ESS 0<x*<1.
Assuming the most general genotype-to-phenotype map-
ping within this structure, the ESS x* may or may not be
accessible as an average population strategy. Our analysis
thus leads to three results, summarized by the following
three propositions:

Proposition 2. If the ESS x* is accessible by the genotype-
to-phenotype mapping, then the ESS is phenotypically stable

x(p) AN

p

N
rd

0 € P>

Fig. 7. The ESS x* is genetically inaccessible. Both the gene frequencies
p = 0and 1, rendering the average population strategy, locally, the closest
possible to the ESS, are stable (see the text).

in the sense that there is at least one (sometime two) stable
genetic equilibrium p* for which x(p*) = x*.

Proof. Among the seven cases analyzed above, the ESS is
genetically accessible only in cases (IT), (V) and (VI). In all
the three cases, our analysis indicated the existence of a
stable genetic equilibrium p* for which x(p*) = x*. O

Proposition 3. The ESS x*, even if accessible by the
genotype-to-phenotype mapping, may not be globally stable:
for a well defined, non-empty range of paramelers, the
dynamics of the population-genetics allows, in addition to a
stable genetic equilibrium p* with x(p*) = x*, another, “non-
phenotypic” stable genetic equilibrium, corresponding to a
“non-ESS” average population strategy.

Proof. In case (VI), analyzed above, the ESS x* is
accessible, but p = 1 was shown to be a stable genetic
equilibrium with x(1)#x*. Employing equalities (6) and
{7}, one can easily verify that this case corresponds to
the non-degenerate range of parameters for which
X <2xp2>x2; and xq{vi2 — vy + vy — V) >0z — o>
xn(ie —vn+on —on). O

Proposition 4. If the ESS x* is inaccessible by the genotype-
to-phenotype mapping, then the average population strate-
gies which are locally closest to the ESS are phenotypically
stable: The genetic frequencies that determine them are
locally stable.

Proof, This is indicated by the analysis of the cases (I},
(TID), (IV), and (VII) above, which are those for which the
ESS is not accessible by the genolype-to-phenotype
mapping. O '
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The results of Propositions 2 and 4 are already known to
held for any number of alleles (Eshel, 1982). The result of
Proposition 3 is new, and it can easily be generalized to any
number of (specifically chosen) allcles (e.g. assume a two-
allele genetic system, corresponding to case VI, and
introduce a third allele that is deleterious when the average
population strategy is close to cither x* or x(0)). Note,
though, that a result similar to that of Proposition 3 cannot
hold, either in one or in two locus systems, if we allow a
small flux of random mutations of all sorts. In this case,
long-term convergence to the ESS was shown to occur in
probability one (Eshel and Feldman, 2001; Eshel et al.,
1998).

Appendix A. The no-penetrance case x1; — 2x;2+ x3 =0

One can easily verify that in the case
X1 — 2x12 + x22 = 0, (1) becomes x(p) = px| + ¢xy,, and
(4) then yields:

sign[p’ - pl = sign[v(xi1, (@) — v(x12, X(p)]. (A1)

But since x* is a mixed ESS, we know that for any x # x*,
v(x x)<v(x*, x), hence o(y, x)} (being a linear function of )
is a decreasing function of y if x>x*, and an increasing
function of y if x < x*.

Without loss of generality, assume x|; > x5 (otherwise
just exchange the indexes of the two pure strategies). In this
case, if x(p)>x*, then o(xi,x(p)) <v(xi2,x(p)), and it
follows from (A.l) that p'<p. In the same way, if
x(p) <x*, then p’ > p. But the assumption xy > x)3, together

with xy| — 2x3 + ¥ = 0, implies also xj3> X2, and it
follows from (1) that x(p) is then an increasing function of
p. This implies that if x(p)>x*, then (since p'<p)
x(p)<x(p), and if x(p)<x*, then x(p')>x(p). In either
case, natural selection always shifts x(p) in the direction of
the mixed ESS, genetically accessible or not.
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