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Abstract

The Garman–Klass unbiased estimator of the variance per unit time of
a zero–drift Brownian Motion (B), based on the usual financial data that
reports for time windows of equal length the open (OPEN), minimum
(MIN), maximum (MAX) and close (CLOSE) values, is quadratic in
the statistic S1 = (CLOSE − OPEN, OPEN − MIN,MAX − OPEN).
This estimator, with efficiency 7.4 with respect to the classical estimator
(CLOSE − OPEN)2, is widely believed to be of minimal variance. The
current report disproves this belief by exhibiting an unbiased estimator with
slightly but strictly higher efficiency 7.7322. The essence of the improvement
lies in the observation that the data should be compressed to the statistic
S2 defined on W (t) = B(0) + [B(t) − B(0)]sign((B(1) − B(0)) as S1 was
defined on the Brownian path B(t). The best S2–based quadratic unbiased
estimator will be presented explicitly. The Cramér–Rao upper bound for the
efficiency of unbiased estimators, corresponding to the efficiency of large-
sample Maximum Likelihood estimators, is 8.471. This bound cannot be
attained because the distribution is not of exponential type.
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1 Introduction

As stressed repeatedly (see Magdon-Ismail & Atiya [5]), volatility estimators of financial

data ought to have as small a variance as possible, because volatilities change over time, so

past data have decaying importance. The celebrated Garman–Klass [3] variance estimator,

introduced almost three decades ago, achieves better accuracy in estimating σ2 than the

classical, natural estimator average (CLOSE−OPEN)2 does in seven times the observation

period. This unbiased variance estimator is the minimum-variance unbiased quadratic

function of the spreads c = CLOSE−OPEN, h = MAX−OPEN, l = MIN−OPEN (for

close, high, low). These data S1 = (c, h, l) can be compressed without loss of sufficiency.
0Research conducted on a sabbatical visit to Columbia University, 2008

0



A coarser (but incomplete) sufficient statistic. Consider the triple S2 = (C,H, L)

where C = |c| , (H, L) = (h, l) if c > 0, while (H, L) = −(l, h) if c < 0. Without loss of

relevant information about the variance, the Brownian Motion trajectory {B(t) ; t ∈ (0, 1)}
may be replaced by the flipped path {W (t) ; t ∈ (0, 1)}, defined as W (t) = B(0) + [B(t)−
B(0)]sign(B(1) − B(0)). That is, the three interval lengths (−L,C,H − C), in fact the

further compression (C, min(−L,H−C), max(−L,H−C)), determined by (c, h, l), carry all

relevant information contained in (c, h, l) about σ2, but do not determine (c, h, l). Although

intuitively clear after some thought, sufficiency of (C, min(−L,H − C), max(−L,H − C))

can be formally inferred from Siegmund’s [8] representation displayed as (14) in the sequel.

The Rao–Blackwell theorem [2],[6] claims that under these conditions, for every S1-based

unbiased estimator of some arbitrary parameter there is an S2-based unbiased estimator

with smaller variance – strictly smaller unless the two coincide. As will be seen, the

Garman-Klass estimator is a function of S2, so the Rao-Blackwell improvement leaves it

invariant. However, the Garman-Klass estimator, best among the quadratic function of

S1, is not best possible as a function of S2. Had S2 been a complete minimal sufficient

statistic, Garman-Klass and the proposed estimator would have equally been the UMVUE

(uniformly minimum variance unbiased estimator) of the parameter. However, C2 and

2[(H − C)2 + L2] are different unbiased estimators of σ2. Hence, S2 (whether minimal

sufficient or not) is not complete. Loose some, win some: we will only conjecture rather

than claim optimality of the proposed S2–based quadratic unbiased estimator of σ2; on the

other hand, the exchangeability property under which (−L,C, H−C) and (H−C, C,−L) are

identically distributed, justifies searching for the best quadratic function of (−L, C,H −C)

among those that are linear combinations of four rather than six quadratic terms.

Four basic quadratic unbiased variance estimators.

σ̂2
1 = 2[(H − C)2 + L2] , σ̂2

2 = C2 , σ̂2
3 = 2(H − C − L)C , σ̂2

4 = − (H − C)L
2 log(2)− 5

4

(1)

The rationale for the somewhat bizarre coefficients is that each of these four terms is an

unbiased estimator of σ2, with respective variances

Var(σ̂2
1) = 0.797943σ4 , Var(σ̂2

2) = 2σ4, Var(σ̂2
3) = 0.504753σ4 , Var(σ̂2

4) = 1.004876σ4 (2)
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The proposed variance estimator vis à vis Garman–Klass. The proposed estimator

σ̂2 =
∑4

1 αiσ̂
2
i assigns to these four terms respective weights

α1 = 0.273520 , α2 = 0.160358 , α3 = 0.365212 , α4 = 0.200910 (3)

and achieves variance Var(σ̂2) = 0.258658σ4. The Garman–Klass estimator [3]

σ̂2
GK = 0.511(h− l)2 − 0.019(c(h + l)− 2hl)− 0.383c2 (4)

happens to pool these four basic estimators too, so the Rao–Blackwell theorem does not

rule out the possibility that it coincides with σ̂2. However, as argued earlier, the two do

not agree, and σ̂2
GK =

∑4
1 βiσ̂

2
i pays a price for being quadratic in (c, h, l). Its coefficients

are given by

β1 =
0.511

2
= 0.2555

β2 = 0.511− 0.383− 0.019 = 0.1090

β3 = 0.511− 0.019
2

= 0.5015

β4 = 2(0.511− 0.019)(2 log(2)− 5
4
) = 0.1340 (5)

that achieve Var(σ̂2
GK) = 0.27σ4.

Maximum Likelihood variance estimators and Fisher information. In principle,

giving up on the requirement of unbiasedness, the computer–intensive maximum likelihood

estimator (MLE) of σ2 by Magdon-Ismail & Atiya [5] could have been a competitor, since

MLE’s are functions of any sufficient statistic. However, this estimator is based on (h, l)

rather than on (c, h, l). Magdon-Ismail & Atiya [5] report that their estimator has variance

slightly higher than Garman–Klass’.

The joint generating function of (c, h, l) is presented by Garman & Klass [3] as an infinite

series, from which these authors derived all pertinent second and fourth degree moments.

Ball & Torous [1] developed an infinite–series formula for the joint density of (c, h, l)

and used it to construct numerically the MLE of σ2. They report estimated efficiency of the

MLE for a selection of sample sizes, basing each value on a simulation sample size of 1000

runs, a great achievement in 1984, but insufficient for delicate comparisons. An attempt at

numerical evaluation of the Fisher information, based on the Ball & Torous expression for

the joint density, disclosed that their formula seems to have a missprint. This joint density

was re-derived based on the formula by Siegmund [8] quoted earlier, exhibited as (14) in
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the sequel. The inverse of the Fisher information is the Cramér–Rao lower bound for the

variance per time–window of any unbiased estimator of σ2, for any sample size. It is also

the asymptotic variance of the (not necessarily unbiased) MLE of σ2. Its value turns out

to be 0.2361. This is the benchmark with which Garman–Klass’ 0.27 and the proposed

estimate’s 0.258658 variances should be compared.

The Cramér–Rao bound 0.2361 is not attained by unbiased variance estimators:

disproving exponentiality of a family of distributions. Under proper regularity

assumptions (see Joshi [4]), the Cramér–Rao bound is attained if and only if there is a

linear relationship between the estimator and the score function (derivative with respect to

the parameter of the logarithm of the density). However, for this to happen, there must

exist a linear relationship between the score functions evaluated at different values of the

parameter. It was ascertained numerically that this is not the case. In other words, the

model is not of exponential type. We don’t know whether the sufficient statistic S2, shown

above not to be complete, is minimal sufficient. As a result of all of these considerations,

the proposed estimator may not be of minimal variance.

Since both the proposed and Garman–Klass’ estimators are averages over time–windows,

their variances per time–window are independent of sample size. It is conceivable, and Ball

& Torous have provided evidence in this direction, that the MLE has variance per time–

window that decreases as the sample size increases, so for small sample sizes the proposed

estimator has in practice no competitor.

Moreover, since the BM model doesn’t really hold in practice, a broader contribution of

this paper is the introduction of more efficient quadratic statistics on which to base practical

estimators.

2 Derivation

Following the steps of Garman & Klass [3], all second and fourth order moments of (C, L, H)

will be identified. Some of these will be quoted from [3], some will be derived once the joint

densities of (C, H) and (C,L) are explicitly presented, and some will require some additional

argument. Although it would perhaps be more natural to work only with the exchangeable

variables ∆ = H − C and δ = −L, work will be performed on the variables H and L as

well, in order to link more easily with Garman & Klass’ triple (c, h, l).
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2.1 The joint densities of C and each of H and L: four unbiased estimators

Assume throughout the computations that the drift is 0 and the variance per unit time is

1. Thus, E[C2] = E[c2] = 1.

By a common reflection argument, BM reaching at least as high as x > 0 and ending up

at y = x − (x − y) ∈ (0, x) is tantamount to ending up at x + (x − y). Or,

P (H > x, C ∈ [y, y + dy]) = P (C ∈ [2x − y, 2x − y + dy]) = 2φ(2x − y)dy, where

φ(·) = 1√
2π

exp{−1
2(·)2} is the standard normal density function (see Siegmund [8] or

expression (14) in the Appendix for a generalization to (C,H, L)).

Similarly, P (L < z, C ∈ [y, y + dy]) = P (C ∈ [2z− y, 2z− y + dy]) = 2φ(2z− y). Hence,

the joint density of H and C is

fH,C(x, y) = 4(2x− y)φ(2x− y) , 0 < y < x (6)

and that of L and C is

fL,C(z, y) = 4(y − 2z)φ(y − 2z) , z < 0 < y (7)

These joint densities, essentially re-phrasings of a well known formula for the joint

density of (h, h− c) (see Yor [9]), lead to the first four of the following five second moments.

The fifth is taken from [3]. Details are omitted. E[C2]=1 by assumption.

E[H2] =
7
4

, E[L2] =
1
4

, E[CH] =
5
4

, E[CL] = −1
4

, E[HL] = 1− 2 log(2) (8)

As a corollary,

Lemma 1 The variance estimators σ̂i , i = 1, 2, 3, 4 (see (1)) are unbiased.

Seshadri’s [7] theorem that 2h(h − c) is exponentially distributed with mean 1, and is

independent of c, implies that 2H(H − C) is exponentially distributed with mean 1, and

is independent of C. This is so, simply because the conditional distribution of (h, c) given

that c > 0 is the (unconditional) distribution of (H,C).

Of course, the same applies to 2l(l − c) and 2L(L − C). However, 2H(H − C) and

2L(L − C) are dependent (identities (10) yield correlation 1 + 7
2ζ(3) − 8 log(2) = −0.3380

between the two), and dependent given C.

Otherwise, it would have been very easy to sample (C, H,L) triples. As things stand, it

is easy to sample pairs (c, h) (and (c, l)) or (C,H) (and (C, L)), by independently sampling
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c and h(h − c). A practical approximate method to sample (C, H,L) triples is to sample

(C ′,H ′) correctly, then make the wrong choice L′ = C ′ − H ′, not on [0, 1] but on each of

the N sub-intervals [ i−1
N , i

N ]. The construction is correct except if H and L are attained

in the same sub-interval, the probability of which decreases fast as N increases. Instead of

letting L′ = C ′−H ′, other copulas may be used, to better approximate features of the joint

distribution of (C ′,H ′, L′).

2.2 The MLE’s of σ2 based on (C,H) and on (C,L) are unbiased

It may be of interest to notice that (6) (resp. (7)), reinterpreted as fH,C(x, y;σ) =

42x−y
σ3 φ(2x−y

σ ), identifies the MLE of σ2 based on (C, H) (resp. (C, L)) as the average

over the sample of 1
3(2H − C)2 = 1

3C2 + 1
3 [4(H − C)2] + 1

3 [4C(H − C)] and 1
3(2L− C)2 =

1
3C2 + 1

3 [4L2] + 1
3 [−4CL]. The average of the two, the simple average of the first three

unbiased estimators in (1), achieves variance 0.3694, above Garman–Klass’.

2.3 The fourth moments of (C,H, L)

The following fourth moments are derived from the joint densities of (H,C) and (L,C).

E[C4] = 3 is Gaussian kurtosis.

E[H4] =
93
16

, E[L4] =
3
16

, E[CH3] =
147
32

, E[CL3] = − 3
32

E[C3H] =
27
8

, E[C3L] = −3
8

, E[C2H2] =
31
8

, E[C2L2] =
1
8

(9)

The following fourth moment information is taken from Garman & Klass [3]. ζ is

Riemann’s zeta function, with ζ(3) =
∑∞

k=1
1
k3 ≈ 1.2020569.

E[H2L2] = E[h2l2] = 3− 4 log(2)

E[C2HL] = E[c2hl] = 2− 2 log(2)− 7
8
ζ(3)

E[H3L] + E[HL3] = E[hl(h2 + l2)] = 6− 6 log(2)− 9
4
ζ(3)

E[CH2L] + E[CHL2] = E[chl(h + l)] =
9
2
− 4 log(2)− 7

4
ζ(3) (10)

There is one more (C,H, L)-based fourth moment needed, whose value does not follow

from Garman & Klass’.

Lemma 2 E[CHL2] = ζ(3)/16− 2 log(2) + 47
32 ≈ 0.1575842.
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A proof of Lemma 2 can be found in the Appendix. Large sample empirical estimation

of E[CHL2] gave 0.15762, yielding Var(σ̂2
4) very close to 1. Had E[CHL2] been equal to

log(2)(3− 4 log(2)) ≈ 0.15763 (initial conjecture), Var(σ̂2
4) would have been exactly 1.

From all the fourth moments above,

E[C4] = 3

E[δ4] = E[L4] =
3
16

E[Cδ3] = −E[CL3] =
3
32

E[C2δ2] = E[C2L2] =
1
8

E[C3δ] = −E[C3L] =
3
8

E[C2∆δ] = E[C3L]− E[C2HL] = 2 log(2) +
7
8
ζ(3)− 19

8

E[C∆δ2] = E[CHL2]− E[C2L2] = E[CHL2]− 1
8

= ζ(3)/16− 2 log(2) +
43
32

E[∆2δ2] = E[H2L2] + E[C2L2]− 2E[CHL2]

=
3
16
− ζ(3)

8
2E[∆3δ] = E[∆3δ] + E[∆δ3] = −(E[H3L] + E[HL3])

+ E[C3L] + E[CL3]− 3E[C2HL] + 3E[CH2L]

= 6 log(2)− 9
16

ζ(3)− 27
8

(11)

2.4 The covariance matrix of the four basic estimators

Let Σ stand for the covariance matrix of the four basic estimators. Their variances are on

the diagonal, their covariances off the diagonal.

Applying the formulas of the previous sub–section, the variances of the basic estimators

σ̂2
i (see (1)) are

Σ(1, 1) = Var(σ̂2
1) = 8(E[δ4] + E[∆2δ2])− 1 = 2− ζ(3) = 0.797943

Σ(2, 2) = Var(σ̂2
2) = 3− 1 = 2

Σ(3, 3) = Var(σ̂2
3) = 8(E[C2δ2] + E[C2∆δ])− 1 = 8[log(4) +

7
8
ζ(3)− 9

4
]− 1

= 0.504753

Σ(4, 4) = Var(σ̂2
4) =

E[∆2δ2]
(log(4)− 5

4)2
− 1 =

3
16 − ζ(3)

8

(log(4)− 5
4)2

− 1 = 1.004876 (12)
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The covariances of the basic estimators are

Σ(1, 2) = Cov(σ̂2
1, σ̂

2
2) = 4E[C2δ2]− 1 = −1

2

Σ(1, 3) = Cov(σ̂2
1, σ̂

2
3) = 8E[Cδ3] + 8E[C∆δ2]− 1 =

21 + ζ(3)
2

− 16 log(2)

= 0.010674

Σ(1, 4) = Cov(σ̂2
1, σ̂

2
4) =

4E[∆δ3]
log(4)− 5

4

− 1 =
12 log(2)− 27

4 − 9
8ζ(3)

log(4)− 5
4

− 1

= .580786

Σ(2, 3) = Cov(σ̂2
2, σ̂

2
3) = 4E[C3δ]− 1 =

1
2

Σ(2, 4) = Cov(σ̂2
2, σ̂

2
4) =

E[C2∆δ]
log(4)− 5

4

− 1 =
7
8ζ − 9

8

log(4)− 5
4

= −.537074

Σ(3, 4) = Cov(σ̂2
3, σ̂

2
4) =

4E[C∆2δ]
log(4)− 5

4

− 1 =
ζ(3)
4 + 43

8 − 8 log(2)
log(4)− 5

4

− 1

= −.043711 (13)

2.5 Derivation of the proposed estimator

Letting α (see (3)) stand for the weights assigned to the basic estimators, the weighted sum

has variance αT Σα and mean αT1. Using a Lagrange multiplier to constrain the mean to

be 1, minimal variance is achieved at α = Σ−11
1T Σ−11

, yielding the weights displayed in (3).

The variance of the proposed estimator is 1
1T Σ−11

= 0.258658, with corresponding efficiency

21T Σ−11 = 7.73221.

3 Appendix - proof of Lemma 2

For the sake of conciseness, the tedious integration to be presented will be restricted to the

identification of E[CHL2], although, in principle, more general joint moments and moment

generating function of (C,H, L) could have been identified.

Consider the infinitesimal event {BM(1) ∈ (ξ, ξ + dξ) , BM(s) ∈ (a, b) , ∀s ∈ [0, 1]},
where a < min(ξ, 0) ≤ 0 ≤ max(ξ, 0) < b. By Siegmund [8] Corollary 3.43, its probability

Q(ξ, a, b)dξ is as follows

Q(ξ, a, b) =
∞∑

j=−∞
{φ(ξ − 2j(b− a))− φ(ξ − 2a− 2j(b− a))} (14)

The joint density fc,h,l(ξ, a, b) is (minus) the mixed second derivative of Q with respect

to a and b, on {ξ ∈ (a, b) , a < 0 , b > 0}. The joint density fC,H,L is simply 2fc,h,l,
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restricted to {ξ ∈ (0, b) , a < 0 , b > 0}. The two terms in the j = 0 and second term in

the j = 1 summands vanish because they are independent of at least one of a and b.

To calculate E[CHL2], the contribution of each summand in (14) will be integrated in

three univariate steps. The first step will integrate over a ∈ (−∞, 0) the product of a2 and

the pertinent mixed second derivative. ∂
∂aφ(ξ + Ka + Mb)da is to be interpreted as the

integration-by-parts element dφ(ξ + Ka + Mb), viewed as a function of a.
∫ 0

−∞
∂

∂b
a2 ∂

∂a
φ(ξ + Ka + Mb)da

=
2

K2

∂

∂b
[φ(ξ + Mb) + (ξ + Mb)Φ(ξ + Mb)] (for K > 0)

=
2M

K2
Φ(ξ + Mb) (for K > 0)

=
2M

K2
Φ(ξ + Mb)− 2M

K2
(for K < 0) (15)

Now expression (15) will be multiplied by ξ and integrated over ξ ∈ (0, b). For K > 0

(K < 0) it is convenient to integrate Φ∗ (Φ). These terms appear in (16) and (17). The

free term in (15) contributes 2M
K2

b2

2 and cancels with the corresponding b2 term in (17).
∫ b

0
ξ

∂

∂b

∫ 0

−∞
a2φ(ξ + Kda + Mb)dξ

=
2M

K2

∫ (M+1)b

Mb
yΦ(y)dy − 2M2b

K2

∫ (M+1)b

Mb
Φ(y)dy

=
M

K2
[(M2b2 + 1)Φ(Mb)− ((M2 − 1)b2 + 1)Φ((M + 1)b)

+Mbφ(Mb)− (M − 1)bφ((M + 1)b)]

= −M

K2
[(M2b2 + 1)Φ∗(Mb)− ((M2 − 1)b2 + 1)Φ∗((M + 1)b) (16)

+Mbφ(Mb)− (M − 1)bφ((M + 1)b)] +
M

K2
b2 (17)

Finally, expressions (16) and (17), multiplied by b and integrated over b ∈ (0,∞), via
∫ ∞

0
b3Φ∗(Ab)db =

3
8A4

;
∫ ∞

0
bΦ∗(Ab)db =

1
4A2

;
∫ ∞

0
b2φ(Ab)db =

1
2A3

(18)

yield a rational function of j (with M = 2j and K = −2j or K = −2(j − 1)) whose

sum contains only terms of the form −∑∞
1 (−1)j 1

j = log(2) and
∑∞

1
1
j3 = ζ(3), as in the

statement of Lemma 2. Further details are omitted.
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