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Abstract

The paper employs methods of multitype branching processes to evaluate
the probability of survival of mutable clones under environmental conditions
which are unfavorable to the original parent of the clone. When other factors
are taken to be constant, the long-term survival probability of a clone is impli-
citly demonstrated as a function of the intrinsic rate of mutation carried by this
clone. The existence of a mutation rate which maximizes clone survival prob-
ability is shown and the effects of environmental deterioration on this optimal
rate are studied. Finally, rigorous quantitative results are obtained for the
classical situation of a Poisson distribution of offspring numbers. These results
are then applied to the biological problem of indirect selection (Eshel (1972)).

CLONE-SELECTION; RATE OF MUTATION; OPTIMAL RATE OF MUTA‘TION; MODIFIER
GENES; OPTIMAL MODIFIER GENES; MULTITYPE BRANCHING PROCESSES; ADAPTA-
TION, INDIRECT ADAPTATION; EXTINCTION OF A FPOPULATION

1. Introduction

Quantitative problems involving the evolution of modifier traits in natural
populations have recently attracted the attention of many population biclogists
(e.g., Nei [1], [2], Feldman [3], Karlin and McGregor [4], {5]). The term,
modifier frait connotes an inherited feature whose main function is not in con-
tributing to the fitness of the carrier or to the expected number of viable offspring,
but which may be essential for further ¢volution of the species (Fisher [6]). Sex,
recombination and mutation are a few examples of modifiers.

In a separate paper [7], a quantitative theory is suggested for the evolution of
modifiers based on differences in survival probabilities of entire clones, rather
than on viabilities of individuals in the population. Thus, while classically short-
term selection is known to favor biological features which maximize the individual

fitness of their carrier in a given environment, a long-term selection force has been
" shown to operate in favor of modifiers which maximize clone-survival probabili-
ties, possibly in a changing environment. Such modifiers are labelled as opfimal.

In most cases, however, the evaluation of an optimal modifying factor turns
out to be a rather complicated analytic problem, A useful tool for such an evalua-
tion in an asexual population is the model of a multitype branching process, It
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further appears that part of the results obtained for this model may be qualitatively
extended to a sexual population (see [7]).

The purpose of the present work is to analyse the problem of the optimal
modifier for the simplest case of an intrinsic mutation rate in an asexual population.
The problem of an optimal mutation rate has been treated, from a different
viewpoint, by Kimura ([87, [9]). However, employing the criterion of a maximal
clone-survival-probability rather than Kimura’s principle of a minimum genetic
load, parts of the results achieved here arc quite different from those of Kimura.
Note, that these different results correspond to different connotations of the
concept optimal mutation rate. Yet, manifestable selection mechanisms seem to
operate- in favor of that mutation rate which maximizes clone-survival-
probabilities [7]. :

Finally, parts of the results in this work are obtained under the assumption of
Poisson distributions of offspring numbers. For a validation of this postulate in a
large varicty of situations in population biology, refer to Karlin and McGregor

[101.

2. The model and some general properties

Let each individual in a given asexual population be labelled according to two
distinct parameters.

Q) A qualitative parameter 4; (i = 1,--,n), namely the primary parameter,
reflects biological features which are due to immediate selection forces. More
specifically it is assumed that the number of viable offspring born to any in-
dividual parent in the population is a random variable which depends only on the
primary feature A, of the parent in question. By ¢(u) (i = 1, n) we denote the
probability generating function of this r.v.

(i) The primary feature is assumed to be biologically inherited except for a
(usually small) probability e, that an offspring will be mutated. This probability,
namely the mutation rate, is again inherited and may be varied from one in-
dividual to another independent of the primary feature of this individual. Thus, it
determines the secondary parameter of any individual in the population.

" Let 8,; (i,j = 1, -+, n) be the probability of an offspring of an A, parent altering
its primary feature to A, provided it has been mutated; 0;; = 0, %=1 0y = i
and, from the definition, 8y = 0 for all i = 1,---, n.

Denote the multitype o ffspring-generating-function of an Agw-type parent by

® (u,, -+, u,). Then clearly

(2.1) O (1) = P(1 — W)y + @ X Buy), i=1,2,n
i

Let # = #i(w) be the smallest positive vector-solution of the system

2.2) OO () =, =121
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#i(w) is the extinction-probability of a clone, starting from an A,m-type parent
(e.g., Harns [11], p. 41).
- Set a; = ¢|(1) for the fitness or expected offspring number of the type 4;. If a
sequence iy, -, 1, exists such that 6,; 6, ; -6, ;> 0, then we say that 4, is
mutable to 4;, notation 4; — 4;. For convenience we also set 4; = A; (i = 1,+++,n),
Denote .. : .

% = {Ail% < 1 for all j with 4; — A4},

= {Allocj > 1for some j with 4; = 4,}.

Clearly @, = 1 for all 4;eI° To aveid triviality we postulate I' % & and thus,
without loss of generality, assume I' = {4+, 4,]}.

From the aspect of clone survival probability, one may zgnore all offspring of
the class IO, Thus, set

(2'3) ) (I)i(w)(ul’ "',um) = (I)fm)(uls""ums 1:""; 1), i= 1!2’ ---,'m

EI\)g‘”’(ul, »o+,u,,) are called the reduced offspring g.f’s of the process. Clearly

) = 60—+ 0 B Oy + (1 - 0o,

where

is the probability that a mutation occurring in an A4, type will not be irreversibly
deleterious. The system '

(22&) &)i(ul!”"um) =i, i=1,.m,

is the reduced form of (2.2), with a smallest vector solution coinciding with the
due m-dimensional projection of the smallest vector solution @ of (2.2).

Being interested in the effect of the mutation rate on a survival probability of a
clone, we compare clones starting with parents of the same primary feature A4,
(henceforth, the conservative primary feature) but carrying different values of the
mutation rate . Clone survival probability is then expressed by '

K@) = 1 — uy(w).

From the theorem of the implicit functions it follows that y(w) is 2 continuous
function over [0, 1] and, thus, assumes a maximum over this interval. We call a
value @*e[0,1] which maximizes y(w), an optimal mutation-rate. It appears
that clones, carrying mutation rates close to w* are statistically selected in the
long run (see [7]).

As a special case of (2.1) we have
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. B = §(u)

and (assuming ¢,(u) is not trivially u) 4,(0) <1 iff ¢ > 1. Thus, when o; =1
(i.e., when the environmental condition is unfavorable for the conservative type)
then x(0).= Q.

On the other hand, (with a; £ 1) assuming 4, eI' # & (otherwise the clone
is bounded for extinction with any mutation rate) it is mot difficult to show
y(@) > 0 for @ in some small interval (0,¢), hence w* > .

3. Optimal mutation rate for a one-step gene substitution and the effect of environ-
mental deterforation

In this section we treat some relatively simple cases of special biological interest.
We will prove uniqueness of w*, estimate it and specifically study its change
under the effect of environmental deterioration, as measured by the parameter

d=1—06120.

Let us postulate the simplest biological case when there is a disadvantageous
conservative type (i.e, when d =1—a; 20), a single, adaptable type A,
(ie., ¢ > 1), and many irreversibly deleterious mutations; I' = {4y, A2},
19 = {As,+,4,}. Let us further assume irreversibility of mutation (6, = 0)
and denote 0, = 0,, = 0 (clearly ¢, = 0,, = 0). The system of extinction-
equations then becomes

(3.1) $:((1 — @), + Bou, + (1 — BHw)
(3.2) . $:((1 — whuy + @)

We call a process, determined by (3.1) and (3.2) a process of a one-step gene-
substitution. In such a system, it is readily shown that uy(w) < Liff @ < (@, —1)/or,
and u,(w) < 1 iff both o > 0 and uy(w) < 1. Hence x(w) >0iff 0 < mw <
(0; — 1) for, and thus w* € (0,{x; — 1) Jes).

We now assume that the effect of environmental deterioration on the con-
setvative type is a changeable parameter. More specifically, instead of a fixed g.f.
¢,(u), we assume a parametric family

3.3) P (1) = Py(om) (e
with 0 < ¢ < 1 and ¢/(1) = 1 (see Dwass [12] for a comparison).

Uy,

i

Ha.

We know that ¢ (1) = ad (¢)/¢,(@) is an increasing function of «, hence the
environmental deterioration, measured by

d = d(e) =1 — $1),

is a decreasing function of «. By #,(w), 4;(w) denote the smallest pair-solution of
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the system (3.1)-(3.2) when we insert ¢, instead of ¢,. For a fixed g.f ¢,{1) we will
first show that the optimal mutation rate is uniquely determined by the environ-
mental deterioration. (Here we assume that environmental deterioration for the
conservative type, does not affect the adaptable one.)

_ Let

R = R(0, ¢4, ¢2) = {a)*

#,(w*) = max 4,(w) for some 0 < o £ 1}.

R is the set of all values which are relevant as optimal mutation rates. We know
R < (0,(ez — 1) frz).
For a fixed 0 < o £ 1, consider the equation

Gla) ) = ¢l — (@) + Owiyw) + (1 - Ow).

Differentiating with respect to o (again using the implicit function theorem)
and inserting @ = w*(a) (note that #{w*(e)) = 0), we obtain

{1 = d(w®) — 0[1 — w*iz(w*) — d(0¥)]} $,((1 — @*)i(w¥)
+ 00*2,(0®) + (1 — O)wo*) = 0.
Since ¢;(u) > 0 for all 0 < u = 1, this implies

(3.4) 1l@*) = 0[1 — I'@")]
where we set
(3.5 o) = wi,(w).

For this function (which is independent of both o and 8), we first prove two
lemmas.

"Lemma 1. h'(w) < 1 for all weR.

Proof. If weR, then there is a value 0 = a < I such that o is optimal for a
process with a deterioration parameter «, and

;’(“(w) = 0[1 — h'(w)] > 0.
Lemma 2. h(wm) is an increasing convex function of @ over R.
Proof. Inserting (3.5) into (3.2) it may written in the form
(3.6) h(w) = wd,(1(w))
where
#flw) = w~1(1 —w)hw) + o = (1 — w)iiw) + o,

B=1—-w?h+o'(l—wh' =1—4d, + (1 —w)d; > 0.
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" By a differentiation of (3.6) and simple algebraic manipulation, we get
(3.7 [1— (1 — o)sm]h’ = daln) + (@ — d2)p2(n)-

It is easy to see that #, is an increasing function of w, and wd, is more s0;
therefore, A > 0. As for the right-hand side of (3.7)

P} + (o — ;)30
> () — (1 — )a(m)
= ¢,((1 — )it + w) + ﬁzdiuz [¢.((t — a))u; + )]y, =a,r
For all 0 < @ < {a, — 1) /oy, denote ¢,((1 — @)u + @) = f(u). f.(u) is a super-

critical g.f. with a variable u, #, is the minimal solution of the equation
f, = f.(i,). Hence fi(#,) < 1 and f,(#,) > u,fa(f). Thus we conclude

(3.8) P2n) + (@ — d)h3(0) > fu(#a) — o foldz) > 0.
From (3.7) and (3.8) it follows that
39 1-(1 = )i > 0.

Now, by a further differentiation of (3.7) with respect to e, collecting all terms
without 4" on the right-hand side we get

[1-{ — @)a(nh”
= [0+ 1—a;— W) + [ — " + @ — d]0'¢"(1)
= 201 — d)pa(n) + on'[1 — b + 821420

But we know 1 — i, > 0, ¢35() > 0. It has alrecady been shown that #" > 0,
and from Lemma 1, 1 — h' + &5 > 1 —h' > 0 for all weR. Hence h'(w) > 0
and this completes the proof of Lemma 2.

As an immediate result we have the following theorem.

Theorem 3.1, In a one-step gene substitution, the optimal mutation rate is
uniquely determined by the environmental deterioration, ie., @* = w*(@).

“Proof. Let both w,, @, be optimal mutation rates for the parameter ¢, and let
w, > w,. From Lemma 2 we know h'(®,) > h'(w,) and then, from (3.4), x.(@,)
< y,{e,) in contradiction to the choice of w, as an optimal value.

Theorem 3.2. The optimal mutation rate w*(«} is a monotone decreasing
function of «, and, hence, a monotone increasing function of the environmental
deterioration.
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Proof. From (3.1a}) it follows immediately that for a fixed w, #(w) is a
decreasing, and thus g (w) is an increasing, function of «. Hence, so is

Xa{@*(@)) = max y(w).
: O0swsl

From this and (3.4) we infer that h'(w*(2)) is a decreasing function of .
Employing this and the lemma it follows that w*(¢) is a decreasing function of «.

4. Optimal mutation rate for a Poisson distribution of offspring numbers

The assumption of a Poisson distribution of the number of surviving offspring,
or its mathematical equivalent, is employed in most classical stochastic modelsin
population biology (Karlin and McGregor [10]; see also Moran [15]).

This assumption appears especially to fit natural situations of a large surplus in
the average fecundity of the population. As regards the present model it may be
written as

(4'1) q"i(u) = ¢a1(u)’ i= 1) 23 Y/

with ¢,(u) = ¢~ for all « > 0. Here the fitness coefficient is & = $/(1).
Note that for a Poisson gf ¢,(u) and for any vector (p,,---,p,) in the
n-dimensional simplex

‘.ba(‘é Pi“i) = tljl dpoty + 1 — p) ;
“.2) .
=TI fuld
Thus, (2.1} becomes
4.3) BW) = Pra e ) 1;[ Doao, gy T =1,2,- 1.

Especially in the case of a one-step gene-substitution, Equation (2.2) may be
written as

(4.4a) 61(ﬁ1, ;) = ‘f’u—m)a(ﬁﬂﬁbaw(ﬁz) = #,
(4.4b) (/]52(’21! fi;) = ¢‘(1—-m)a;(ﬁz) = ;.

Note that in this case there is a possibility of mutation from A4, to deleterious
genes (rate @) but such lines become extinct.

As before, set d = 1 — a for the rate of environmental deterioration (we assume
d = 0), and let us have also s = a, — 1 for the selection coeflicient in favor of the
adaptable type A,. For biological application s is assumed to be small. (Fisher
[6], Crow and Kimura [14]). In this section we evaluate the optimal mutation
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rate w* = w*(d,s) and the optimal clone survival probability y(w*), the
evaluation being asymptotically valid for small values of 5. The method employed
is valid only for a Poisson distribution of offspring and, presumably, cannot be

generalized to other cases.
Let y be a random variable, standing for the number of all A,-type descendents

of a single A,-type parent, including itself. From (4.4a) it follows that y may be
represented as the total number of individuals being created throughout a
subcritical one-dimensional branching process with a progeny g.f ¢, o).

Let F,(u) be the probability g.[ of the total number of individuals coming into
existence throughout a one-dimensional branching process with a progeny g.f

$a(u) (A < 1)
We know (e.g., see Harris [11]) that

(4.5) Fy(u) = ugy(Fy(u)) = ue 71,

Furthermore, since the equation x = ue **~Phas a single positive solution x for
all u in the interval (0,4~ 'e*~1), we also know that the g.f F,(u) converges on
this interval and is analytic there. Having A~* ¢*~1 > 1foralid < 1, we conclude
. analyticity é-t the point u = 1. From (4.5) one readily obtains

© (4.6) Fi(h) =1/1 -,
@7 Fi(l) = A1 — ).

Now it is also implied from (4.4a) that any A,-type individual existing in the
process produces offspring of type 4, according to the probability g.f ¢, (u),
independent of the number of Aj-type offspring and deleterious mutants it
produces. Hence, the number of first-generation A,-type mutants to appear in

the process is determined by its gf Fo—u)(Pus(u)). Each of these original
A,-type mutants has a clone-extinction probability #,(w). Hence, the total
extinction probability of a clone, starting from a parent of the conservative type
Al’ is

ﬂl(w) = Fa(l--a)) {¢a&w(ﬁ2(w)}
4.8 .
“.8) = F,-oyexp {afw(id o) — 1)}.

To estimate f#,(w), note that when 2 — 1 > 0 is a small number then the smallest
solution v = v(4) of the ¢quation v = &“”" may readily be represented in the
form

p(A) =1—-2(—1) + 0(4— D)%
From (4.4b) we thus obtain
) 1-— ﬂz(ﬂ)) = 2{“2(1 - (D) — 1} -+ 0[052(1 — (D) — 1]2.
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This last equality stands for a situation wherein o,(1 — w) = (1 + 5)(1 —w)} 1
as a result of a change eifher in the parameter s or in . Being interested in
@ < (g — 1) Jay = s/(1 + s} (otherwise 4,(w) = 1), we conclude

49 ' 1 — d,(w) = 2(s — w) + O(s%).
| From (4.6), (4.7) and (4.8) we now obtain
2(@) = Fo-oyoxp {ofa(iy @) - 1}
= Fou-ofl) + abo(dy(@) — DFq o)

(4.10) + O[0*w*(Ax(w) ~ 11 [Fi1-u)l) + 1]
' _ ofe(d(w) — 1) 02w?[i,(ew) — 177
=l e 0( T - o) )

Now, inserting (4.9) into (4.10), and ﬁaving o =1-—d, (4.10) becomes
Hw) = 1—dyw)

_ Eaﬂw(s—wl 2 B
= d+(1—d)w+o[ews (1+w+d)]

= 208f(w) + O(Bws?),

4.11)

where we define _
(4.12) F(@) = ofs ~ w)[{d + (1 - D).

By a maximization of f(w) we get, as a first approximation of the optimal
value w*:

b @ (= d)sd—d

(4.13) 1=d = w**, say.,
And by a simple élgebraic manipulation;
(4.14) x(e¥*) = 2uf(w*)? /d,
Nofe that for small values of s:
[ /ds + o(ds)  asd<s,
(4.13-a) 0¥ = < (/2= 1)s ¥ ofs) as d = s,
L 35 + o(s) as d>‘s,
[ 20s + o(0s) . as d <,
(4.14a) w@*) = < (J2-1)%205 + o(s) as d =s,
L 31 — d)sd=' 205 + o(s) as d »s..
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These findings indicate the following phenomenon (see [7]): that while for an
insubstantial environmental deterioration (say d <s), w** increases like \/d, it
almost approaches its maximum for d &~ s and stays practically intact under a
further, substantial, environmental deterioration (d % s). y(w**), on the other
hand, is affected practically only by values of d which are larger than s.

Since w* maximizes y(w) and w** maximizes f(w), we get from (4.11)

wWw**) < ylo*) = 2 f(w*¥) + O(0w*s*)
< 200 f(w™**) + O(6w*s?)
@.13) = x(w**) + 0(0s*(w* + w**))
= H@*) + 0(0s).
Employing (4.13a) we have,
KO [H@*) = 1+ 0(d (@)
=1 + O(max {s?,sd}).

(4.16)

_This justifies inserting y(e*) instead of y(w**} in (4.14a). In the sense of maxi-
mizing x(w), (4.16) also indicates that the value w** is quite “*close’ to the

optimal value «®.
We now prove that for environmental detenoratmn which is not extremely

small, say, for d »s°
4.17) | ¥ — w**| = o(s).
From (4.12) it is shown that for n 2 2, 0 < @ < s/(1 + 5),

dd +s—ds) , (=101 —dy
(l—dpP [d+(-dw]r!

For O < @, Wy < .s;/(l + 5), it is thus not difficult to show:
flwy) —flwa) = (@ — w)f (w,)

dd + s —ds) (@) — )
T i+ (-dw, d+U=dw, "

Knowing S (@**) = 0 and (from 4.13)
d + (1 - Do = (d* + (1 — d)ds)},

we get 4t (= dos
(4.19) f@*y = f(w*) = '31(1———3)(} (w0 — w**)?,

(.18) fw) = -

But from (4.15) we know 0 < f(@0**) — f(w*) = O(s%), and (4.19) thus implies

d + w**

T o (w* — w*)? = O(s).
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Now, exploiting (4.13a), and knowing 0 < o* < s, we readily conclude

[ o* — w**| d + o*
5 T dtw 5 06
= O(s [ max {d*¥; s*d*})

(4.20)
3 {O(s*) ifrzs,

O(std-dif r < s,
and for d » s* we proved (4.17).
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Altruism, Competition and Kin Selection in Populations
I, ESHEL and D. COHEN o

INTRODUCTION

The concept of inclusive fitness introduced by Hamilton .
{1964) has provided a general basis for the understanding of
selection in populations of genetically related individuals.
As further developed (Hamilton, 1970), it could account for
the evolution of both altruism and spite between individuals
in a population. According to Hamilton, gelection will favor
a limited rigk-taking by an individual in order to save the
life of an identified relative, when the risk is less than
the excess of genetical relatedness between them abowve the
mean genetical relatedness in the population. Risk taking
would be expected to he equal between individuals with equal
genetic relatedness. It séems, however, that parental care
and self sacrifice is much stronger and commoner than mutual
help between sibs, inspite of the fact that the genetical
relatedness is identical in both cases. In some extreme
cases there may be spiteful relations between sibs. It is
very likely that the difference in reproducﬁive potential and
in the expected competitivity may account for this difference.

This paper is a further development of the general approach

Department of Statistics, University of Tel-Aviv, Ramat-

Aviv, Israel.

* %
Department of Rotany, Hebrew University, Jerusalem, Israel.

537



I. ESHEL AND D. COHEN

of Hamilton, which takes into account, in addition to genetic
relatedness, the inherent competitivity and the reproductive
potential of the individuals concerned.

An important new contribution of our meodel is the con-
sideration of high order reciprocal relationships between
individuals with altruistic or spiteful interactions. These
reciprocal relations may lead to altruism between unrelated
individuals which have a common relative, and in an extreme
case, to altruism between unrelated individuals without a
common relative, provided that the mutual dependence is strong
encugh. Reciprocation may also amplify spiteful relations,
and in general, allows two or more stable states at different

levels of altruism or spite.

THE MODEL

Consider any two individuals i and j with a genetic

relatedness mHu ;, in a group of relatives, l,...,k;... 0t .
Define the competitive effect of j on i,

c.. = e BV (1)
i3 Wi/
or:
W, =W, ,.(1=-C,.) (@)
i i/3 ij

where Sw is the expected number of offspring of i in the

presence of j , and EH is the expected number in the

/3
absence of 3 .
The inclusive fitness of the genes of i in the presence

of a relative Jj and of other relatives is:

g, =W, + M a, W -
i i -y ik k

With the death of 3j , the inclusive fitness of i is:

538
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1. ESHEL AND D, COHEN

when the loss function is negative, since its inclusive fit-
ness will increase if it commits suicide. -

Considering the simplest case of only two related indivi-~
duals, i and -j , ﬁmv reduces to:

% E +a, W, - W,
ijj i

r,. = (5.1)
1] 2 + a, .W, - a, .W
i3] i3 u\w
or, using the definition of nwu ’
W, +a, W, -
* 1] 3] .
r.. = . (5.2)
ij
W, + a,.w. -
J 3
* ’ .
r,. is an increasing function of the reproductive poten-

1]
tial of j and of the genetic HmHmdmmﬂmmm Umﬁsmmn i and

j- Itis a mmnﬁmmmwﬂm function of the HmWHomﬁndHOb WOWmsﬂHmH
*

of i . Hyu is a mmOHmmmwsm msbnﬁHos om C. 13 mnm mn
increasing mﬂhoﬁpou of OuP . .
*
r,, > 0 when:
1]
SH\w - ﬁw EH OM. ) )
L P T Sem——— ..Vl||u|
mHu W, °r mwu w., 1-2¢.. (6)
3 J. 1]
: ) *
when the loss function wa is positive; otherwise ku is

infinitely high.
When possible altruistic or spiteful interaction is with a
subset of n individuals out of the whole population, with-
out discrimination of particular iadividuals, the loss in the
expected reproduction of the genes of i. through the death

of 2ll n individuals is:

Ag, =W, + M a,. W - w, .
i/n i Xefd ik k H\ﬂ
The loss in inclusive fitness because of the rigsk r. - is:

in
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I, ESHEL AND D. COHEN

nearing the end of its reproductive period, but is still
competing for limiting resources with a younger relative with
a high reproductive potential. It should be noted, however,
that this conclusion is reached without regard to the reci-
procal relations of mutual altruism between such individuals,
which is discussed below.

In a well mixed closed habitat with N individuals,

N

Wizs = WiNe1 -

Substituting in (5) and rearranging gives:

a,. — a,
H* . i
1.7,
i
here a, = L M a including a,., =1 r,. > 0 when
w BTN L Ryt 9 841 © Tij
a.. >a, ; rr. <0 when the opposite is the case. This
ij i ij

result is similar in principle to that reached by Hamilton
(1970) . _

*
An interesting case of HWu >0 and r,, < 0 can arise
in such a situation when Mw < NWu < mw s 1.e. when j is
weakly related to i and is not related to other individuals,

while i 1is strongly related to many other individuals.
When relatedness in the population cannot be identified,
and it has scme average value a,. < 1 , or when all indivi-

1]
duals are equally related,

1+ (N~-1) a,.
. = 1]
i N '
* -1 . . . .
and we get that HWu =51 which is always negative, i.e.

spite, irrespective of the average relatedness. The absolute
value of this spite decreases as N increases, becoming
negligible at large N .

Real habitats are never perfectly closed. If we assume

that there is an gverage probability € for each individual
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I. ESHEL AND D.:COHEN -

As long as (1-C)(l+a) > 1., there.are one positive and one
negative roots to eguation (10). This is the case when com-
petitivity is greater than the genetic relatedness.

When (1-C)(l+a) < 1, there are twc positive roots when
a > (1-a) (1-C) (1+a) , which is always true when o > 1, and
there are two smmmﬁw<m HOOﬂw when a < {(l-q){1-C}(1l+a) pro-
vided that the discriminant of equation (10) is positive.

A specially interesting case is of two unrelated indivi-
duals, i.e. a =0 . In this case the discriminant is posi-

tive when < Ta

or gquite large. When this is the case, the two roots are

A

, which holds when o is very small

positive when o > 1, and negative when o < 1 .

Since genetic relatedness is not Hmmﬁpwmm when this condi-
tion helds, altruistic relations may become wOmmeHm.dmﬂsmmu
individuals of different species, i.e. WMEVHOmHm. It is
important to note that no binding contract or gratitude are
assumed. The mm<mnwmmm.mou wﬁm helper is that it rmwwm to
maintain alive an individual which mmem it to survive.

In any of the above cases it mwmam that any one solution
is probably stable over some local neighborhood. Thus, it
seems likely that the actual behavior will depend on the ini-
tial conditions in the relationship. Very likely, an ini-
tially high level of altruism in one Hﬁ@w<wmﬁmw may select
for am increase in altrxuism in the second individual until a
high stable level is Hmwnsmm. Conversely, an initially low
level OM.NPﬁHﬁme or a high level of wwwﬂm may select for
further decrease of altruism or for increased mwwﬁm. wam is
vexy likely the explanation for ﬂWm extremely high aggressive-
ness foumd vmwﬁmms some insects' Hmﬂﬂwm NﬂGOde in Hamilton,
1%70). It could also meFmHn the mHmmﬁumHWWWHmﬂnmm in the |

social cooperation between individuals in some mmMHHw closely
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1. ESHEL AND D. COHEN

Cockerham: What degree of intelligence is required for the

evolution of altruism?

Cohen: Fairly complex pattemms of behavior are known in
‘organisms with little or no intelligence. It is sufficient
that such behavioral patterns are genetically determined.
OoomemﬂM<m interactions are found in very primitive
organisms. I am mxwmﬂwsmbﬁwba now SMﬂw selection in bac-
terial populations for and against the "altruistic" charac-
ter of secretion of extracellular enzymes which digest
polymeric substances and convert them into soluble sub-
-strates for the whole population.
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