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Abstract. We study the interplay between infinitesimal deformations
of conformal mappings, quasiconformal distortion estimates and integral
means spectra. By the work of McMullen, the second derivative of the
Hausdorff dimension of the boundary of the image domain is naturally
related to asymptotic variance of the Beurling transform. In view of a
theorem of Smirnov which states that the dimension of a k-quasicircle
is at most 1 + k2, it is natural to expect that the maximum asymptotic
variance Σ2 = 1. In this paper, we prove 0.87913 6 Σ2 6 1.

For the lower bound, we give examples of polynomial Julia sets which
are k-quasicircles with dimensions 1 + 0.87913 k2 for k small, thereby
showing that Σ2 > 0.87913. The key ingredient in this construction is a
good estimate for the distortion k, which is better than the one given by a
straightforward use of the λ-lemma in the appropriate parameter space.
Finally, we develop a new fractal approximation scheme for evaluating
Σ2 in terms of nearly circular polynomial Julia sets.

1. Introduction

In his work on the Weil-Petersson metric [27], McMullen considered cer-

tain holomorphic families of conformal maps

ϕt : D∗ → C, ϕ0(z) = z, where D∗ = {z : |z| > 1},

that naturally arise in complex dynamics and Teichmüller theory. For these

special families, he used thermodynamic formalism to relate a number of

different dynamical features. For instance, he showed that the infinitesimal

growth of the Hausdorff dimension of the Jordan curves ϕt(S1) is connected

2010 Mathematics Subject Classification. Primary 30C62; Secondary 30H30.
Key words and phrases. Quasiconformal map, Beurling transform, Asymptotic vari-

ance, Bergman projection, Bloch space, Hausdorff dimension, Julia set.
A.P. was supported by the Vilho, Yrjö and Kalle Väisälä Foundation and the Emil Aal-

tonen Foundation. I.P. and A.P. were supported by the Academy of Finland (SA) grants
1266182 and 1273458. All authors were supported by the Center of Excellence Analysis
and Dynamics, SA grants 75166001 and 12719831. Part of this research was performed
while K.A. and I.P. were visiting the Institute for Pure and Applied Mathematics (IPAM),
which is supported by the National Science Foundation.

1



2 K. ASTALA, O. IVRII, A. PERÄLÄ, AND I. PRAUSE

to the asymptotic variance of the first derivative of the vector field v =
dϕt
dt

∣∣
t=0

by the formula

2
d2

dt2

∣∣∣∣
t=0

H. dim ϕt(S1) = σ2(v′), (1.1)

where the asymptotic variance of a Bloch function g in D∗ is given by

σ2(g) =
1

2π
lim sup
R→1+

1

| log(R− 1)|

ˆ
|z|=R

|g(z)|2|dz|. (1.2)

This terminology is justified by viewing g as a stochastic process

Ys(ζ) = g((1− e−s)ζ), ζ ∈ S1, 0 6 s <∞,

with respect to the probability measure |dζ|/2π, in which case σ2(g) =

lim sups→∞
1
s σ

2
Ys

. For further relevance of probability methods to the study

of the boundary distortion of conformal maps, we refer the reader to [17, 21].

For arbitrary families of conformal maps, the identity (1.1) may not hold.

For instance, Le and Zinsmeister [19] constructed a family {ϕt} for which

σ2(v′) is zero, while t 7→ M.dimϕt(S1) (with Hausdorff dimension replaced

by Minkowski dimension) is equal to 1 for t < 0 but grows quadratically for

t > 0.

Nevertheless, it is natural to enquire if McMullen’s formula (1.1) holds on

the level of universal bounds. As will be explained in detail in the subsequent

sections, for general holomorphic families of conformal maps ϕt parametrised

by a complex parameter t ∈ D, one can combine the work of Smirnov [41]

with the theory of holomorphic motions [23, 40] to show that

H.dim ϕt(S1) 6 1 +
(1−

√
1− |t|2)2

|t|2
= 1 +

|t|2

4
+O(|t|4), t ∈ D. (1.3)

It is conjectured that the equality in (1.3) holds for some family, but this is

still open. On the other hand, the derivative of the infinitesimal vector field

v = dϕt
dt

∣∣
t=0

can be represented in the form

v′ = Sµ

where |µ(z)| 6 χD and S is the Beurling transform , the principal value

integral

Sµ(z) = − 1

π

ˆ
C

µ(w)

(z − w)2
dm(w). (1.4)

(Since the support of µ is contained in the unit disk, v′ is a holomorphic

function on the exterior unit disk.)
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In this formalism, McMullen’s identity describes the asymptotic variance

σ2(Sµ) for a “dynamical” Beltrami coefficient µ, which is invariant under a

co-compact Fuchsian group or a Blaschke product.

In this paper, we study the quantity

Σ2 := sup{σ2(Sµ) : |µ| 6 χD} (1.5)

from several different perspectives. In addition to the problem of dimension

distortion of quasicircles, Σ2 is naturally related to questions on integral

means of conformal maps, which we discuss later in the introduction. The

first result in this work is an upper bound for Σ2:

Theorem 1.1. Suppose µ is measurable in C with |µ| 6 χD. Then,

σ2(Sµ) :=
1

2π
lim sup
R→1+

1

| log(R− 1)|

ˆ 2π

0
|Sµ(Reiθ)|2 dθ 6 1. (1.6)

We give two different proofs for (1.6), one using holomorphic motions

and quasiconformal geometry in Section 4, and another based on complex

dynamics and fractal approximation in Section 6.

In view of McMullen’s identity and the possible sharpness of Smirnov’s

dimension bounds, it is natural to expect that the bound (1.6) is optimal

with Σ2 = 1, and in the first version of this paper we formulated a con-

jecture to that extent. However, after having read our manuscript, H̊akan

Hedenmalm managed to show [12] that actually Σ2 < 1.

For lower bounds on Σ2, we produce examples in Section 5 showing:

Theorem 1.2. There exists a Beltrami coefficient |µ| 6 χD such that

σ2(Sµ) > 0.87913.

In fact, our construction gives new bounds for the quasiconformal distor-

tion of certain polynomial Julia sets:

Theorem 1.3. Consider the polynomials Pt(z) = zd + t z. For |t| < 1, the

Julia set J (Pt) is a Jordan curve which can be expressed as the image of the

unit circle by a k-quasiconformal map of C, where

k =
d

1
d−1

4
|t|+O(|t|2).
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In particular, when d = 20 and |t| is small, k ≈ 0.585 · |t|2 and J (Pt) is a

k-quasicircle with

H. dim J (Pt) ≈ 1 + 0.87913 · k2. (1.7)

Note that the distortion estimates in Theorem 1.3 are strictly better (for

d > 3) than those given by a straightforward use of the λ-lemma. For a

detailed discussion, see Section 5. In terms of the dimension distortion of

quasicircles, Theorem 1.3 improves upon all previously known examples. For

instance, the holomorphic snowflake construction of [8] gives a k-quasicircle

of dimension ≈ 1 + 0.69 k2.

In order to further explicate the relationship between asymptotic variance

and dimension asymptotics, consider the function

D(k) = sup{H. dim Γ : Γ is a k-quasicircle}, 0 6 k < 1.

The fractal approximation principle of Section 6 roughly says that infinites-

imally, it is sufficient to consider certain quasicircles, namely nearly circular

polynomial Julia sets. As a consequence, we prove:

Theorem 1.4.

Σ2 6 lim inf
k→0

D(k)− 1

k2
. (1.8)

Together with Smirnov’s bound [41],

D(k) 6 1 + k2, (1.9)

Theorem 1.4 gives an alternative proof for Theorem 1.1. We note that the

function D(k) may be also characterised in terms of several other properties

in place of Hausdorff dimension, see [3]. It would be interesting to know if

the reverse inequality in Theorem 1.4 holds.

In Section 7, we study the fractal approximation question in the Fuchsian

setting. One may expect that it may be possible to approximate Σ2 using

Beltrami coefficients invariant under co-compact Fuchsian groups. However,

this turns out not to be the case. To this end, we show:

Theorem 1.5.

Σ2
F := sup

µ∈MF, |µ|6χD

σ2(Sµ) < 2/3.
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Theorem 1.5 may be viewed as an upper bound for the quotient of the

Weil-Petersson and Teichmüller metrics, over all Teichmüller spaces Tg with

g > 2. (To make the bound genus-independent, one needs to normalise

the hyperbolic area of Riemann surfaces to be 1.) The proof follows from

simple duality arguments and the fact that there is a definite defect in the

Cauchy-Schwarz inequality.

Finally, we compare our problem with another method of embedding a

conformal map f into a flow:

log f ′t(z) = t log f ′(z), t ∈ D. (1.10)

In this case, the derivative of the infinitesimal vector field at t = 0 is just the

Bloch function log f ′(z). However, even if f itself is univalent, the univalence

of ft is only guaranteed for |t| 6 1/4, see [30]. One advantage of the notion

(1.5) and holomorphic flows parametrised by Beltrami equations is that they

do not suffer from this “univalency gap”.

In the case of domains bounded by regular fractals and the corresponding

equivariant Riemann mappings f(z), we have several interrelated dynamical

and geometric characteristics:

• The integral means spectrum of a conformal map:

βf (τ) = lim sup
r→1

log
´
|z|=r |(f

′)τ |dθ
log 1

1−r
, τ ∈ C. (1.11)

• The asymptotic variance a Bloch function g ∈ B:

σ2(g) = lim sup
r→1

1

2π| log(1− r)|

ˆ
|z|=r

|g(z)|2dθ. (1.12)

• The LIL constant of a conformal map is defined as the essential

supremum of CLIL(f, θ) over θ ∈ [0, 2π) where

CLIL(f, θ) = lim sup
r→1

log |f ′(reiθ)|√
log 1

1−r log log log 1
1−r

. (1.13)

Theorem 1.6. Suppose f(z) is a conformal map, such that the image of the

unit circle f(S1) is a Jordan curve, invariant under a hyperbolic conformal

dynamical system. Then,

2
d2

dτ2

∣∣∣∣
τ=0

βf (τ) = σ2(log f ′) = C2
LIL(f), (1.14)
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where β(τ) is the integral means spectrum, σ2 is the asymptotic variance of

the Bloch function log f ′, and CLIL denotes the constant in the law of the

iterated logarithm (1.13).

We emphasise that the above quantities are not equal in general, but only

for special domains Ω that have fractal boundary. For these domains, the

limits in the definitions of βf (τ) and σ2(log f ′) exist, while CLIL(f, θ) is a

constant function (up to a set of measure 0).

The equalities in (1.14) are mediated by a fourth quantity involving the

dynamical asymptotic variance of a Hölder continuous potential from ther-

modynamic formalism. The equality between the dynamical variance and

C2
LIL is established in [35, 36], while the works [11, 22] give the connection

to the integral means β(τ). The missing link, it seems, is the connection

between the dynamical variance and σ2, which can be proved using a global

analogue of McMullen’s coboundary relation. Details will be given in Section

8. We note that an alternative approach connecting β(τ) and σ2 directly

has been considered in the special case of polynomial Julia sets, see [17].

With these connections in mind, we relate our quantity Σ2 to the universal

integral means spectrum B(τ) = supf βf (τ):

Theorem 1.7.

lim inf
τ→0

B(τ)

τ2/4
> Σ2.

In view of the lower bound for Σ2 given by Theorem 1.2, this improves upon

the previous best known lower bound [13] for the behaviour of the universal

integral means spectrum near the origin. The proof of Theorem 1.7 along

with additional numerical advances is presented in Section 8.

While the two approaches above for constructing flows of conformal maps

are somewhat different, there is a relation: singular quasicircles lead to

singular conformal maps via welding-type procedures [32]. The parallels

are summarised in Table 1 below, where exact equalities hold only in the

dynamical setting.

2. Bergman projection and Bloch functions

In this section, we introduce the notion of asymptotic variance for Bloch

functions and discuss some of its basic properties.
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Holomorphic motion ∂ϕt = t µ ∂ϕt log f ′t = t log f ′

Bloch function v′ Sµ log f ′

Univalence ‖µ‖∞ 6 1 f conformal

σ2(v′) = c H. dimϕt(S1) = 1 + c |t|2/4 + . . . βf (τ) = c τ2/4 + . . .

Examples Lacunary series

Table 1. Singular conformal maps and the growth of Bloch functions

2.1. Asymptotic variance. The Bloch space B consists of analytic func-

tions g in D which satisfy

‖g‖B := sup
z∈D

(1− |z|2)|g′(z)| <∞.

Note that ‖ · ‖B is only a seminorm on B. A function g0 ∈ B belongs to the

little Bloch space B0 if

lim
|z|→1−

(1− |z|2)|g′0(z)| = 0.

To measure the boundary growth of a Bloch function g ∈ B, we define its

asymptotic variance by

σ2(g) :=
1

2π
lim sup
r→1−

1

| log(1− r)|

ˆ 2π

0
|g(reiθ)|2dθ. (2.1)

Lacunary series provide examples with non-trivial (i.e. positive) asymptotic

variance. For instance, for g(z) =
∑∞

n=1 z
dn with d ≥ 2, a quick calculation

based on orthogonality shows that

σ2(g) =
1

log d
. (2.2)

Following [31, Theorem 8.9], to estimate the asymptotic variance, we use

Hardy’s identity which says that(
1

4r

d

dr

)(
r
d

dr

)
1

2π

ˆ 2π

0
|g(reiθ)|2dθ =

1

2π

ˆ 2π

0
|g′(reiθ)|2dθ (2.3)

≤ ‖g‖2B
(

1

1− r2

)2

= ‖g‖2B
(

1

4r

d

dr

)(
r
d

dr

)
log

1

1− r2
.

From (2.3), it follows that σ2(g) 6 ‖g‖2B. In particular, the asymptotic

variance of a Bloch function is finite. It is also easy to see that adding an

element from the little Bloch space does not affect the asymptotic variance,

i.e. σ2(g + g0) = σ2(g).
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2.2. Beurling transform and the Bergman projection. For a measur-

able function µ with |µ| 6 χD, the Beurling transform g = Sµ is an analytic

function in the exterior disk D∗ = {z : |z| > 1} which satisfies a Bloch bound

of the form ‖g‖B∗ := |g′(z)|(|z|2−1) 6 C. Note that we use the notation B∗

for functions in D∗ – we reserve the symbol B for the standard Bloch space

in the unit disk D. By passing to the unit disk, we are naturally led to the

Bergman projection

Pµ(z) =
1

π

ˆ
D

µ(w)dm(w)

(1− zw)2
(2.4)

and its action on L∞-functions. Indeed, comparing (1.4) and (2.4), we see

that Pµ(1/z) = − z2Sµ0(z) for µ0(w) = µ(w) and z ∈ D∗. From this

connection between the Beurling transform and the Bergman projection, it

follows that

Σ2 = sup
|µ|6χD

σ2(Sµ) = sup
|µ|6χD

σ2(Pµ). (2.5)

In view of the above equation, the Beurling transform and the Bergman

projection are mostly interchangeable. Due to natural connections with

the quasiconformal literature, we mostly work with the Beurling transform.

However, in this section on a priori bounds, it is preferable to work with the

Bergman projection to keep the discussion in the disk.

2.3. Pointwise estimates. According to [29], the seminorm of the Bergman

projection from L∞(D)→ B is 8/π. Integrating (2.3), we get

1

2π

ˆ 2π

0
|Pµ(reiθ)|2dθ ≤

(
8

π

)2

log
1

1− r2
, r → 1−,

which implies that Σ2 6 (8/π)2. One can also equip the Bloch space with

seminorms that use higher order derivatives

‖f‖B,m = sup
z∈D

(1− |z|2)m|f (m)(z)|, (2.6)

where m > 1 is an integer. Very recently, Kalaj and Vujadinović [16] cal-

culated the seminorm of the Bergman projection when the Bloch space is

equipped with (2.6). According to their result,

‖P‖B,m =
Γ(2 +m)Γ(m)

Γ2(m/2 + 1)
. (2.7)
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It is possible to apply the differential operator in (2.3) m times and use the

pointwise estimates (2.7). In this way, one ends up with the upper bounds

σ2(Sµ) = σ2(Pµ) 6
Γ(2 +m)2Γ(m)2

Γ(2m)Γ4(m/2 + 1)
. (2.8)

Putting m = 2 in (2.8), one obtains that σ2(Sµ) ≤ 6, which is a slight

improvement to (8/π)2 and is the best upper bound that can be achieved

with this argument. Using quasiconformal methods in Section 4, we will

show the significantly better upper bound σ2(Sµ) 6 1.

2.4. Césaro integral averages. In Section 6 on fractal approximation,

we will need the Césaro integral averages from [27, Section 6]. Following

McMullen, for f ∈ B, m > 1 and r ∈ [0, 1), we define

σ2
2m(f, r) =

1

Γ(2m)

1

| log(1− r)|

ˆ r

0

ds

1− s

[
1

2π

ˆ 2π

0

∣∣∣∣(1− s2)mf (m)(seiθ)

∣∣∣∣2dθ
]

and

σ2
2m(f) = lim sup

r→1−
σ2

2m(f, r). (2.9)

We will need [27, Theorem 6.3] in a slightly more general form, where we

allow the use of “limsup” instead of requiring the existence of a limit:

Lemma 2.1. For f ∈ B,

σ2(f) = σ2
2(f) = σ2

4(f) = σ2
6(f) = . . . (2.10)

Furthermore, if the limit as r → 1 in σ2
2m(f) exists for some m > 0, then

the limit as r → 1 exists in σ2
2m(f) for all m > 0.

The original proof from [27] applies in this setting.

3. Holomorphic families

Our aim is to understand holomorphic families of conformal maps, and

the infinitesimal change of Hausdorff dimension. The natural setup for this

is provided by holomorphic motions [23], maps Φ : D×A→ C, with A ⊂ C,

such that

• For a fixed a ∈ A, the map λ→ Φ(λ, a) is holomorphic in D.

• For a fixed λ ∈ D, the map a→ Φ(λ, a) = Φλ(a) is injective.

• The mapping Φ0 is the identity on A,

Φ(0, a) = a, for every a ∈ A.
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It follows from the works of Mañé-Sad-Sullivan [23] and Slodkowski [40]

that each Φλ can be extended to a quasiconformal homeomorphism of C.

In other words, each f = Φλ is a homeomorphic W 1,2
loc (C)-solution to the

Beltrami equation

∂f(z) = µ(z)∂f(z) for a.e. z ∈ C.

Here the dilatation µ(z) = µλ(z) is measurable in z ∈ C, and the mapping

f is called k-quasiconformal if ‖µ‖∞ ≤ k < 1. As a function of λ ∈ D, the

dilatation µλ is a holomorphic L∞-valued function with ‖µλ‖∞ ≤ |λ|, see

[10]. In other words, Φλ is a |λ|-quasiconformal mapping.

Conversely, as is well-known, homeomorphic solutions to the Beltrami

equation can be embedded into holomorphic motions. For this work, we shall

need a specific and perhaps non-standard representation of the mappings

which quickly implies the embedding. For details, see Section 4.

3.1. Quasicircles. Let us now consider a holomorphic family of conformal

maps ϕt : D∗ → C, t ∈ D such as the one in the introduction. That is,

we assume ϕ(t, z) = ϕt(z) is a D × D∗ → C holomorphic motion which

in addition is conformal in the parameter z. By the previous discussion,

each ϕt extends to a |t|-quasiconformal mapping of C. Moreover, by sym-

metrising the Beltrami coefficients like in [18, 41], we see that ϕt(S1) is a

k-quasicircle, where |t| = 2k/(1 + k2). More precisely, ϕt(S1) = f(R ∪ {∞})
for a k-quasiconformal map f : Ĉ → Ĉ of the Riemann sphere Ĉ, which is

antisymmetric with respect to the real line in the sense that

µf (z) = −µf (z) for a.e. z ∈ C.

Smirnov used this antisymmetric representation to prove (1.9). In terms of

the conformal maps ϕt, Smirnov’s result takes the form mentioned in (1.3).

3.2. Heuristics for σ2(Sµ) 6 1. An estimate based on the τ = 2 case of

[32, Theorem 3.3] tells us roughly that for R > 1,

1

2πR

ˆ
|z|=R

|ϕ′t(z)|2|dz| 6 C(|t|) (R− 1)−|t|
2
. (3.1)

(The precise statement is somewhat weaker but we are not going to use this.)

A natural strategy for proving σ2(Sµ) 6 1 is to consider the holomorphic
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motion of principal mappings ϕt generated by µ,

∂ϕt = tµ ∂ϕt, t ∈ D; ϕt(z) = z +O(1/z) as z →∞.

For the derivatives, we have the Neumann series expansion:

ϕ′t = ∂ϕt = 1 + tSµ+ t2SµSµ+ . . . , z ∈ D∗. (3.2)

In view of this, taking the limit t→ 0 in (3.1), one obtains a growth bound

(as R → 1) for the integrals
´
|z|=R |Sµ|

2|dz|. However, in order to validate

this strategy, one needs to have good control on the constant term C(|t|)
in (3.1). Namely, one would need to show that C(|t|) → 1 as t → 0 fast

enough, for instance at a quadratic rate C(|t|) 6 C |t|2 . Unfortunately, while

the growth exponent in (3.1) is effective, the constant is not.

In order to make this strategy work, we need two improvements. First, we

work with quasiconformal maps that are antisymmetric with respect to the

unit circle; and secondly, we use normalised solutions instead of principal

solutions. One of the key estimates will be Theorem 4.4 which is the coun-

terpart of (3.1) for antisymmetric maps, but crucially with a multiplicative

constant of the form C(δ)k
2
. This naturally complements the Hausdorff

measure estimates of [33].

3.3. Interpolation. Let (Ω, σ) be a measure space and Lp(Ω, σ) be the

usual spaces of complex-valued σ-measurable functions on Ω equipped with

the (quasi)norms

‖Φ‖p =

(ˆ
Ω
|Φ(x)|p dσ(x)

) 1
p

, 0 < p <∞.

In the papers [4] – [7], holomorphic deformations were used to give sharp

bounds on the distortion of quasiconformal mappings. In [6], the method

was formulated as a compact and general interpolation lemma:

Lemma 3.1. [6, Interpolation Lemma for the disk] Let 0 < p0, p1 6 ∞
and {Φλ ; |λ| < 1} ⊂ M (Ω, σ) be an analytic and non-vanishing family

of measurable functions defined on a domain Ω. Suppose

M0 := ‖Φ0‖p0 <∞, M1 := sup
|λ|<1
‖Φλ‖p1 <∞ and Mr := sup

|λ|=r
‖Φλ‖pr ,

where
1

pr
=

1− r
1 + r

· 1

p0
+

2r

1 + r
· 1

p1
.
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Then, for every 0 6 r < 1 , we have

Mr 6 M
1−r
1+r

0 ·M
2 r
1+r

1 < ∞. (3.3)

To be precise, in the lemma we consider analytic families Φλ of measurable

functions in Ω, i.e. jointly measurable functions (x, λ) 7→ Φλ(x) defined on

Ω × D, for which there exists a set E ⊂ Ω of σ-measure zero such that for

all x ∈ Ω \ E, the map λ 7→ Φλ(x) is analytic and non-vanishing in D.

For the study of the asymptotic variance of the Beurling transform, we

need to combine interpolation with ideas from [41] to take into account the

antisymmetric dependence on λ, see Proposition 4.3. In this special setting,

Lemma 3.1 takes the following form:

Corollary 3.2. Suppose {Φλ ; λ ∈ D} is an analytic family of measurable

functions, such that for every λ ∈ D,

Φλ(x) 6= 0 and
∣∣Φλ(x)

∣∣ =
∣∣Φ−λ(x)

∣∣, for a.e. x ∈ Ω. (3.4)

Let 0 < p0, p1 6∞. Then, for all 0 6 k < 1 and exponents pk defined by

1

pk
=

1− k2

1 + k2
· 1

p0
+

2k2

1 + k2
· 1

p1
,

we have

‖Φk‖pk 6 ‖Φ0‖
1−k2
1+k2

p0

(
sup{|λ|<1}‖Φλ‖p1

) 2k2

1+k2 ,

assuming that the right hand side is finite.

Proof. Consider the analytic family λ 7→
√

Φλ(x) Φ−λ(x). The non-vanishing

condition ensures that we can take an analytic square-root. Since the depen-

dence with respect to λ gives an even analytic function, there is a (single-

valued) analytic family Ψλ such that

Ψλ2(x) =
√

Φλ(x) Φ−λ(x).

Observe that |Φλ(x)| = |Ψλ2(x)| for real λ by the condition (3.4). By the

Cauchy-Schwarz inequality, Ψλ satisfies the same Lp1-bounds:

‖Ψλ2‖p1 ≤ ‖Φλ‖1/2p1 ‖Φ−λ‖
1/2
p1 ≤ sup{|λ|<1}‖Φλ‖p1 , λ ∈ D.



ASYMPTOTIC VARIANCE OF THE BEURLING TRANSFORM 13

We can now apply the Interpolation Lemma for the non-vanishing family

Ψλ with r = k2 to get

‖Φk‖pk = ‖Ψk2‖pk 6 ‖Ψ0‖
1−k2
1+k2

p0

(
sup{|λ|<1}‖Ψλ‖p1

) 2k2

1+k2

6 ‖Φ0‖
1−k2
1+k2

p0

(
sup{|λ|<1}‖Φλ‖p1

) 2k2

1+k2 .

�

4. Upper bounds

In this section, we apply quasiconformal methods for finding bounds on

integral means to the problem of maximising the asymptotic variance σ2(Sµ)

of the Beurling transform. Our aim is to establish the following result:

Theorem 4.1. Suppose µ is measurable with |µ| 6 χD. Then, for all 1 <

R < 2,

1

2π

ˆ 2π

0
|Sµ(Reiθ)|2dθ ≤ (1 + δ) log

1

R− 1
+ c(δ), 0 < δ < 1, (4.1)

where c(δ) <∞ is a constant depending only on δ.

The growth rate in (4.1) is interesting only for R close to 1: For |z| =

R > 1, we always have the pointwise bound

|Sµ(z)| =
∣∣∣∣ 1π

ˆ
D

µ(ζ)

(ζ − z)2
dm(ζ)

∣∣∣∣ ≤ 1

(R− 1)2
. (4.2)

It is clear that Theorem 4.1 implies Σ2 6 1, i.e. the statement from Theorem

1.1 that

σ2(Sµ) =
1

2π
lim sup
R→1+

1

| log(R− 1)|

ˆ 2π

0
|Sµ(Reiθ)|2 dθ 6 1 (4.3)

whenever |µ| 6 χD.

The proof of Theorem 4.1 is based on holomorphic motions and quasicon-

formal distortion estimates. In particular, we make strong use of the ideas

of Smirnov [41], where he showed that the dimension of a k-quasicircle is at

most 1 + k2. We first need a few preliminary results.
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4.1. Normalised solutions. The classical Cauchy transform of a function

ω ∈ Lp(C) is given by

Cω(z) =
1

π

ˆ
C

ω(ζ)

z − ζ
dm(ζ). (4.4)

For us it will be convenient to use a modified version

C1ω(z) :=
1

π

ˆ
C
ω(ζ)

[
1

z − ζ
− 1

1− ζ

]
dm(ζ) (4.5)

= (1− z) 1

π

ˆ
C
ω(ζ)

1

(z − ζ)(1− ζ)
dm(ζ)

defined pointwise for compactly supported functions ω ∈ Lp(C), p > 2. Like

the usual Cauchy transform, the modified Cauchy transform satisfies the

identities ∂(C1ω) = ω and ∂(C1ω) = Sω. Furthermore, C1ω is continuous,

vanishes at z = 1 and has the asymptotics

C1ω(z) = − 1

π

ˆ
C

ω(ζ)

1− ζ
dm(ζ) +O(1/z) as z →∞.

We will consider quasiconformal mappings with Beltrami coefficient µ

supported on unions of annuli

A(ρ,R) := {z ∈ C : ρ < |z| < R}.

Typically, we need to make sure that the support of the Beltrami coefficient

is symmetric with respect to the reflection in the unit circle. Therefore, it

is convenient to use the notation

AR := A(1/R,R), 1 < R <∞ and (4.6)

Aρ,R := A(1/R, 1/ρ) ∪A(ρ,R), 1 < ρ < R <∞. (4.7)

For coefficients supported on annuli AR, the normalised homeomorphic

solutions to the Beltrami equation

∂f(z) = µ(z)∂f(z) for a.e. z ∈ C, f(0) = 0, f(1) = 1, (4.8)

admit a simple representation:

Proposition 4.2. Suppose µ is supported on AR with ‖µ‖∞ < 1 and f ∈
W 1,2
loc (C) is the normalised homeomorphic solution to (4.8). Then

f(z) = z exp(C1ω(z)), z ∈ C, (4.9)

where ω ∈ Lp(C) for some p > 2, has support contained in AR and

ω(z)− µ(z)Sω(z) =
µ(z)

z
for a.e. z ∈ C. (4.10)
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Proof. First, if ω satisfies the above equation, then

ω = (Id− µS)−1

(
µ(z)

z

)
=
µ(z)

z
+ µS

(
µ(z)

z

)
+ µSµS

(
µ(z)

z

)
+ · · ·

with the series converging in Lp(C) whenever ‖µ‖∞‖S‖Lp < 1, in particular

for some p > 2. The solution, unique in Lp(C), clearly has support contained

in AR.

If f(z) is as in (4.9), then f ∈W 1,2
loc (C) and satisfies (4.8) with the required

normalisation. To see that f is a homeomorphism, note that

f(z) = α[z + β +O(1/z)] as z →∞, (4.11)

where

α = exp

(
− 1

π

ˆ
C

ω(ζ)

1− ζ
dm(ζ)

)
6= 0 and β =

1

π

ˆ
C
ω(ζ)dm(ζ) (4.12)

which shows that f is a composition of a similarity and a principal solution to

the Beltrami equation. Since every principal solution to a Beltrami equation

is automatically a homeomorphism [5, p.169], we see that f must be a

homeomorphism as well. The proposition now follows from the uniqueness

of normalised homeomorphic solutions to (4.8). �

4.2. Antisymmetric mappings. If the Beltrami coefficient in (4.8) sat-

isfies µ(z) = µ(z), then by the uniqueness of the normalised solutions, we

have f(z) = f(z) and f preserves the real axis.

For normalised solutions preserving the unit circle, the corresponding con-

dition for f is f(1/z) = 1/f(z) which asks for the Beltrami coefficient to

satisfy µ( 1
z ) z

2

z2
= µ(z) for a.e. z ∈ C. In this case, we say that the Beltrami

coefficient µ is symmetric (with respect to the unit circle). Following [41],

we say that µ is antisymmetric if

µ

(
1

z

)
z2

z2
= −µ(z) for a.e. z ∈ C. (4.13)

Given an antisymmetric µ supported on AR with ‖µ‖∞ = 1, define

µλ(z) = λµ(z), λ ∈ D,

and let fλ be the corresponding normalised homeomorphic solution to (4.8)

with µ = µλ. It turns out that in case of mappings antisymmetric with
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respect to the circle, the expression

Φλ(z) := z
∂fλ(z)

fλ(z)

has the proper invariance properties similar to those used in [41]:

Proposition 4.3. For every λ ∈ D and z ∈ C,

1

z

∂fλ(1/z)

fλ(1/z)
=

[
z
∂f(−λ )(z)

f(−λ )(z)

]
.

In particular, ∣∣∣∣ ∂fλ(z)

fλ(z)

∣∣∣∣ =

∣∣∣∣∣ ∂f(−λ )(z)

f(−λ )(z)

∣∣∣∣∣ whenever |z| = 1.

Proof. Let

gλ(z) =
1

fλ(1/z)
, z ∈ C. (4.14)

By direct calculation, gλ has complex dilatation λµ( 1
z ) z

2

z2
which by our

assumption on antisymmetry is equal to −λµ(z). Since gλ and f−λ are

normalised solutions to the same Beltrami equation, the functions must be

identical. Differentiating the identity (4.14) with respect to ∂/∂z, we get

∂f(−λ)(z) =
1

z2

∂fλ(1/z)

fλ(1/z)2
= f(−λ)(z)

1

z2

∂fλ(1/z)

fλ(1/z)
.

Rearranging and taking the complex conjugate gives the claim. �

4.3. Integral means for antisymmetric mappings. For 1 < R < 2,

consider a quasiconformal mapping f whose Beltrami coefficient is supported

on AR,2. Since f is conformal in the narrow annulus { 1
R < |z| < R}, it is

reasonable to study bounds for the integral means involving the derivatives

of f on the unit circle. We are especially interested in the dependence of

these bounds on R as R→ 1+.

Theorem 4.4. Suppose µ is measurable, |µ(z)| ≤ (1− δ)χAR,2(z), and that

µ is antisymmetric. Let 0 ≤ k ≤ 1.

If f = fk ∈W 1,2
loc (C) is the normalised homeomorphic solution to ∂f(z) =

kµ(z)∂f(z), then

1

2π

ˆ
|z|=1

∣∣∣∣ f ′(z)f(z)

∣∣∣∣2 |dz| ≤ C(δ)k
2

(R− 1)
− 2k2

1+k2 , (4.15)

where C(δ) <∞ is a constant depending only on δ.
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The assumption ‖µ(z)‖∞ ≤ 1−δ above, where δ > 0 is fixed but arbitrary,

is made to guarantee that we have uniform bounds in (4.15) for all k < 1. To

estimate the asymptotic variance of the Beurling transform, we will study

the nature of these bounds as k → 0, but we need to keep in mind the

dependence on the auxiliary parameter δ > 0.

Proof of Theorem 4.4. We embed f in a holomorphic motion by setting

µλ(z) = λ µ(z), λ ∈ D.

Let fλ denote the normalised solution to the Beltrami equation fz = µλfz,

with the representation (4.9) described in Proposition 4.2. The uniqueness

of the solution implies that fk = f .

We now apply Corollary 3.2 to the family

Φλ(z) := z
(fλ)′(z)

fλ(z)
, λ ∈ D, z ∈ S1. (4.16)

By [5, Theorem 5.7.2], the map is well-defined, nonzero and holomorphic

in λ for each z ∈ S1. By the antisymmetry of the dilatation µ, we can use

Proposition 4.3 to get the identity

∣∣Φλ(z)
∣∣ =

∣∣∣∣ ∂fλ(z)

fλ(z)

∣∣∣∣ =

∣∣∣∣∣ ∂f(−λ )(z)

f(−λ )(z)

∣∣∣∣∣ =
∣∣Φ−λ(z)

∣∣, z ∈ S1. (4.17)

We first find a global L2-bound, independent of λ ∈ D. For this purpose,

we estimate

1

2π

ˆ
AR

∣∣∣∣ f ′λ(z)

fλ(z)

∣∣∣∣2 dm(z).

Recall that 1 < R < 2 by assumption. Since all fλ’s are normalised 1+δ
1−δ -

quasiconformal mappings, we have

|fλ(z)| = |fλ(z)− fλ(0)|
|fλ(1)− fλ(0)|

≥ 1/ρδ, 1/R < |z| < R,

together with

fλ(AR) ⊂ fλB(0, 2) ⊂ B(0, ρδ).

Therefore,

1

2π

ˆ
AR

∣∣∣∣ f ′λ(z)

fλ(z)

∣∣∣∣2 dm(z) ≤ 1

2π
ρ2
δ |fλAR| ≤ ρ4

δ/2 (4.18)
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for some constant 1 < ρδ <∞ depending only on δ. In particular,

(R− 1)
1

2π

ˆ
|z|=1

∣∣∣∣ f ′λ(z)

fλ(z)

∣∣∣∣2 |dz| 6 c(δ) <∞, λ ∈ D,

where the bound c(δ) depends only on 0 < δ < 1.

We now use interpolation to improve the L2-bounds near the origin. We

choose p0 = p1 = 2, Ω = S1 and dσ(z) = R−1
2π |dz|. Applying Corollary 3.2

gives

(R− 1)
1

2π

ˆ
|z|=1

∣∣∣∣ f ′k(z)fk(z)

∣∣∣∣2 |dz| 6 (R− 1)
1−k2
1+k2 c(δ)

2k2

1+k2 ,

which implies Theorem 4.4. �

4.4. Integral means for the Beurling transform. We now use infinites-

imal estimates for quasiconformal distortion to give bounds for the integral

means of Sµ. We begin with the following lemma:

Lemma 4.5. Given 1 < R < 2, suppose µ is an antisymmetric Beltrami

coefficient with suppµ ⊂ AR,2 and ‖µ‖∞ 6 1. Then, µ1(z) := µ(z)
z satisfies

1

2π

ˆ
|z|=1

|Sµ1(z)|2|dz| ≤ (1 + δ) log
1

(R− 1)2
+ logC(δ/4), 0 < δ < 1,

where C(δ) is the constant from Theorem 4.4.

Proof. First, observe that if h is any L1-function vanishing in the annulus

{z : 1/R < |z| < R}, by the theorems of Fubini and Cauchy,

1

2π

ˆ
|z|=1

z(Sh)(z) |dz| =
1

2πi

ˆ
S1

(Sh)(z)dz

=
1

π

ˆ
C
h(ζ)

[
1

2πi

ˆ
S1

1

(ζ − z)2
dz

]
dm(ζ) = 0.

To apply Theorem 4.4, take 0 < k < 1 and solve the Beltrami equation

∂f(z) = kν(z)∂f(z) for the coefficient ν(z) = (1− δ)µ(z). Let fk ∈W 1,2
loc (C)

be the normalised homeomorphic solution in C.

Recall from (4.9) that fk has the representation fk(z) = z exp(C1ω(z))

where

ω = (Id− k νS)−1

(
k ν(z)

z

)
= k(1− δ)µ1(z) + k2(1− δ)2 νSµ1(z) + · · ·

and the series converges in Lp(C) for some fixed p = p(δ) > 2. From this

representation, we see that

z
f ′k(z)

fk(z)
= 1 + k(1− δ)zSµ1(z) + k2(1− δ)2zSνSµ1(z) +O(k3) (4.19)
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holds pointwise in the annulus {z : 1/R < |z| < R}, where ν and ω vanish.

It follows that

1

2π

ˆ
|z|=1

∣∣∣∣f ′k(z)fk(z)

∣∣∣∣2 |dz| = 1+k2(1−δ)2 1

2π

ˆ
|z|=1

|Sµ1(z)|2|dz|+O(k3). (4.20)

Finally, combining (4.20) with Theorem 4.4, we obtain

1 + k2(1− δ)2 1

2π

ˆ
|z|=1

|Sµ1(z)|2|dz|+O(k3)

≤ exp

(
k2 logC(δ) +

k2

1 + k2
log

1

(R− 1)2

)
= 1 + k2 logC(δ) + k2 log

1

(R− 1)2
+O(k4).

Taking k → 0, we find that

1

2π

ˆ
|z|=1

|Sµ1(z)|2|dz| ≤ (1− δ)−2 log
1

(R− 1)2
+ (1− δ)−2 logC(δ).

As (1− δ/4)−2 ≤ 1 + δ, replacing δ by δ/4 proves the lemma. �

Corollary 4.6. Given 1 < R < 2, suppose µ is a Beltrami coefficient with

suppµ ⊂ A(1/2, 1/R) and ‖µ‖∞ ≤ 1. Then,

1

2π

ˆ
|z|=1

|Sµ(z)|2|dz| ≤ (1 + δ) log
1

(R− 1)
+

1

2
logC(δ/4), 0 < δ < 1,

where C(δ) is the constant from Theorem 4.4.

Proof. Define an auxiliary Beltrami coefficient ν by requiring ν(z) = zµ(z)

for |z| ≤ 1 and ν(z) = − z2

z2
ν(1/z) for |z| ≥ 1. Then ν is supported on AR,2,

‖ν‖∞ ≤ 1 and ν is antisymmetric, so that with help of Lemma 4.5 we can

estimate the integral means of Sν1, where ν1(z) = ν(z)
z .

On the other hand, the antisymmetry condition (4.13) implies

C(χDν1)(1/z) = C(χC\Dν1)(z) − C(χC\Dν1)(0)

for the Cauchy transform. Differentiating this with respect to ∂/∂z gives

1

z
S(χDν1)

(
1

z

)
= − zS(χC\Dν1)(z).

In particular, for z on the unit circle S1,

zS(ν1)(z) = zS(χDν1)(z) + zS(χC\Dν1)(z)

= 2i Im
[
z S(χDν1)(z)

]
= 2i Im

[
z (Sµ)(z)

]
.
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In other words, the estimates of Lemma 4.5 take the form

1

2π

ˆ
|z|=1

∣∣∣Im[z (Sµ)(z)
]∣∣∣2|dz| = 1

4

1

2π

ˆ
|z|=1

|Sν1(z)|2|dz|

≤ 1

4
(1 + δ) log

1

(R− 1)2
+

1

4
logC(δ/4), 0 < δ < 1.

By replacing µ with iµ, we see that the same bound holds for the integral

means of Re
[
z (Sµ)(z)]. Therefore,

1

2π

ˆ
|z|=1

|Sµ(z)|2|dz| =
1

2π

ˆ
|z|=1

∣∣∣Re
[
z (Sµ)(z)

]∣∣∣2 +
∣∣∣Im[z (Sµ)(z)

]∣∣∣2 |dz|
≤ (1 + δ) log

1

R− 1
+

1

2
logC(δ/4)

for every 0 < δ < 1. �

4.5. Asymptotic variance. With these preparations, we are ready to prove

Theorem 4.1. We need to show that if µ is measurable with |µ(z)| ≤ χD,

then for all 1 < R < 2,

1

2π

ˆ 2π

0
|Sµ(Reiθ)|2dθ ≤ (1 + δ) log

1

R− 1
+ c(δ), 0 < δ < 1,

where c(δ) <∞ is a constant depending only on δ.

Proof of Theorem 4.1. For a proof of this inequality, first assume that addi-

tionally

µ(z) = 0 for |z| < 3/4; 1 < R <
3

2
. (4.21)

Then ν(z) := µ(Rz) has support contained in B(0, 1/R) \B(0, 1/2) so that

we may apply Corollary 4.6. Since Sν(z) = Sµ(Rz),

1

2π

ˆ 2π

0
|Sµ(Reiθ)|2dθ =

1

2π

ˆ
|z|=1

|Sν(z)|2|dz|

≤ (1 + δ) log
1

R− 1
+

1

2
logC(δ/4),

which is the desired estimate.

For the general case when (4.21) does not hold, write µ = µ1 + µ2 where

µ2(z) = χB(0,3/4)µ(z). As

|Sµ2(z)| ≤
ˆ

1
4
<|z−ζ|<2

1

|ζ − z|2
dm(ζ) = 2π log(8), |z| = 1,

we have
1

2π

ˆ 2π

0
|Sµ1(Reiθ) + Sµ2(Reiθ)|2dθ
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≤ (1 + δ)
1

2π

ˆ 2π

0
|Sµ1(Reiθ)|2dθ +

(
1 +

1

δ

)
1

2π

ˆ 2π

0
|Sµ2(Reiθ)|2dθ

≤ (1 + δ)2 log
1

R− 1
+

1 + δ

2
logC(δ/4) +

1 + δ

δ
4π2 log2(8)

for 0 < δ < 1 and 1 < R < 3
2 ; while for R > 3

2 , we have the pointwise bound

(4.2). Finally, replacing δ by δ/3, we get the estimate in the required form,

thus proving the theorem. �

5. Lower bounds

Consider the family of polynomials

Pt(z) = zd + t z, |t| < 1,

for d > 2. According to [27, Theorem 1.8] or [1, 39], the Hausdorff dimen-

sions of their Julia sets satisfy

H.dim J (Pt) = 1 +
|t|2(d− 1)2

4d2 log d
+O(|t|3). (5.1)

Moreover, each Julia set J (Pt) is a quasicircle, the image of the unit circle

by a quasiconformal mapping of the plane. A quick way to see this is to

observe that the immediate basin of attraction of the origin contains all

the (finite) critical points of Pt. (From general principles, it is clear that

the basin must contain at least one critical point, but by the (d − 1)-fold

symmetry of Pt, it must contain them all.)

If APt(∞) denotes the basin of attraction of infinity, for each |t| < 1 there

is a canonical conformal mapping

ϕt : D∗ = AP0(∞)→ APt(∞) (5.2)

conjugating the dynamics:

ϕt ◦ P0(z) = Pt ◦ ϕt(z), z ∈ D∗. (5.3)

By Slodkowski’s extended λ-lemma [40] and the properties of holomorphic

motions, ϕt extends to a |t|-quasiconformal mapping of the plane, see e.g. [5,

Section 12.3]. In particular, the extension maps the unit circle onto the Julia

set J (Pt).
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While the extensions given by the λ-lemma are natural, surprisingly it

turns out that the maps ϕt have extensions with considerably smaller qua-

siconformal distortion, smaller by a factor of

cd :=
d

1
d−1

2
, 2 ≤ d ∈ N, (5.4)

when |t| → 0.

Theorem 5.1. Let Pt(z) = zd + tz with |t| < 1. Then the canonical conju-

gacy ϕt : D∗ → APt(∞), defined in (5.2), has a µt-quasiconformal extension

with

‖µt‖∞ = cd|t|+O(|t|2).

Here c2 = 1, but cd < 1 for d > 3. Hence for every degree > 3 we

have an improved bound for the distortion. Furthermore, when representing

J (Pt) as the image of the unit circle by a map with as small distortion

as possible, one can apply Theorem 5.1 together with the symmetrisation

method described in Section 3.1 to show that each J (Pt) is a k(t)-quasicircle,

where

k(t) =
cd
2
|t|+O(|t|2).

By the dimension formula (5.1),

H. dim J (Pt) = 1 +
4d

2
1−d (d− 1)2

d2 log d
|k(t)|2 +O(|k(t)|3). (5.5)

In particular, when d = 20, we get k-quasicircles whose Hausdorff dimension

is greater than 1 + 0.87913 k2, for small values of k. Therefore, Theorem 1.3

follows from Theorem 5.1.

The numerical values for the second order term of (5.5) are presented in

Table 2 below. These provide lower bounds on the asymptotic variance (or

equivalently, on the quasicircle dimension asymptotics). For comparison, we

also show the values for the second order term of (5.1) which correspond to

the estimate on quasiconformal distortion provided by the λ-lemma. Note

that the first explicit lower bound on quasicircle dimension asymptotics [9]

is exactly the degree 2 case of the upper-left corner.

For the proof of Theorem 5.1, we find an improved representation for the

infinitesimal vector field determined by ϕt. Differentiating (5.3), we get a
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Degree λ-lemma Bounds from (5.5)

d = 2 0.3606 . . . 0.3606 . . .

d = 3 0.4045 . . . 0.5394 . . .

d = 4 0.4057 . . . 0.6441 . . .

d = 20 0.3012 . . . 0.8791 . . .

Table 2. Comparison of lower bounds for Σ2

functional equation

v(zd) = d zd−1v(z) + z (5.6)

for the vector field v = dϕt
dt

∣∣
t=0

, which in turn forces the lacunary series

expansion, see [27, Section 5],

v(z) = −z
d

∞∑
n=0

z−(d−1)dn

dn
, |z| > 1. (5.7)

Our aim is to represent the lacunary series (5.7) as the Cauchy transform

(or v′ as the Beurling transform) of an explicit bounded function supported

on the unit disk. We will achieve this through the functional equation (5.6).

For this reason, we will look for Beltrami coefficients with invariance prop-

erties under f(z) = zd, requiring that f∗µ = µ in some neighbourhood of

the unit circle, where

(f∗µ)(z) := µ(f(z))
f ′(z)

f ′(z)
. (5.8)

We first observe that the Cauchy transform (4.4) behaves similarly to a

vector field under the pullback operation:

Lemma 5.2. Suppose µ is a Beltrami coefficient supported on the unit disk.

Then,
1

dzd−1

{
Cµ(zd)− Cµ(0)

}
= C

(
(zd)∗µ

)
(z), z ∈ C. (5.9)

Proof. From [5, p. 115], it follows that the Cauchy transform of a bounded,

compactly supported function belongs to all Hölder classes Lipα with expo-

nents 0 < α < 1. In particular, near the origin, the left hand side of (5.9) is

O(|z|1−ε) for every ε > 0. This implies that the two quantities in (5.9) have

the same (∂/∂z)-distributional derivatives. As both vanish at infinity, they

must be identically equal on the Riemann sphere. �
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Remark 5.3. Since the left hand side in (5.9) vanishes at 0, we always have

C
(
(zd)∗µ

)
(0) = 0. This can also be seen by using the change of variables

z → ζ · z where ζ is a d-th root of unity.

We will use the following basic Beltrami coefficients as building blocks:

Lemma 5.4. Let µn(z) :=
(
z/|z|

)n−2
χA(r,ρ) with 0 < r < ρ < 1 and

2 6 n ∈ N. Then

Cµn(z) =
2

n
(ρn − rn) z−(n−1), |z| > 1,

and Cµn(0) = 0.

Proof. We compute:ˆ
D
µn(w) · wn−2dm(w) =

ˆ
A(r,ρ)

|w|n−2dm(w) =
2π

n
(ρn − rn).

Hence, by orthogonality

Cµn(z) =
1

πz

ˆ
D

µn(w)dm(w)

(1− w/z)

=
1

πz

∞∑
j=0

z−j
ˆ
D
µn(w)wjdm(w)

=
1

πz
· z−(n−2) · 2π

n
· (ρn − rn)

=
2

n
· z−(n−1) · (ρn − rn)

as desired. The claim Cµn(0) = 0 follows similarly. �

To represent power series in z−1, we sum up µn’s supported on disjoint

annuli:

Lemma 5.5. For d > 3 and ρ0 ∈ (0, 1), let

nj = (d− 1) dj , rj = ρ
1/nj
0 , j = 0, 1, 2, . . .

and define the Beltrami coefficient µ by

µ(z) =
(
z/|z|

)nj−2
, rj < |z| < rj+1, j ∈ N,

while for |z| < ρ
1/n0

0 and for |z| > 1, we set µ(z) = 0. With these choices,

(i) µ = (zd)∗µ+ µ · χA(r0,r1) and

(ii) Cµ(zd) = dzd−1 Cµ(z)− 2d
d−1 [ρ

1/d
0 − ρ0] · z, |z| > 1.

In particular, for |z| > 1 we have
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(iii) Cµ(z) = − 2d
d−1 [ρ

1/d
0 − ρ0] v(z), with

(iv) Sµ(z) = − 2d
d−1 [ρ

1/d
0 − ρ0] v′(z),

where v = vd is the lacunary series in (5.7).

Proof. Claim (i) is clear from the construction. Inserting (i) into (5.9) and

using Lemma 5.4 gives (ii). This agrees with the functional equation (5.6)

up to a constant term in front of z which leads to (iii). Finally, (iv) follows

by differentiation. �

Remark 5.6. The d = 2 case of Lemma 5.5 is somewhat different since the

vector field v2 does not vanish at infinity, so v2 is not the Cauchy transform

of any Beltrami coefficient. With the choice nj = 2j+1, (ii) and (iii) hold up

to an additive constant, while (iv) holds true as stated.

Differentiating (5.7), we see that

v′(z) =
∑
n>0

z−(d−1)dn · (d− 1)dn − 1

dn+1

=
(d− 1)

d
·
∑
n>0

z−(d−1)dn + b0

for some function b0 ∈ B∗0, which implies

σ2(v′(z)) =
(d− 1)2

d2 log d
.

Therefore, the Beltrami coefficient µ = µd from Lemma 5.5 satisfies

σ2(Sµ) =
4[ρ

1/d
0 − ρ0]2

log d
.

Fixing d and optimising over ρ0 ∈ (0, 1), simple calculus reveals that the

maximum is obtained when ρ0 = d
d

1−d . For this choice of ρ0,

v′(z) = −cd Sµ(z) (5.10)

where cd is the constant from (5.4). Moreover,

σ2(Sµ) = 4d
2

1−d
(d− 1)2

d2 log d
(5.11)

obtains its maximum (over the natural numbers) at d = 20, in which case

σ2(Sµ20) > 0.87913, with |µ| = χD.
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This construction proves Theorem 1.2. One can proceed further from these

infinitesimal bounds and use (5.10) to produce quasicircles with large di-

mension. This takes us to Theorem 5.1.

Proof of Theorem 5.1. By the extended λ-lemma, the conformal maps

ϕt : D∗ → APt(∞),

admit quasiconformal extensionsHt : C→ C, which depend holomorphically

on t ∈ D. Since the Beltrami coefficient µHt is a holomorphic L∞-valued

function of t, the vector-valued Schwarz lemma implies that

µHt = tµ0 +O(t2)

for some Beltrami coefficient |µ0| ≤ χD. By developing ϕ′t = ∂zHt as a

Neumann series in SµHt , c.f. (3.2), we get

Sµ0(z) = v′(z), z ∈ D∗,

for the infinitesimal vector field v = dϕt
dt

∣∣
t=0

.

On the other hand, if µd is the Beltrami coefficient from Lemma 5.5, it

follows from (5.10) that µ#
d := −cd µd also satisfies Sµ#

d (z) = v′(z) in D∗.
Then the Beltrami coefficient µ0 − µ#

d is infinitesimally trivial, and by [20,

Lemma V.7.1], we can find quasiconformal maps Nt which are the identity

on the exterior unit disk and have dilatations µNt = t(µ0 − µ#
d ) + O(t2),

|t| < 1. Therefore, we can replace Ht with Ht ◦N−1
t to obtain an extension

of ϕt with dilatation

µHt◦N−1
t

= tµ#
d +O(t2) (5.12)

as desired. This concludes the proof. �

Remark 5.7. (i) One can show that for d > 2, the Beltrami coefficient µ#
d

constructed in Lemma 5.5 is not infinitesimally extremal which implies that

the conformal maps ϕt (with t close to 0) admit even more efficient exten-

sions (i.e. with smaller dilatations). One reason to suspect that this may be

the case is that µ#
d is not of the form q

|q| for some holomorphic quadratic

differential q on the unit disk; however, this fact alone is insufficient. It

would be interesting to find the dilatation of the most efficient extension,

but this may be a difficult problem. For more on Teichmüller extremality,

we refer the reader to the survey of Reich [38].
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(ii) Let Mshell be the class of Beltrami coefficients of the form

∞∑
j=0

(
z

|z|

)nj−2

· χA(ri,ri+1), 0 6 r0 < r1 < r2 < · · · < 1.

One can show that

Σ2 > sup
µ∈Mshell

σ2(Sµ) = max
d>1

4d
2

1−d
(d− 1)2

d2 log d
≈ 0.87914

where the maximum is taken over all real d > 1.

6. Fractal approximation

In this section, we present an alternative route to the upper bound for the

asymptotic variance of the Beurling transform using (infinitesimal) fractal

approximation. We show that in order to compute Σ2 = sup|µ|6χD σ
2(Sµ),

it suffices to take the supremum only over certain classes of “dynamical”

Beltrami coefficients µ for which McMullen’s formula holds, i.e.

2
d2

dt2

∣∣∣∣
t=0

H. dimϕt(S1) = lim
R→1+

1

2π| log(R− 1)|

ˆ 2π

0
|v′µ(Reiθ)|2dθ (6.1)

where ϕt is the unique principal homeomorphic solution to the Beltrami

equation ∂ϕt = tµ ∂ϕt and vµ := dϕt
dt

∣∣
t=0

is the associated vector field. By

using the principal solution, we guarantee that vµ vanishes at infinity which

implies that vµ = Cµ. We will use this identity repeatedly. (In general,

when ϕt does not necessarily fix ∞, vµ and Cµ may differ by a quadratic

polynomial Az2 +Bz + C.)

Consider the following classes of dynamical Beltrami coefficients, with

each subsequent class being a subclass of the previous one:

• MB =
⋃
f Mf (D) consists of Beltrami coefficients that are eventually-

invariant under some finite Blaschke product f(z) = z
∏d−1
i=1

z−ai
1−aiz ,

i.e. Beltrami coefficients which satisfy f∗µ = µ in some open neigh-

bourhood of the unit circle.

• MI =
⋃
d>2MI(d) consists of Beltrami coefficients that are eventually-

invariant under z → zd for some d > 2.

• MPP =
⋃
d>2MPP(d) consists of µ ∈ MI for which vµ arises as the

vector field associated to some polynomial perturbation of z → zd,

again for some d > 2. For details, see Section 6.3.
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Theorem 6.1. [27] If µ belongs to MB, then the function t→ H.dimϕt(S1)

is real-analytic and (6.1) holds.

While McMullen did not explicitly state the relation between Hausdorff

dimension and asymptotic variance for MB, the argument in [27] does apply

to conjugacies ϕt induced by this class of coefficients. Note that the class of

polynomial perturbations is explicitly covered in McMullen’s work, see [27,

Section 5]. We show:

Theorem 6.2.

Σ2 = sup
µ∈MI, |µ|6χD

σ2(Sµ) = sup
µ∈MPP, |µ|6χD

σ2(Sµ).

In view of Theorem 6.1, the first equality in Theorem 6.2 is sufficient to

deduce Theorem 1.4. With a bit more work, the second equality also gives

the following consequence:

Corollary 6.3. For any ε > 0, there exists a family of polynomials

zd + t(ad−2z
d−2 + ad−3z

d−3 + · · ·+ a0), t ∈ (−ε0, ε0),

such that each Julia set Jt is a k(t)-quasicircle with

H. dim(Jt) > 1 + (Σ2 − ε)k(t)2.

6.1. Bounds on quadratic differentials. To prove Theorem 6.2, we work

with the integral average σ2
4 rather than with σ2. The reason for shifting

the point of view is due to the fact that the pointwise estimates for

v′′′µ (z) = − 6

π

ˆ
D

µ(w)

(w − z)4
dm(w) (6.2)

are more useful than the pointwise estimates for v′, as we saw in Section 2

when we invoked Hardy’s identity. According to Lemma 2.1,

σ2(v′µ) = σ2
4(v′µ) =

8

3
lim sup
R→1+

 
A(R,2)

∣∣∣∣v′′′µρ2
∗

(z)

∣∣∣∣2 ρ∗(z)dm (6.3)

where ρ∗(z) = 2/(|z|2− 1) is the density of the hyperbolic metric on D∗ andffl
f(z) ρ∗(z)dm denotes the integral average with respect to the measure

ρ∗(z)dm. (Note that we are not taking the average with respect to the

hyperbolic area ρ2
∗(z)dm.)

We will need two estimates for v′′′/ρ2
∗. To state these estimates, we in-

troduce some notation. For a set E ⊂ C, let E∗ denote its reflection in
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the unit circle. The hyperbolic distance between z1, z2 ∈ D∗ is denoted by

dD∗(z1, z2). The following lemma is based on ideas from [25, Section 2] and

appears explicitly in [15, Section 2]:

Lemma 6.4. Suppose µ is a measurable Beltrami coefficient with |µ| 6 χD

and v′′′ is given by (6.2). Then,

(a) |v′′′/ρ2
∗| 6 3/2 for z ∈ D∗.

(b) If dD∗(z, supp(µ)∗) > L, then |(v′′′/ρ2
∗)(z)| 6 Ce−L, for some con-

stant C > 0.

Proof. A simple computation shows that if γ is a Möbius transformation,

then
γ′(z1)γ′(z2)

(γ(z1)− γ(z2))2
=

1

(z1 − z2)2
, for z1 6= z2 ∈ C. (6.4)

The above identity and a change of variables shows that

v′′′µ (γ(z)) · γ′(z)2 = v′′′γ∗µ(z), (6.5)

analogous to the transformation rule of a quadratic differential.

In view of the Möbius invariance, it suffices to prove the assertions of the

lemma at infinity. From (6.2), one has

lim
z→∞

∣∣∣∣v′′′µρ2
∗

(z)

∣∣∣∣ =
3

2π

∣∣∣∣ˆ
D
µ(w)dm(w)

∣∣∣∣ ,
which gives (a). For (b), recall that dD∗(∞, z) = − log(|z| − 1) + O(1) for

|z| < 2. Then,

lim
z→∞

∣∣∣∣v′′′µρ2
∗

(z)

∣∣∣∣ 6 3

2π

ˆ
{1−Ce−L<|w|<1}

dm(w) = O(e−L)

as desired. �

Remark 6.5. Loosely speaking, part (b) of Lemma 6.4 says that to determine

the value of v′′′µ /ρ
2
∗ at a point z ∈ D∗, one needs to know the values of µ in a

neighbourhood of z∗. More precisely, for any ε > 0, one may choose L > 0

sufficiently large to ensure that the contribution of the values of µ outside

{w : dD(z∗, w) < L} to (v′′′µ /ρ
2
∗)(z) is less than ε. In particular, if µ1 and

µ2 are two Beltrami coefficients, supported on the unit disk and bounded

by 1 that agree on {w : dD(z∗, w) < L}, then
∣∣(v′′′µ1/ρ2

∗)(z)− (v′′′µ2/ρ
2
∗)(z)

∣∣ <
2ε. This simple localisation principle will serve as the foundation for the

arguments in this section.
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Lemma 6.6. Given an ε > 0, there exists an 1 < R(ε) < ∞, so that if

1 < |z|d < R(ε), then ∣∣∣∣z2
v′′′

(zd)∗µ

ρ2
∗

(z)− z2d
v′′′µ
ρ2
∗

(zd)

∣∣∣∣ < ε. (6.6)

Note that R(ε) is independent of the degree d > 2.

Proof. Differentiating (5.9) three times yields∣∣∣d2z2d−2v′′′µ (zd)− v′′′(zd)∗µ(z)
∣∣∣ 6 2d2|z|−2ω(zd),

where ω(z)/ρ2
∗(z) → 0 as |z| → 1+. The lemma follows in view of the

convergence (1/d) · (ρ∗(z)/ρ∗(zd)) → 1 as |z|d → 1+, which is uniform over

d > 2.

Alternatively, one can use a version of Koebe’s distortion theorem for

maps which preserve the unit circle, see [15, Section 2]. �

6.2. Periodising Beltrami coefficents. We now prove the first equality

in Theorem 6.2 which says that Σ2 = supµ∈MI, |µ|6χD σ
2(Sµ). In view of

Lemma 2.1, given a Beltrami coefficient µ with |µ| 6 χD and ε > 0, it

suffices to construct an eventually-invariant Beltrami coefficient µd which

satisfies

|µd| 6 χD and σ2
4(v′µd) > σ

2
4(v′µ)− ε. (6.7)

Proof of Theorem 6.2, first equality. Given an integer d > 2, we construct a

Beltrami coefficient µd ∈ MI(d). We then show that µd satisfies (6.7) for d

sufficiently large.

Step 1. Using the definition of asymptotic variance (6.3), we select an

annulus

A∗0 = A(R1, R0) ⊂ D∗, R1 = R
1/d
0 , R0 ≈ 1,

for which

σ2
4(v′µ)− ε/3 6 8

3

 
A∗0

∣∣∣∣v′′′µρ2
∗

(z)

∣∣∣∣2ρ∗(z)dm.
Let A0 = A(r0, r1) be the reflection of A∗0 in the unit circle. We take µd = µ

on A0 and then extend µd to {z : r1 < |z| < 1} by zd-invariance. On |z| < r0,

we set µd = 0.
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Step 2. The estimate (6.7) relies on an isoperimetric feature of the measure

ρ∗(z)dm, which we now describe. It is easy to see that the ρ∗(z)dm-area of

an annulus

A(S1, S2), 1 < S1 < S2 <∞,

is 2π times the hyperbolic distance between its boundary components. In

particular, the ρ∗(z)dm-area of A∗0 is roughly 2π log d. By contrast, for a

fixed L > 0, the ρ∗(z)dm-area of its “periphery”

∂LA
∗
0 := {z ∈ A∗0, dD(z, ∂A∗0) < L}

is 4πL (provided that log d > 2L). We conclude that the ratio of ρ∗(z)dm-

areas of ∂LA
∗
0 and A∗0 tends to 0 as d→∞.

Step 3. By part (b) of Lemma 6.4,∣∣∣∣v′′′µdρ2
∗

(z)−
v′′′µ
ρ2
∗

(z)

∣∣∣∣ 6 Ce−L, z ∈ A∗0 \ ∂LA∗0, (6.8)

while ∣∣∣∣v′′′µdρ2
∗

(z)−
v′′′µ
ρ2
∗

(z)

∣∣∣∣ 6 3, z ∈ ∂LA∗0. (6.9)

Putting the above estimates together gives (for large degree d)∣∣∣∣∣ 8

3

 
A∗0

∣∣∣∣v′′′µdρ2
∗

(z)

∣∣∣∣2ρ∗(z)dm− 8

3

 
A∗0

∣∣∣∣v′′′µρ2
∗

(z)

∣∣∣∣2ρ∗(z)dm
∣∣∣∣∣ < ε/3. (6.10)

Step 4. Set Rk := R
1/dk

0 and A∗k = A(Rk+1, Rk). By Lemma 6.6,∣∣∣∣∣ 8

3

 
A∗k

∣∣∣∣v′′′µdρ2
∗

(z)

∣∣∣∣2ρ∗(z)dm − 8

3

 
A∗0

∣∣∣∣v′′′µdρ2
∗

(z)

∣∣∣∣2ρ∗(z)dm
∣∣∣∣∣ < ε/3,

which implies that σ2
4(v′µd) > σ

2
4(v′µ)− ε as desired. �

Remark 6.7. (i) The isoperimetric property used above does not hold with

respect to the hyperbolic area ρ2
∗(z)dm. In fact, as we explain in Section 7,

periodisation fails in the Fuchsian case.

(ii) Refining the above argument shows that one can take ε = C/ log d in

(6.7), but we will not need this more quantitative estimate.
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6.3. Polynomial perturbations. To show the second equality in Theo-

rem 6.2, we need a description of vector fields which arise from polynomial

perturbations of z → zd, d > 2.

Lemma 6.8. [27, Section 5] Consider the family of polynomials

Pt(z) = zd + tQ(z), degQ ≤ d− 2, |t| < ε0. (6.11)

Let ϕt : D∗ = AP0(∞)→ APt(∞) denote the conjugacy map and v = dϕt
dt

∣∣
t=0

be the associated vector field as before. Then,

v(z) =
∞∑
k=0

vk(z) =
z

d

∑
k>0

Q(zd
k
)

dkzdk+1 , z ∈ D∗. (6.12)

Let VPP(d) be the collection of holomorphic vector fields of the form

(6.12), with degQ 6 d − 2. From this description, it is clear that each

VPP(d), d > 2 is a vector space, but the union VPP =
⋃
d>2 VPP(d) is not.

Observe that two consecutive terms in (6.12) satisfy the “periodicity” rela-

tion

vk+1(z) =
1

dzd−1
vk(z

d), (6.13)

which is of the form (5.9) provided that Cµ(0) = 0.

Similarly, we define MPP =
⋃
d>2MPP(d) as the class of Beltrami coeffi-

cients that give rise to polynomial perturbations. More precisely, MPP(d)

consists of eventually-invariant Beltrami coefficients µ ∈ MI(d) for which

vµ = Cµ ∈ VPP(d).

6.4. A truncation lemma. In order to approximate infinite series by finite

sums, we need some kind of a truncation procedure. To this end, we show

the following lemma:

Lemma 6.9. Suppose µ is a Beltrami coefficient satisfying ‖µ‖∞ 6 1 and

suppµ ⊂ A(ρ0, ρ1), with 0 < ρ0 < ρ1 < 1. Given a slightly larger annulus

A(ρ0, r1) and an ε > 0, there exists a Beltrami coefficient µ̃ satisfying

(i) supp µ̃ ⊂ A(ρ0, r1),

(ii) ‖µ̃− µ‖∞ < ε,

(iii) vµ̃(0) = vµ(0),

(iv) vµ̃ is a polynomial in z−1.



ASYMPTOTIC VARIANCE OF THE BEURLING TRANSFORM 33

Proof. From

vµ(z) =
1

πz

ˆ
D
µ(w)

(
1 + w/z + w2/z2 + . . .

)
dm(w),

it follows that

vµ =

∞∑
j=1

bjz
−j , bj =

1

π

ˆ
D
µ(w)wj−1dm(w).

Since µ is supported on A(ρ0, ρ1), the coefficients bj decay exponentially,

more precisely, |bj | 6 2
j+1(ρj+1

1 − ρj+1
0 ). As ρ1/r1 < 1, for N sufficiently

large, we have∑
j>N+1

|bj |
2
j+1

(
rj+1

1 − ρj+1
0

) 6 ∑
j>N+1

ρj+1
1 − ρj+1

0

rj+1
1 − ρj+1

0

6
∑

j>N+1

ρj+1
1

rj+1
1

6 ε.

Using Lemma 5.4, is easy to see that

µ̃ = µ−
∑

j>N+1

bj
2
j+1

(
rj+1

1 − ρj+1
0

) · ( z

|z|

)j−1

· χA(ρ0,r1)(z)

satisfies the desired properties. �

6.5. Periodising quadratic differentials. With these preliminaries, we

can complete the proof of Theorem 6.2.

Proof of Theorem 6.2, second equality. From the proof of the first part of

the theorem, we may assume that µ is an eventually-invariant Beltrami

coefficient of the form µ = µ0 + µ1 + . . . where

µk = (zd
k
)∗µ0, suppµk ⊂ Ak = A(rk, rk+1), rk = r

1/dk

0 , 0 < r0 < 1.

Furthermore, it will be convenient to assume that µ0 itself arises as a pull-

back under z → zd, which by Remark 5.3 implies that vµk(0) = 0 for all

k > 0. This could be achieved by considering (zd)∗µ instead of µ and re-

naming r1 by r0.

Step 1. We now show that we may additionally assume that vµ0 is a poly-

nomial in z−1. For this purpose, we first replace µ0 by µ0 · χA(r0,ρ1) so

that suppµ0 is contained in a slightly smaller annulus A(r0, ρ1) ⊂ A(r0, r1).

We then apply Lemma 6.9 with µ = µ0 to obtain a Beltrami coefficient µ̃0

supported on A(r0, r1) with the desired property. Finally, we replace µ̃0 by



34 K. ASTALA, O. IVRII, A. PERÄLÄ, AND I. PRAUSE

µ̃0/(1 + ε) to ensure that ‖µ̃0‖∞ 6 1. Since all three operations have little

effect on the integral  
A(1/r1,1/r0)

∣∣∣∣v′′′µρ2
∗

(z)

∣∣∣∣2ρ∗(z)dm,
we see that σ2

4(v′µ̃) ≈ σ2
4(v′µ) where µ̃ :=

∑
k>0 µ̃k =

∑
k>0(zd

k
)∗µ̃0.

Step 2. In view of Lemma 5.2, the sequence vk = vµ̃k satisfies the de-

gree d periodicity relation (6.13). However, we cannot guarantee that v =∑∞
k=0 vk ∈ VPP(d) since the base polynomial v0 may have degree greater

than d− 1 in z−1. Let m be the smallest integer so that degz−1 v0 6 dm− 1,

and take M > m. Consider then the Beltrami coefficient µ̂ =
∑
µ̂k where

µ̂0 = µ̃0 + µ̃1 + · · ·+ µ̃M−m and µ̂k = (zkd
M

)∗µ̂0.

Similarly, define

v̂0 = Cµ̂0 = v0 + v1 + · · ·+ vM−m,

v̂k = Cµ̂k and v̂ =
∑

v̂k.

By construction, v̂ is the periodisation of v̂0 under the relation (6.13), with

dM in place of d. Since degz−1 vM−m 6 dM−m degz−1 v0 + (dM−m − 1), we

have degz−1 v̂0 6 dM − 1 which ensures that v̂ ∈ VPP(dM ). Explicitly, v̂ is

the vector field associated to the polynomial perturbation

Pt(z) = zd
M

+ t · dMzdM−1 v̂0(z), |t| < ε0.

By taking M >> m, the fraction of the “unused” shells (i.e. those corre-

sponding to indices M −m + 1, . . . ,M − 1) can be made arbitrarily small.

Using Lemma 6.4 (b) like in Step 3 in the proof of the first equality in

Theorem 6.2 shows that σ2
4(v′µ̂) ≈ σ2

4(v′µ̃) as desired. �

Proof of Corollary 6.3. By the second equality in Theorem 6.2, for ε > 0,

one can find a Beltrami coefficient µ ∈ MPP with |µ| 6 χD for which

σ2(Sµ) > Σ2 − ε. By the definition of MPP, the associated vector field

lies in VPP. By Lemma 6.8, there exists a family of polynomials

Pt(z) = zd + tQ(z), degQ 6 d− 2, |t| < ε0,

with

d

dt

∣∣∣∣
t=0

ϕt(z) = Cµ(z) =
z

d

∑
k>0

Q(zd
k
)

dkzdk+1 , z ∈ D∗, (6.14)



ASYMPTOTIC VARIANCE OF THE BEURLING TRANSFORM 35

where ϕt : D∗ = AP0(∞)→ APt(∞) are conformal conjugacies. We are now

in a position to repeat the argument in the proof of Theorem 5.1. Indeed, by

the λ-lemma, the conformal maps ϕt admit some quasiconformal extensions

Ht : C → C. Using (6.14), for |t| < ε0, we can correct the extensions Ht

by pre-composing them with Teichmüller-trivial deformations N−1
t like in

(5.12), so that

µHt◦N−1
t

= tµ+O(t2).

Therefore, the Julia sets Jt = J (Pt) are k(t)-quasicircles with

k(t) =
|t|
2

+O(|t|2), as t→ 0.

On the other hand, their Hausdorff dimensions satisfy

H.dimJt = 1 + σ2(v′µ)
|t|2

4
+O(|t|3).

Since σ2(v′µ) = σ2(Sµ) > Σ2 − ε, letting t→ 0 proves the claim. �

7. Fuchsian groups

One may ask whether

Σ2 ?
= sup

µ∈MF, |µ|6χD

σ2(Sµ), (7.1)

for the class MF =
⋃

ΓMΓ(D) of Beltrami coefficients that are invariant

under some co-compact Fuchsian group Γ, i.e. γ∗µ = µ for all γ ∈ Γ. It is

tempting to take a Beltrami coefficient µ on the unit disk and periodise it

with respect to a Fuchsian group Γ of high genus, i.e. to form a Γ-invariant

Beltrami coefficient µF which coincides with µ on a fundamental domain

F ⊂ D. However, one cannot guarantee that σ2(v′µF ) ≈ σ2(v′µ).

The reason for this is that the hyperbolic area of F is comparable to the

hyperbolic area of its “periphery”

∂1F := {z ∈ F, dD(z, ∂F ) < 1}.

Unlike our considerations in complex dynamics (with the maps z → zd),

in the Fuchsian case, the periphery is significant: Indeed, if π : D → D/Γ
denotes the universal covering map, it is well-known that as r → 1, the

curves π({z : |z| = r}) become equidistributed with respect to the hyperbolic

metric on D/Γ. Therefore, for r close to 1, the curves π({z : |z| = r}) spend

a definite amount of time in ∂1F ⊂ F ∼= D/Γ, which allows the asymptotic
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variance to go down after periodisation. Indeed, fractal approximation fails

in the Fuchsian case as evidenced by Theorem 1.5.

Theorem 1.5 is a simple consequence of the comparison

‖µ‖2WP

Area(X)
6 ‖µ‖2T (7.2)

between the Teichmüller and Weil-Petersson metrics on the Teichmüller

space Tg of compact Riemann surfaces of genus g > 2, for instance, see

[26, Proposition 2.4]. Here, the area is taken with respect to the hyperbolic

metric on X. For the convenience of the reader, we recall the definitions

and sketch the rather simple arguments.

For X ∈ Tg, the cotangent space T ∗XTg is canonically identified with the

space Q(X) of holomorphic quadratic differentials q(z)dz2 on X. On the

cotangent space, the Teichmüller and Weil-Petersson norms are given by

‖q‖T :=

ˆ
X
|q|, ‖q‖2WP :=

ˆ
X
|q|2ρ−2,

where ρ denotes the density of the hyperbolic metric. Dualising shows that

the tangent space TXTg ∼= M(X)/Q(X)⊥ is naturally identified with the

quotient space of Beltrami coefficients µ ∈ L∞(X) modulo ones orthogonal

to Q(X) with respect to the pairing 〈µ, q〉 =
´
X µq. The Teichmüller and

Weil-Petersson metrics on the tangent space may be obtained by dualising

the above definitions:

‖µ‖T := sup
‖q‖T=1

∣∣∣∣ˆ
X
µq

∣∣∣∣, ‖µ‖WP := sup
‖q‖WP=1

∣∣∣∣ˆ
X
µq

∣∣∣∣.
Duality considerations also show that (7.2) is equivalent to the estimate

Area(X) ‖q‖2WP > ‖q‖2T , (7.3)

which is immediate from the Cauchy-Schwarz inequality.

To show that Σ2
F 6 2/3, it suffices to describe the standard geometric

interpretations for the dual norms. For the Teichmüller norm, one has

‖µ‖T 6 ‖µ‖∞. (7.4)

In fact, ‖µ‖T = infν∼µ ‖ν‖∞, where the infimum is taken over all ν infinites-

imally equivalent to µ (with Cν = Cµ on D∗) and the minimum is achieved

for a unique Teichmüller coefficient of the form k · q|q| with q ∈ Q(X).
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On the other hand, the Weil-Petersson norm may be computed by

‖µ‖2WP

Area(X)
=

1

Area(X)

ˆ
X
|2v′′′/ρ2|2 ρ2dxdy,

= lim
R→1+

1

2π

ˆ
|z|=R

|2v′′′/ρ2|2dθ,

=
3

2
σ2(v′µ). (7.5)

The first equality follows from the fact that ρ−2 · (1/z)∗
[
−2v′′′(z)dz2

]
is

the harmonic representative of the Teichmüller class of [µ], e.g. see [14,

Chapter 7], the second from equidistribution, and the third from Lemma

2.1. Substituting (7.4) and (7.5) into (7.2) gives Σ2
F 6 2/3.

To complete the proof of Theorem 1.5, it suffices to show that there is

a definitive defect in the Cauchy-Schwarz inequality (7.3), i.e. that there

exists a constant ε0 > 0 for which

(1− ε0) ·Area(X) ‖q‖2WP > ‖q‖2T , (7.6)

independent of g > 2, X ∈ Tg and q ∈ Q(X). For this purpose, we use the

following general fact: for non-zero vectors x and y in a Hilbert space H,∥∥∥∥ x

‖x‖
− y

‖y‖

∥∥∥∥ > δ =⇒
∣∣〈x,y〉∣∣ < (1− ε) ‖x‖ ‖y‖. (7.7)

In our setting, H = L2(X, ρ2), x = |q|/ρ2 and y = 1. To make use of the

above motif, we need to show that:

Lemma 7.1. There exists a positive constant δ > 0 so thatˆ
X

∣∣∣∣ |q|ρ2
− 1

∣∣∣∣2 ρ2dxdy > δ2

ˆ
X
ρ2dxdy. (7.8)

independent of the Riemann surface X and q ∈ Q(X).

Proof. To prove the lemma, we first show that there exists a δ > 0 such thatˆ
B(0,1/2)

∣∣∣∣ |h|ρ2
− 1

∣∣∣∣2 ρ2dxdy > δ2

ˆ
B(0,1/2)

ρ2dxdy, with ρ = ρD, (7.9)

for any function h holomorphic in a neighbourhood of B(0, 1/2). This follows

from a simple compactness argument, since any potential minimiser h has

bounded L2 norm on B(0, 1/2), and ρ2 is not the absolute value of any

holomorphic function. One way to see this is to observe that ∆ log |h| = 0

but ∆ log ρ2 = 2ρ2 (the Poincaré metric has constant curvature −1).
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Replacing h(z) by h(γ(z))γ′(z)2, γ ∈ Aut(D) we see that the estimate

(7.9) holds on any ball Bhyp(z,R) ⊂ D of hyperbolic radius R = dD(0, 1/2).

Choose a covering map π : D → X and lift q̃ = π∗q to the disk. In view

of equidistribution, to obtain (7.8), we take h = q̃ and average (7.9) over

balls Bhyp(z,R) whose centers lie on {z : |z| = r} with r ≈ 1. Taking r → 1

completes the proof. �

Remark 7.2. Note that Theorem 1.5 does not show that the limit sets

wtµ(S1) cannot be expressed as quasicircles of dimensions greater than 1 +

(2/3)k(t)2, for t small, only that representations using invariant Beltrami

coefficients are inadequate.

In fact, Kra’s θ conjecture (proved by McMullen in [24], see [2] for a sim-

ple proof) implies that given an invariant Beltrami coefficient µ ∈ MΓ(D),

there necessarily exists a (non-invariant) Beltrami coefficient ν ∈ M(D) in-

finitesimally equivalent to µ with ‖ν‖∞ < ‖µ‖∞.

8. Dynamical analogue of asymptotic variance

In this section, we discuss the notion of asymptotic variance of a Hölder

continuous potential from thermodynamic formalism. Using a global ana-

logue of McMullen’s coboundary equation [27, Theorem 4.5], we relate it

to the notion of asymptotic variance of a Bloch function considered earlier.

As an application, we obtain estimates for the integral means spectrum of

univalent functions.

For concreteness, we work with a certain class of fractals arising from

quasiconformal deformations of Blaschke products and leave the general

case to the reader, see Remark 8.3.

8.1. Thermodynamic formalism. Let

B(z) = z

d−1∏
i=1

z − ai
1− aiz

, ai ∈ D,

be a finite Blaschke product, which we think of as a map from the unit circle

to itself. Let m denote the Lebesgue measure on the unit circle, normalised

to have total mass 1. It is well-known that the Lebesgue measure is invariant

under B, that is, m(E) = m(B−1(E)).
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For a Hölder continuous potential φ ∈ Cα(S1) of mean zero, i.e. with´
φdm = 0, the “dynamical” asymptotic variance is given by

Var(φ) := lim
n→∞

1

n

ˆ
S1
|Snφ(z)|2dm, (8.1)

where Snφ(z) =
∑n−1

k=0 φ(B◦k(z)). More generally, for φ, ψ ∈ Cα(S1) with´
φdm =

´
ψdm = 0, one may consider the covariance

Var(φ, ψ) := lim
n→∞

1

n

ˆ
S1
Snφ(z)Snψ(z)dm. (8.2)

To show that Var(φ) and Var(φ, ψ) are well-defined, one may use the expo-

nential decay of correlations, [34, Theorem 4.4.9] or [28, Proposition 2.4],
ˆ
S1
φ(B◦j(z))ψ(B◦k(z))dm 6 Kθk−j‖φ‖Cα‖ψ‖L1 , j 6 k, (8.3)

for some 0 < θ(α,B) < 1. In particular, the functions

Varn(φ) :=
1

n

ˆ
S1
|Snφ(z)|2dm (8.4)

converge uniformly to Var(φ).

Following [27], we say that h ∈ Cα(S1) is a virtual coboundary of g ∈
C(A(1, R)), R > 1, if the difference g(z)− g(B(z)) extends to a continuous

function on the unit circle and the extension coincides with h. We will need

the following fundamental result about virtual coboundaries:

Theorem 8.1. [27, Theorem 4.1] Suppose h ∈ Cα(S1), 0 < α < 1, of mean

zero, can be expressed as a virtual coboundary g(z)−g(B(z)). Then the limit

in the definition of σ2(g) exists and

Var(h)´
log |B′|dm

= σ2(g). (8.5)

Remark 8.2. By itself, the fact that h is a virtual coboundary does not

guarantee that h has mean 0. For instance, if B(z) = z2, then the constant

function h(z) = log 2 is a virtual coboundary of g(z) = log 1
|z|−1 . Using

arguments similar to those discussed in [27, Section 3], one can show the

relation ´
S1 h(z)dm´

S1 log |B′|dm
= lim

R→1+

1

2π| log(R− 1)|

ˆ
|z|=R

g(z) |dz|. (8.6)
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8.2. Conformal maps with fractal boundaries. Suppose µ ∈MB(D) is

an eventually-invariant Beltrami coefficient supported on the unit disk with

‖µ‖∞ < 1. By solving the Beltrami equation, µ gives rise to a conformal

map H(z) = wµ(z) of the exterior unit disk. We may use the conjugacy H

to transfer the dynamics of B to H(S1), in which case the map

F = H ◦B ◦H−1

is a dynamical system on the image curve H(S1). Since µ is eventually-

invariant, the map F is holomorphic in a neighbourhood of H(D∗).
Associated to the map F , we define the potential

ψ(z) = logF ′(H(z))− logB′(z), 1− ε < |z| < 1 + ε. (8.7)

= logH ′(B(z))− logH ′(z), z ∈ D∗. (8.8)

Observe that the two definitions are complementary to each other: the first

definition makes sense near the unit circle, while the second definition is good

in the exterior unit disk but does not work on the unit circle. To see the

equivalence of the two definitions, it suffices to differentiate the conjugacy

relation F ◦H = H ◦B.

The first definition implies that ψ is Hölder continuous on the unit circle.

The virtual coboundary condition (8.8) together with the fact that B(∞) =

∞ guarantee that ˆ
S1
ψ(z)dm = 0

by the mean-value theorem. Applying Theorem 8.1 gives

Var(ψ)´
log |B′|dm

= σ2(logH ′). (8.9)

As was explained in the introduction, this identity completes the proof of

Theorem 1.6.

Remark 8.3. The argument presented here (with some modifications) also

applies to a wider class of fractals known as Jordan repellers (J, F ) which

are defined by the following conditions:

(i) The set J is a Jordan curve, presented as a union of closed arcs J =

J1 ∪ J2 ∪ · · · ∪ Jn, with pairwise disjoint interiors.

(ii) For each i = 1, 2, . . . , n, there exists a univalent function Fi : Ui → C,
defined on a neighbourhood Ui ⊃ Ji, such that Fi maps Ji bijectively onto
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the union of several arcs, i.e.

Fi(Ji) =
⋃
j∈Ai

Jj ,

(iii) Additionally, we want each map Fi to preserve the complementary

regions Ω± in S2 \ J , i.e. Fi(Ui ∩ Ω±) ⊂ Ω±.

(iv) We require that the Markov map F : J → J defined by F |Ji = Fi is

mixing, that is, for a sufficiently high iterate, we have F ◦N (Ji) = J .

(v) Finally, we want the dynamics of F to be expanding, i.e. for some

N > 1, we have infz∈J |(F ◦N )′(z)| > 1. (At the endpoints of the arcs and

their inverse orbits under F , we consider one-sided derivatives.)

This definition subsumes limit sets of quasi-Fuchsian groups and piecewise

linear constructions such as snowflakes, see [22, 27, 34, 36]. Note that for

some purposes, one can allow
⋃
Ji to be a proper subset of J ; however, for

connections to asymptotic variance, we must insist on the equality J =
⋃
Ji.

8.3. Dynamical families of conformal maps. Given µ ∈ MB(D) with

‖µ‖∞ 6 1 as before, we may consider a natural holomorphic family of con-

formal maps Ht(z) = wtµ(z), t ∈ D. We denote the associated dynamical

systems and Hölder continuous potentials by Ft and ψt respectively. In this

formalism, F0 = B.

If we restrict the parameter t ∈ B(0, ρ) to a disk of slightly smaller radius

ρ < 1, then Hölder bounds for quasiconformal mappings [5, Theorem 3.10.2]

imply the uniform estimate∥∥∥∥ψt(z)t

∥∥∥∥
Cα(S1)

< K(ρ), for some 0 < α < 1. (8.10)

To prove Theorem 1.7, we consider the function

u(t) = σ2

(
logH ′t
t

)
, t ∈ D. (8.11)

Observe that u(t) extends continuously to the origin with u(0) = σ2(Sµ).

Indeed, the differentiability of the B-valued analytic function logH ′t at the

origin implies that ∥∥∥∥ logH ′t
t
− Sµ

∥∥∥∥
B

= O(|t|), (8.12)

from which the continuity of u follows from the continuity of σ2(·) in the

Bloch norm.
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Theorem 8.4. The function u(t) is real-analytic and subharmonic on the

unit disk.

In particular, Theorem 8.4 shows that there exists a t ∈ D, with |t| arbi-

trarily close to 1, for which u(t) > u(0). Theorem 1.6 implies

lim inf
τ→0

βHt(τ)

τ2/4
> |t|2σ2(Sµ).

Taking the supremum over all eventually-invariant Beltrami coefficients µ,

|t| → 1, and using Theorem 6.2 gives Theorem 1.7.

Proof of Theorem 8.4. We utilise the connection between σ2 and the dy-

namical asymptotic variance. It is easy to see that the functions

un(t) = Varn(ψt(z)/t), n = 1, 2, . . .

are subharmonic. By the decay of correlations (8.3), the un(t) converge

uniformly to u on compact subsets of the disk, hence u(t) is subharmonic as

well. The same argument can also be used to show the real-analyticity of u,

for details, we refer the reader to [36, Section 7]. �

8.4. Using higher-order terms. We now slightly refine the estimate from

the previous section by taking advantage of the subharmonicity of the func-

tions ∆nu for n > 1. However, we do not know if these estimates improve

upon Theorem 1.7, since the higher-order terms may be close to 0, when

σ2(Sµ) is close to Σ2.

Theorem 8.5. One has

∂jt ∂
k
t u(t) = σ2

(
∂jt

logH ′t
t

, ∂
k
t

logH ′t
t

)
, t ∈ D.

Proof. We prove the statement by induction, one derivative at a time. For

the first derivative,

∂t Varn(ψt/t) =
1

n

ˆ
S1
Sn(∂t(ψt/t))Sn(ψt/t) dm.

Since t → ψt/t is a bounded holomorphic map from B(0, ρ) to the Banach

space Cα(S1), the derivative ∂t(ψt/t) is Hölder continuous, in which case,

the decay of correlations gives the convergence

∂t Varn(ψt/t)→ Var(∂t(ψt/t), ψt/t), as n→∞.
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To justify that ∂t Var(ψt/t) = Var(∂t(ψt/t), ψt/t), it suffices to use the well-

known fact that if a sequence of C1 functions Fn converges uniformly (on

compact sets) to F , and the derivatives F ′n converge uniformly to G, then

necessarily F ′ = G. One may compute further derivatives in the same

way. �

Leveraging the subharmonicity of the functions ∆nu (which follows from

the previous theorem by taking j = k = n), the Poisson-Jensen formula for

subharmonic functions [37, Theorem 4.5.1] gives

lim sup
r→1

1

2π

ˆ
|z|=r

u(z) |dz| > u(0) +
∞∑
n=1

c−1
n ·∆nu(0), (8.13)

where cn = ∆n
(
|z|2n

)
. As noted earlier, u(0) = σ2(Sµ) while

∆u(0)

4
= σ2

(
SµSµ− 1

2
(Sµ)2

)
as the Neumann series expansion (3.2) shows. The Beltrami coefficient µ

from Lemma 5.5 (with the choice of degree d = 16) gives the value

lim inf
τ→0

B(τ)

τ2/4
> σ2(Sµ) + σ2

(
SµSµ− 1

2
(Sµ)2

)
> 0.893.

Using further terms, and playing around with the parameters (d, ρ0, n0),

we were able to (rigorously) obtain the lower bound 0.93 with the help of

Mathematica to automate the computations.
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