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Abstract

In this paper, we study analytic self-maps of the unit disk which distort hy-

perbolic area of large hyperbolic disks by a bounded amount. We give a number

of characterizations involving angular derivatives, Lipschitz extensions, Möbius

distortion, the distribution of critical points and Aleksandrov-Clark measures.

We also study Lyapunov exponents of their Aleksandrov-Clark measures.

1 Introduction

Let D be the open unit disk in the complex plane and λ(z) = 2|dz|/(1 − |z|2) be

the hyperbolic metric in D. We denote the hyperbolic distance between the points

z, w ∈ D by dh(z, w) and the hyperbolic area of a measurable set E ⊂ D by

Ah(E) =

∫
E

4 dA(z)

(1− |z|2)2
.

Let F : D → D be an analytic self-mapping of the unit disk. The pullback of the

hyperbolic metric under F is λF (z) = 2|F ′(z)|/(1 − |F (z)|2), z ∈ D. The Schwarz

lemma says that any analytic self-mapping F of the unit disk contracts the hyperbolic

metric, that is, λF (z) ≤ λ(z) for any z ∈ D. Moreover, equality at a single point

implies equality at every point in the unit disk and that F is an automorphism of D.

1



Define the Möbius distortion of F as

µ(z) = 1− λF (z)

λ(z)
= 1− (1− |z|2)|F ′(z)|

1− |F (z)|2
, z ∈ D.

Since µ vanishes identically if F is an automorphism of D, the Möbius distortion of

F measures how much F (z) deviates from an automorphism of D near z ∈ D.

Let m = |dz|/2π be the normalized Lebesgue measure on the unit circle ∂D.

Inner functions are analytic self-mappings F of the unit disk such that their radial

limits limr→1 F (rξ) have modulus one at m almost every point ξ ∈ ∂D. An inner

function F has finite entropy if its derivative F ′ belongs to the Nevanlinna class N
of analytic functions g in D such that

lim sup
r→1

∫
∂D

log+|g(rξ)|dm(ξ) <∞.

Inner functions with finite entropy have been extensively studied [Cra91, Ivr19, Ivr20,

IK22, IN22, IU23, IU24] and play an important role in our discussion. An analytic

self-mapping F of the unit disk is said to have a finite angular derivative (in the

sense of Carathéodory) at the point ξ ∈ ∂D if limr→1 F (rξ) exists and belongs to the

unit circle and limr→1 F
′(rξ) exists. In this case, we write |F ′(ξ)| = limr→1 |F ′(rξ)|.

The hyperbolic disk centered at z ∈ D of hyperbolic radius R > 0 is denoted by

Bh(z,R). We say that an analytic self-mapping F of the unit disk almost preserves

hyperbolic area (APHA) if there exists a constant c > 0 such that

Ah(F (Bh(z,R)) ≥ cAh(Bh(z,R)), z ∈ D, R > 1. (1.1)

In view of the Schwarz lemma, (1.1) says that the hyperbolic area of the image of

any hyperbolic disk is almost as large as possible. In this paper, we present various

descriptions of APHA mappings in terms of angular derivatives, Lipschitz extensions,

Möbius distortion and the distribution of critical points. Our main motivation is the

paper [GP91] of J. Garnett and M. Papadimitriakis which concerns almost isometries.

An analytic self-mapping F of the unit disk is called an almost isometry if there

exists a constant c > 0 such that diamhF (Bh(z,R)) ≥ 2R − c, for any z ∈ D and

R > 0. Garnett and Papadimitriakis observed that almost isometries are necessarily

Blaschke products and found an elegant description in terms of angular derivatives.
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We use the following notation: For a point z ∈ D, we write ω(z, E,D) for the

harmonic measure seen from z of a measurable set E ⊂ ∂D in the unit disk, that is,

ω(z, E,D) =

∫
E

1− |z|2

|ξ − z|2
dm(ξ).

The classical Löwner Lemma says that ω(F (z), E,D) = ω(z, F−1(E),D) for any

point z ∈ D, measurable set E ⊂ ∂D and inner function F .

If z ∈ D \ {0}, we write Iz for the arc of the unit circle centered at z/|z| with

m(Iz) = 1 − |z|. More generally, for K > 0, we write KIz for the arc centered at

z/|z| with m(Iz) = K(1− |z|). Conversely, given an arc I ⊂ ∂D centered at a point

ξ ∈ ∂D, we write zI = (1−m(I))ξ.

For an arc I ⊂ ∂D, we write

QI = {z ∈ D : z/|z| ∈ I, 1−m(I) < |z| < 1}

for the Carleson square with base I. Given a Carleson square Q = QI , we denote its

“side length” by `(Q) = m(I).

Our first main result provides several equivalent characterizations of APHA map-

pings:

Theorem 1.1. Let F : D→ D be an analytic self-map of the unit disk with Möbius

distortion µ. The following statements are equivalent:

(1) F is an APHA mapping, that is, there exists a constant c > 0 such that

Ah(F (Bh(z,R)) > cAh(Bh(z,R)),

for any z ∈ D and any R > 1.

(2) There exist constants C, δ > 0 so that for any point z ∈ D one has

ω

(
z,

{
ξ ∈ ∂D : |F ′(ξ)| < C · 1− |F (z)|

1− |z|

}
,D
)
≥ δ.

(3) The angular derivative |F ′(ξ)| is finite at almost every point ξ ∈ ∂D, the func-

tion log |F ′| is integrable on the unit circle and there exists a constant C > 0

such that for any arc I ⊂ ∂D, one has

log
1− |F (zI)|

1− |zI |
− C ≤ 1

m(I)

∫
I

log |F ′|dm ≤ log
1− |F (zI)|

1− |zI |
+ C. (1.2)
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(4) F is an inner function of finite entropy and there exists a constant C > 0 so

that the outer part OF ′ of F ′ satisfies

C−1 · 1− |F (z)|
1− |z|

≤ |OF ′(z)| ≤ C · 1− |F (z)|
1− |z|

, z ∈ D. (1.3)

(5) For any ε > 0, there exists a constant C(ε) > 0 so that for any arc I ⊂ ∂D,

there exist pairwise disjoint subarcs Jk ⊂ I with
∑
m(Jk) ≤ εm(I) and

|F ′(z)| ≤ C(ε) · 1− |F (zI)|
1− |zI |

, z ∈ QI \
⋃
k

QJk . (1.4)

(6) There exists a constant C > 0 so that for any arc I ⊂ ∂D we have∫
QI

µ(z)
dA(z)

1− |z|
≤ Cm(I). (1.5)

(7) F is a maximal Blaschke product and there exists a constant C > 0 so that for

any arc I ⊂ ∂D, we have ∑
c∈QI :F ′(c)=0

(1− |c|) ≤ Cm(I).

Remarks

1. J. Garnett and M. Papadimitrakis proved in [GP91] that an analytic self-mapping

F of the unit disk is an almost isometry if and only if there exists a constant C > 0

so that for any arc I of the unit circle there is a point ξ ∈ I with

|F ′(ξ)| < C · 1− |F (zI)|
1− |zI |

.

One can view Statement (2) as an analogue of this result where one replaces existence

with abundance.

2. By Corollary 3.2 in Section 3, there exists a constant C > 0 such that for any

analytic self-mapping F of the disk, we have

log
1− |F (zI)|

1− |zI |
≤ 1

m(I)

∫
I

log |F ′|dm+ C.

So, the upper bound in (1.2) always holds.
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3. Let BMO(∂D) be the space of integrable functions h on ∂D such that

sup
1

m(I)

∫
I

∣∣∣∣h(ξ)− 1

m(I)

∫
I

h

∣∣∣∣ dm(ξ) <∞,

where the supremum is taken over all arcs I ⊂ ∂D. We will see in Section 4.2 that

Statement (3) can be replaced by a seemingly stronger one:

(3′) The angular derivative |F ′(ξ)| is finite at almost every point ξ ∈ ∂D, the

function log |F ′| is in BMO(∂D) and for any arc I ⊂ ∂D, one has

1

m(I)

∫
I

log |F ′|dm = log
1− |F (zI)|

1− |zI |
+O(1),

where O(1) denotes a quantity which is bounded by a constant independent of the

arc I.

However, not every inner function F with log |F ′| ∈ BMO(∂D) satisfies the hy-

potheses of Theorem 1.1. For instance, the singular inner function F (z) = exp
(
z+1
z−1

)
has log |F ′(ξ)| = 2 log |1− ξ|−2 ∈ BMO(∂D) but is not an APHA mapping since it is

not a Blaschke product, see Lemma 2.1.

4. The Lyapunov exponent of a Borel probability measure σ is defined as

χ(σ, F ) =

∫
∂D

log |F ′|dσ.

Typically, the Lyapunov exponent is studied for invariant measures, in which it mea-

sures the average rate of expansion under forward iteration, but the above definition

makes sense for arbitrary measures.

Let F be an inner function of finite entropy. For p ∈ D, consider the mapping

Fp = τp ◦ F , where τp is an automorphism of D with τp(F (p)) = p. So, p is a fixed

point of Fp : D→ D and by Löwner’s lemma, ωp(ξ) = ω(p, ξ,D) is Fp-invariant, that

is, ωp(F
−1
p (E)) = ωp(E) for any measurable set E ⊂ ∂D. We define

χ(ωp, Fp) =

∫
∂D

log |F ′p(ξ)|dωp.

By the chain rule,

χ(ωp, Fp) =

∫
∂D

log |F ′(ξ)|dωp +

∫
∂D

log |τ ′p(F (ξ))|dωp.
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As the second integral is log |τ ′p(F (p))| = log((1− |p|2)/(1− |F (p)|2), we have

χ(ωp, Fp) =

∫
∂D

log |F ′(ξ)|dωp + log
1− |p|2

1− |F (p)|2
.

Statement (4) in Theorem 1.1 now gives the following description of APHA maps:

Corollary 1.2. Let F be an inner function of finite entropy. Then F is an APHA

mapping if and only if

sup
p∈D

χ(ωp, Fp) <∞.

A similar computation involving Löwner’s lemma shows that if F,G are inner

functions of finite entropy, then χ(ωp, F ◦G) = χ(ωp, G)+χ(ωG(p), F ). Together with

Corollary 1.2, this implies that APHA mappings are closed under composition.

5. For an inner function F of finite entropy, let F ′ = IF ′OF ′ be its inner-outer

factorization. The estimate (1.3) is related to a reverse Schwarz-Pick inequality due

to K. Dyakonov [Dya13, Corollary 2.1], which says that if F is an inner function of

finite entropy then
1− |F (z)|2

1− |z|2
≤ |OF ′(z)|, z ∈ D. (1.6)

In other words, Statement (4) says that APHA mappings are precisely the ones for

which Dyakonov’s inequality is sharp up to a bounded factor.

6. The estimate on |F ′(z)| in Condition (5) says that F is a Lipschitz function on

QI \
⋃
QJk with Lipschitz constant bounded by

C(ε) · 1− |F (zI)|
1− |zI |

.

In particular, diamF (QI \
⋃
QJk) ≤ C(ε) · (1− |F (zI)|).

7. A discrete set of points Z in the unit disk is called a Blaschke sequence if∑
z∈Z

(1− |z|) <∞.
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A Blaschke product B is called a Carleson-Newman Blaschke product if there exists

a constant C > 0 such that ∑
z∈QI :B(z)=0

(1− |z|) ≤ Cm(I),

for any arc I ⊂ ∂D. This condition may be understood as the scale invariant version

of the Blaschke condition.

Similarly, (1.5) can be understood as the scale invariant version of the estimate∫
D
µ(z)

dA(z)

1− |z|
.
∫
∂D

log |F ′(ξ)|dm(ξ),

which holds for any centered inner function F of finite entropy, see Lemma 5.2.

8. If C is the critical set of some Blaschke product, then it is the critical set of

a particular Blaschke product F = FC called the maximal Blaschke product which

maximizes λF (z) out of all Blaschke products with critical set C. The maximal

Blaschke product FC is uniquely determined up to post-composition with Möbius

transformations. For general properties of maximal products, we refer the reader to

[Kra13, KR12, KR13].

From Jensen’s formula, it is not difficult to see that if F is an inner function

of finite entropy, then its critical set is a Blaschke sequence. Conversely, D. Kraus

[Kra13, Theorem 4.4] noticed that any Blaschke sequence C arises as the critical set

of a Blaschke product and the maximal Blaschke product FC has finite entropy. In

other words, one has a bijection between Blaschke sequences and maximal Blaschke

products with derivative in Nevanlinna class. Statement (7) says that there is a

bijection between APHA mappings and sequences of points in the unit disk satisfying

the Carleson condition.

1.1 Aleksandrov-Clark measures

Given an analytic mapping F from the unit disk to itself (not necessarily inner) and

a point α ∈ ∂D, the function (α+F )/(α−F ) has positive real part and hence there

7



exists a positive measure σα = σα(F ) on the unit circle and a constant Cα ∈ R such

that
α + F (z)

α− F (z)
=

∫
∂D

ξ + z

ξ − z
dσα(ξ) + iCα, z ∈ D. (1.7)

The measures {σα : α ∈ ∂D} are called the Aleksandrov-Clark measures of the func-

tion F . These measures have been introduced by D. Clark in relation with oper-

ator theory and were throughly investigated by A. B. Aleksandrov who recognized

their importance in function theory. We highlight several elementary properties of

Aleksandrov-Clark measures that will be used throughout this work:

• If F (0) = 0, then {σα : α ∈ ∂D} are probability measures.

• F is an inner function if and only if σα is a singular measure for some (and

hence, all) α ∈ ∂D.

• If F is an inner function, then the mass of σα is carried by the set F−1({α}) ⊂
∂D.

• The measure σα varies continuously in α in the weak topology of measures on

the unit circle.

• F has a finite angular derivative at a point β ∈ ∂D if and only if σF (β) has an

atom at β. In this case, σF (β)({β}) = 1/|F ′(β)|.

We refer the reader to the surveys [PS06, Sak07] as well as [CMR06, Chapter IX]

for further properties of Aleksandrov-Clark measures and a wide range of applica-

tions.

The following theorem describes Aleksandrov-Clark measures of APHA map-

pings. Given a positive Borel measure σ on the unit circle, consider the function

H[σ](z) =

∫
∂D

dσ(ξ)

|ξ − z|2
, z ∈ D. (1.8)

Theorem 1.3. Let σ be a positive Borel measure on ∂D and H[σ] be the function

defined in (1.8). The following statements are equivalent:
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(1) The measure σ is an Aleksandrov-Clark measure of some APHA mapping (and

some α ∈ ∂D).

(2) The function logH[σ] ∈ BMO(∂D) and there exists a constant C > 0 so that

logH[σ](zI)− C ≤
1

m(I)

∫
I

logH[σ](ξ)dm(ξ) ≤ logH[σ](zI) + C,

for any arc I ⊂ ∂D.

The proof of Theorem 1.3 relies on Theorem 1.1. We will see that the lower

bound in Condition (2) holds for any positive Borel measure σ, so only the upper

bound is essential.

1.2 Lyapunov exponents

Finally, we study the Lyapunov exponents of Aleksandrov-Clark measures of APHA

mappings. Let F be an analytic self-mapping of the unit disk and {σα : α ∈ ∂D} be

the family of its Aleksandrov-Clark measures. It is well-known that F has angular

derivatives at m almost every point on the unit circle if and only if for m a.e. α ∈ ∂D,

the measure σα is discrete, e.g. see [CMR06, Theorem 9.6.1] or [IU23, Theorem 3.1].

If

σα =
∑

F (β)=α

|F ′(β)|−1δβ, α ∈ ∂D,

then the Lyapunov exponent χ(σα, F ) of σα is given by

χ(σα, F ) =

∫
∂D

log |F ′(ξ)|dσα(ξ) =
∑

F (β)=α

|F ′(β)|−1 log |F ′(β)|, α ∈ ∂D.

We will show in Lemma 7.1 that if F is an inner function, then F has finite entropy

if and only if for m a.e. α ∈ ∂D, the measure σα is discrete and∫
∂D
χ(σα, F )dm(α) <∞.

The Lyapunov exponents of the Aleksandrov-Clark measures of APHA mappings

satisfy a stronger condition:
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Theorem 1.4. Let F be an APHA mapping and {σα : α ∈ ∂D} be the collection of

its Aleksandrov-Clark measures. Then, χ(σα, F ) agrees with a C∞ function a.e. on

the unit circle.

We will see in Lemma 7.2 that the Lyapunov exponent χ(σα, F ) defines a lower

semicontinuous function on the unit circle. Together with the above theorem, this

implies that the measure σα is discrete and χ(σα, F ) is finite for every α ∈ ∂D.

The main idea in the proof of Theorem 1.4 is that the Lyapunov exponent

χ(σα, F ) shows up naturally when studying a certain family of weighted composition

operators.

Remarks

1. By using [IU23, Lemma 8.3] in place of Lemma 7.3 below, one can show that the

conclusion of Theorem 1.4 also holds for one component inner functions. While the

two classes have a number of similarities, it is not difficult to come up with examples

showing that neither class contains the other.

2. Suppose that F satisfies the conditions of Theorem 1.1. As log |F ′| ∈ BMO(∂D),

the John-Nirenberg Theorem implies that F ′ ∈ Hp for some p > 0. An argument

similar to the one in the proof of Lemma 7.1 below shows that

χp(σα) =
∑

F (β)=α

|F ′(β)|−1+p < ∞,

for m a.e. α ∈ ∂D. However, we are unable to give a uniform bound on χp, valid for

every α ∈ ∂D.

3. Using Condition 3 in Theorem 1.1, it is not difficult to check that an inner

function F is an APHA mapping if and only if zF is an APHA mapping. Therefore,

if F is an APHA mapping with an attracting fixed point at the origin, then the

Aleksandrov-Clark measure of α = 1 for F/z is discrete. In particular, if F is not a

finite Blaschke product, then it has infinitely many boundary-repelling fixed points

ξ on the unit circle with finite multipliers F ′(ξ) = limr→1 F
′(rξ) > 1. Applying
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these considerations to the iterates of F shows that F has infinitely many boundary-

repelling periodic orbits of any order on the unit circle with finite multipliers.

The paper is organized as follows. Section 2 contains some preliminary observa-

tions. In particular, we show that APHA maps are inner functions and discuss the

condition R > 1 in definition (1.1). The equivalence of Statements (1) and (2) in

Theorem 1.1 is proved in Section 3. Section 4 is devoted to the proof of the equiv-

alence of Statements (2), (3), (4) and (5) in Theorem 1.1 while the equivalence of

Statements (6) and (7) is discussed in Section 5. The proof of Theorem 1.3 is given

in Section 6, while the proof of Theorem 1.4 is presented in Section 7.

2 Preliminary observations

In this section, we make a number of simple observations about APHA mappings

and related concepts.

Lemma 2.1. Let F be an APHA mapping. Then F is an inner function. In fact,

F is an indestructible Blaschke product, that is, τ ◦ F is a Blaschke product for any

Möbius transformation τ ∈ Aut(D).

Proof. By [Mas12, Lemma 1.8], it is enough to show that if F has a non-tangential

limit at a point ξ ∈ ∂D, then it cannot lie in the unit disk. On the contrary, if the

non-tangential limit at ξ ∈ ∂D is a ∈ D, then there exist rn → 1 and Rn →∞ such

that F (Bh(rnξ, Rn)) ⊂ Bh(a, 1), n ∈ N, contradicting (1.1).

The following lemma says that finite Blaschke products are APHA mappings:

Lemma 2.2. Suppose F is a finite Blaschke product. Then there exists a constant

c > 0 so that F (Bh(z,R)) ⊃ Bh(F (z), R− c) for any z ∈ D and R > 0.

Proof. By composing with a Möbius transformation, we may assume that F is cen-

tered, i.e. F (0) = 0. We will use [McM09, Theorem 10.11] which says that there

exists a constant R0 > 0, depending on the degree F , such that if the hyperbolic

distance from a geodesic segment [a, b] to the critical values of F is at least R0, then

dh(F
−1(a), F−1(b)) = dh(a, b) +O(1),
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where F−1 is a branch of the inverse map that is continuous along [a, b]. Choose

R1 > 0 sufficiently large so that the disk Bh(0, R1) contains the critical values of F .

Let w = F (z). Given a point w′ ∈ D, we need to produce a pre-image z′ with

dh(z, z
′) ≤ d(w,w′) +O(1). For this purpose, join w and w′ by a hyperbolic geodesic

[w,w′]. We first examine two special cases:

1. If [w,w′] is contained in Bh(0, R0 + R1), then for any pre-image z′ of w′, the

hyperbolic distance dh(z, z
′) ≤ diamh F

−1(Bh(0, R0 +R1)).

2. If [w,w′] does not pass through Bh(0, R0 + R1) then one may define z′ as the

pre-image of w′ obtained by analytically continuing F−1(w) = z along the

geodesic [w,w′]. The desired estimate then follows from McMullen’s theorem

mentioned above.

In the general case, the geodesic [w,w′] may intersect ∂B(0, R0 +R1) in at most

two points, which divide [w,w′] in at most 3 pieces that satisfy the assumptions of

one of the two special cases.

Next we show that in the definition (1.1) of APHA mappings one can replace the

condition “for any R > 1” with “for any R sufficiently large.” The proof is based on

the following two lemmas:

Lemma 2.3. Let F be an analytic self-mapping of the unit disk. For any δ > 0,

there exists a constant ρ = ρ(δ) > 0 so that if (λF/λ)(z) > δ then F is injective on

Bh(z, ρ) and (λF/λ)(w) > δ/2 for w ∈ Bh(z, ρ).

Proof. Composing with Möbius transformations, we may assume that z = 0 and

F (0) = 0. The assumption then says that |F ′(0)| > δ. A normal families argument

shows that there exists a 0 < ρ < 1/10 so that

|F (w)| < δ

10
, |F ′(w)− F ′(0)| < 1

10
|F ′(0)|, for w ∈ Bh(0, ρ),

from which the assertions of the lemma follow easily.

A similar argument involving normalizing F (0) = 0 and normal families shows:
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Lemma 2.4. Let F be an analytic self-mapping of the unit disk. For any R > 0 and

ε > 0, there exists a constant δ > 0 so that if

(λF/λ)(w) < δ, w ∈ Bh(z, 1/2),

then (λF/λ)(w) < ε for any w ∈ Bh(z,R).

With the help of the two lemmas above, we show that if (1.1) fails for R = 1,

then it also fails for any given R > 1. Indeed, by Lemma 2.3, if the hyperbolic area

of F (Bh(z, 1)) is small, then sup
{

(λF/λ)(w) : w ∈ Bh(z, 1/2)
}

is small. Lemma 2.4

then implies that (λF/λ)(w) is small on Bh(z, R), and so F (Bh(z,R)) also has small

hyperbolic area.

To conclude this section, we discuss two notions which on the surface resemble

the APHA condition but turn out to be quite different. We first show that auto-

morphisms of the disk are the only analytic self-mappings of the disk for which the

estimate in condition (1.1) holds for any R > 0.

Lemma 2.5. Let F be an analytic self-mapping of the unit disk. Assume that there

exists a constant c > 0 such that Ah(F (Bh(z, R)) ≥ cAh(Bh(z, R)), for any z ∈ D
and any R > 0. Then F is a Möbius transformation.

Proof. The assumption implies that (λF/λ)(z) & c is bounded below on the unit disk

by a positive constant. By [KRR07, Theorem 1.1], F extends analytically past the

unit circle and so is a finite Blaschke product. Since F cannot have critical points,

it must be a Möbius transformation.

We now give an example of an inner function which is not an APHA mapping

but almost preserves hyperbolic area if the image is counted with multiplicity, i.e.∫
Bh(z,R)

4|F ′(z)|2

(1− |F (z)|2)2
dA(z) ≥ cAh(Bh(z,R)), z ∈ D, R > 1, (2.1)

for some c > 0.

Let Γ be any co-compact Fuchsian group acting on the unit disk. It follows from

the solution of the Schwarz-Picard problem given in [Hei62, Theorem 21.1] that one

can find a maximal Blaschke product F whose critical set is an orbit of Γ. Since the
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critical set determines a maximal Blaschke product up to post-composition with an

element of Aut(D), F satisfies the automorphy relation

F (γ(z)) = mγ(F (z)),

for some character χ : Γ→ Aut(D). In particular, the hyperbolic area of the image

of any disk of hyperbolic radius 1 is bounded below. A fortiori, F satisfies (2.1).

However, since the critical points of F do not satisfy the Blaschke condition, F does

not have finite entropy and is therefore not an APHA mapping, see Condition (4) of

Theorem 1.1.

3 Almost Isometric Rays

3.1 Almost isometric and Good Geodesic Rays

Let F be an analytic self-mapping of the unit disk. For a geodesic ray γ = [z, ξ)

emanating from z ∈ D and ending at ξ ∈ ∂D, the lag function

L(w) = dh(z, w)− dh(F (z), F (w)), w ∈ γ. (3.1)

measures the contraction of the hyperbolic metric along γ. From the Schwarz lemma

and the triangle inequality, it is clear that L(w) is non-negative and increases as

dh(z, w) increases. We define

L(ξ) := sup
w∈γ

{
dh(z, w)− dh(F (z), F (w))

}
,

which may be infinite.

We say that γ is a C-almost isometric ray if the lag function of γ is bounded by C,

or equivalently, if L(ξ) ≤ C. In [GP91, Theorem 3.2], Garnett and Papadimitriakis

observed that for any almost isometric ray, F possesses an angular derivative at

ξ in the sense of Carathéodory. In particular, the radial boundary value F (ξ) =

limw∈γ,w→ξ F (w) exists and belongs to the unit circle.

One may also consider the radial lag function of γ given by

Lrad(w) = dh(z, w)−
(
dh(0, F (w))− dh(0, F (z))

)
, w ∈ γ. (3.2)
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The same reasoning as above shows that Lrad(w) increases as dh(z, w) increases. We

say that the geodesic ray γ is C-good if

Lrad(ξ) := sup
w∈γ

{
dh(z, w)−

(
dh(0, F (w))− dh(0, F (z)

)}
≤ C,

for any w ∈ γ. In other words, as one moves along γ at unit hyperbolic speed,

the image point efficiently moves towards the unit circle. By the triangle inequality,

Lrad(w) ≥ L(w), so a C-good ray is also a C-almost isometric ray. To understand

the extent as to which the converse holds, we use the following lemma:

Lemma 3.1. Let F be an analytic self-mapping of the unit disk, z ∈ D be a point in

the unit disk and Iz be the arc on the unit circle centered at z/|z| with m(Iz) = 1−|z|.
Then,

log |F ′(ξ)| − log
1− |F (z)|

1− |z|
= Lrad(ξ) +O(1), ξ ∈ Iz, |F ′(ξ)| <∞, (3.3)

and

Lrad(ξ) = L(ξ) + 2 log+ k(ξ) +O(1), ξ ∈ Iz, |F ′(ξ)| <∞, (3.4)

where L and Lrad are the lag functions associated to the geodesic ray [z, ξ) and k(ξ)

is the smallest real number ≥ 1 such that F (ξ) ∈ kIF (z).

In the off-chance that z = 0, we take Iz to be the unit circle ∂D, while if F (z) = 0,

then we take IF (z) = ∂D and k = 1.

Proof. For a point w on the geodesic ray [z, ξ), we have

dh(0, w) = dh(0, z) + dh(z, w)−O(1).

Taking the difference of the equations

log
1− |F (w)|

1− |w|
+O(1) = dh(0, w)− dh(0, F (w)) +O(1)

and

log
1− |F (z)|

1− |z|
+O(1) = dh(0, z)− dh(0, F (z)) +O(1),
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we get

log
1− |F (w)|

1− |w|
− log

1− |F (z)|
1− |z|

= Lrad(w) +O(1).

The estimate (3.3) now follows after taking the limit as w → ξ along γ and the

definition of the angular derivative.

Up to bounded error, the hyperbolic distance between two points z1, z2 ∈ D is

dh(z1, z2) = dh(|z1|, |z0|) + dh(|z0|, |z2|) +O(1),

where z0 is the point on the geodesic segment [z1, z2] that is closest to the origin.

Applying this to the current situation, we see that if w is a point on the geodesic ray

[z, ξ) close to ξ, then

dh(F (z), F (w)) = log+ k +
{

log+ k + dh(|F (z)|, |F (w)|)
}

+O(1)

= 2 log+ k +
{
dh(0, |F (w)|)− dh(0, |F (z)|)

}
+O(1),

which leads to (3.4) after some algebraic manipulation and taking w → ξ.

We now record two simple consequences of Lemma 3.1 that will be used through-

out the paper. Corollary 3.2 below gives a lower bound for the angular derivative

at a point ξ ∈ Iz, while Corollary 3.3 says that this lower bound is essentially sharp

when [z, ξ) is a good geodesic.

Corollary 3.2. Let F be an analytic self-mapping of the unit disk, z ∈ D \ {0} be

a point in the unit disk and Iz be the arc on the unit circle centered at z/|z| with

m(Iz) = 2(1− |z|). Then,

|F ′(ξ)| ≥ C · 1− |F (z)|
1− |z|

, ξ ∈ Iz, (3.5)

where C is a universal constant.

Corollary 3.3. Let F be an analytic self-mapping of the unit disk and suppose that

z ∈ D \ {0} and ξ ∈ Iz. The following statements are equivalent:

(1) The geodesic ray [z, ξ) is C-good for some constant C > 0.
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(2) There exists a constant C1 ≥ 1 such that

|F ′(ξ)| ≤ C1 ·
1− |F (z)|

1− |z|
. (3.6)

(3) The geodesic ray [z, ξ) is C2-almost isometric and F (ξ) ∈ KIF (z) for some

constants C2, K > 0.

If one uses the optimal constants for C,C1, C2 and K, then C, logC1 and C2 +

2 log+K differ by at most a universal constant.

3.2 Counting pre-images

Before continuing, we recall a well-known inequality due to Littlewood:

Lemma 3.4. Let F be an analytic self-mapping of the unit disk with F (0) = 0. For

any v ∈ D \ {0}, we have ∑
F (u)=v

log
1

|u|
≤ log

1

|v|
.

In particular, there exists a universal constant C > 0 such that∑
F (u)=v

e−dh(0,u) ≤ Ce−dh(0,v), dh(0, v) > 1. (3.7)

For a proof, see [Sha93, Section 10.4]. Möbius invariance of hyperbolic distance

shows:

Corollary 3.5. There exists a universal constant C > 0 such that for any analytic

self-mapping F of the unit disk and any pair of points u0, v ∈ D with dh(F (u0), v) > 1,

we have ∑
F (u)=v

e−dh(u,u0) ≤ Ce−dh(v,F (u0)). (3.8)

Remark. A little thought shows that the estimate (3.7) holds for all v ∈ D with a

constant C = CF that depends on the number of zeros of F in Bh(0, 1), counted

with multiplicity. Similarly, (3.8) holds for all v ∈ D with a constant C = CF that

depends on the number of times F attains the value F (u0) in Bh(F (u0), 1).
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3.3 Equivalence of (1) and (2) in Theorem 1.1

We now relate the area condition (1.1) to the existence of good geodesic rays, thereby

showing the equivalence of Statements (1) and (2) in Theorem 1.1. To this end, we

show the following lemma:

Lemma 3.6. Let F be an inner function and z ∈ D be a point in the unit disk. The

following conditions are equivalent:

(i) There exists a constant c > 0 such that Ah(F (Bh(z,R)) > cAh(Bh(z, R)) for

any R > 1.

(ii) There exist constants C, δ > 0 such that for any z ∈ D, we have

ω
(
z, {ξ ∈ ∂D : [z, ξ) is a C-almost isometric ray},D

)
≥ δ.

(iii) There exist constants C, δ > 0 such that for any z ∈ D, we have

ω

(
z,

{
ξ ∈ ∂D : |F ′(ξ)| < C · 1− |F (z)|

1− |z|

}
,D
)
≥ δ.

The constants C, δ depend only on c and vice versa.

Proof. (i) ⇒ (ii). Recall that the hyperbolic area of a disk grows exponentially in

the hyperbolic radius,

Ah(Bh(z,R)) ∼ πeR, as R→∞,

uniformly in z ∈ D. We choose C = 1 + log(1/c) so that

Ah(Bh(z, R− C)) ≤ (c/2)Ah(Bh(z,R)), z ∈ D,

for any R > R0 sufficiently large.

For a geodesic ray [z, ξ), ξ ∈ ∂D, we write zξ,R ∈ [z, ξ) for the point with

dh(z, zξ,R) = R. Consider the set A(z, R) of points ξ ∈ ∂D such that

dh(F (z), F (zξ,R)) ≥ R− C.

Assumption (i) and the Schwarz lemma imply that ω(z, A(z,R),D) & c. As the sets

A(z, R) are decreasing in R, their intersection A(z) =
⋂
R>1A(z,R) also satisfies

18



ω(z, A(z),D) & c. Since all the geodesic rays [z, ξ) with ξ ∈ A(z) are C-almost

isometric, (ii) holds.

(ii) ⇒ (i). Define AI(z) as the set of points ξ ∈ ∂D for which the geodesic ray

[z, ξ) is C-almost isometric. Let K ⊂ D be the union of geodesic rays [z, ξ) with

ξ ∈ AI(z) and K′ ⊂ K be the subset of points w ∈ K with |(λF/λ)(w)| > 1/2. Since

dh(F (w), F (z)) ≤
∫

[z,w)

λF (u)

λ(u)
· λ(u)|du|, w ∈ D,

for any ξ ∈ AI(z), the intersection (K \ K′) ∩ [z, ξ) can have hyperbolic length at

most 2C. Consequently, for R > 2C + 1, the ratio

Ah(K′ ∩Bh(z, R))

Ah(Bh(z,R))
& e−2C · δ

is bounded below by a constant that only depends on C and δ. Below, we show that

the quotient
Ah(F (K′ ∩Bh(z, R)))

Ah(Bh(z, R))

is bounded below by a constant independent of z and R.

Since F can only contract the hyperbolic metric on K′ by a factor of at most

2, the hyperbolic area of F (K′ ∩ Bh(z,R)) counted with multiplicity is comparable

to the hyperbolic area of Bh(z,R). Therefore, to prove (i), it suffices to show that

there is a uniformly bounded number of collisions. To that end, suppose that points

u1, u2, . . . , uN ∈ K′ have the same image under F , that is,

F (u1) = F (u2) = · · · = F (uN) = v.

Since K was defined as the union of C-almost isometric rays, we have

dh(z, ui)− dh(F (z), v) ≤ C, i = 1, 2, . . . , N.

Corollary 3.5 then implies that N is uniformly bounded. The proof is complete.

(ii) ⇒ (iii). As before, let AI(z) be the set of points ξ ∈ ∂D such that the

geodesic ray [z, ξ) is C-almost isometric. Below, we show that we can remove a set

of points ξ ∈ ∂D of small harmonic measure seen from z, so that the geodesic rays
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[z, ξ) corresponding to the remaining points will be good. To this end, choose a

sufficiently large constant K = K(δ) > 1 so that

ω(F (z), ∂D \KIF (z),D) < δ/2.

By the Löwner’s lemma, w(F (z), E,D) = w(z, F−1(E),D), E ⊂ ∂D, we have

ω(z, F−1(∂D \KIF (z)),D) < δ/2.

Consequently, the assumption shows that ω(z, E(z),D) ≥ δ/2, where E(z) is the

set of points ξ ∈ AI(z) with F (ξ) ∈ KIF (z). According to Corollary 3.3, for any

ξ ∈ E(z), the geodesic ray [z, ξ) is C1 = C1(δ, C)-good and hence

|F ′(ξ)| ≤ eC2
1− |F (z)|

1− |z|
,

where C2 = C1 +O(1).

(iii) ⇒ (ii). This implication is obvious, since every C-good ray is a C-almost

isometric ray.

4 BMO estimates

In this section, we show the equivalence of Conditions (2), (3), (4) and (5). The

proofs involve a stopping time argument that we describe in Section 4.1.

4.1 A stopping time argument

Suppose F is an analytic self-mapping of the unit disk. Fix a constant M > 0 and an

arc I ⊂ ∂D. We examine the dyadic decomposition of I. Let {Jk} be the collection

of maximal dyadic arcs in I for which

log
1− |F (zJk)|

1− |zJk |
≥M + log

1− |F (zI)|
1− |zI |

.

We refer to the arcs {Jk} as arcs of generation 1. The stopping time region of

generation 1 is defined as ΩI = QI \
⋃
QJk . We record three simple observations:
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• By the maximality of the arcs Jk and the Schwarz lemma, one has:

log
1− |F (zJk)|

1− |zJk |
= M + log

1− |F (zI)|
1− |zI |

+O(1). (4.1)

• Corollary 3.2 tells that

log |F ′(ξ)| − log
1− |F (zI)|

1− |zI |
≥M −O(1), (4.2)

for any ξ ∈
⋃
k Jk.

• We have

log
1− |F (z)|

1− |z|
≤M + log

1− |F (zI)|
1− |zI |

+O(1), z ∈ ΩI . (4.3)

We may repeat the construction in each arc of generation 1, that is, replace the

initial arc I by arcs of generation 1 and obtain the collection of arcs of generation

2. Continuing inductively, the stopping time region Ω
(n)
I of generation n is defined

as QI \
⋃
Q
J
(n)
k

where we remove all Carleson squares associated to arcs {J (n)
k } of

generation n.

4.2 Equivalence of (2), (3), (4) and (5) in Theorem 1.1

(2)⇒ (3). Let E = {ξ ∈ ∂D : |F ′(ξ)| <∞}. Condition (2) implies that

ω(z, E,D) ≥ δ, for any z ∈ D.

As the linear density of the set E at any point of the unit circle is bounded below

by a fixed multiple of δ, the Lebesgue density point theorem tells us that m(E) = 1.

For an arc I ⊂ ∂D in the unit circle, let G(I) denote the set of points ξ ∈ I such

that the geodesic ray [zI , ξ) is C-good. For convenience, we use Condition (2) in the

following form: there exist constants C > 0 and δ > 0 such that

m(G(I)) ≥ δ m(I), (4.4)

for any arc I ⊂ ∂D.
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We now run the stopping time argument described in the previous section with

a large constant M to be determined later. In view of (4.2), if the parameter M is

sufficiently large, then by (4.4), the total length of the arcs of generation 1 is∑
m(Jk) ≤ (1− δ)m(I).

An inductive argument shows that the total length of the arcs {J (n)
k } of generation

n is ∑
k

m(J
(n)
k ) ≤ (1− δ)nm(I).

By (4.3), in the complement of the arcs of generation at most n, we have

log |F ′(ξ)| − log
1− |F (zI)|

1− |zI |
≤ n(M +O(1)), ξ ∈ ∂D \

⋃
k

J
(n)
k , n = 1, 2, . . .

This shows that log |F ′| ∈ L1(∂D) and there exists a constant C(M, δ) > 0 such that

1

m(I)

∫
I

log |F ′|dm ≤ log
1− |F (zI)|

1− |zI |
+ C(M, δ).

The lower bound is automatic by Corollary 3.2. Note that the same argument gives

the seemingly stronger conclusion that log |F ′| ∈ BMO(∂D), as discussed in Remark

3 after Theorem 1.1 in the introduction.

(3)⇒ (4). Consider the harmonic function

E(z) =

∫
∂D

log |F ′(ξ)| 1− |z|
2

|ξ − z|2
dm(ξ), z ∈ D.

From the Schwarz lemma and the lower bound in (1.2), it follows that

log |F ′(z)| ≤ C1 · E(z) + C2, z ∈ D,

for some constants C1, C2 ∈ R. As log |F ′(z)| has a harmonic majorant in the unit

disk, F ′ is in the Nevanlinna class and we can consider its inner-outer factorization

F ′ = IF ′ ·OF ′ .
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A further inspection of the estimate (1.2) tells us that E is a harmonic function

in the Bloch space and

E(z) =
1

m(Iz)

∫
Iz

log |F ′|dm+O(1). (4.5)

See [GM05, Lemmas J.1 and J.2]. Since log |OF ′(z)| = E(z), z ∈ D, the estimate

(1.3) follows from (4.5) and (1.2).

(4)⇒ (5). The condition (1.3) may be written as∣∣∣∣ log |OF ′(z)| − log
1− |F (z)|

1− |z|

∣∣∣∣ ≤ logC, z ∈ D. (4.6)

By the Schwarz lemma, there exists a universal constant C1 > 0 so that∣∣∣∣ log
1− |F (z)|

1− |z|
− log

1− |F (w)|
1− |w|

∣∣∣∣ ≤ C1,

if dh(z, w) ≤ 1. As a result,∣∣ log |OF ′(z)| − log |OF ′(w)|
∣∣ ≤ C1 + 2 logC,

if dh(z, w) ≤ 1. From here, it is not difficult to see that logOF ′ lies in the Bloch

space. Consequently, by [GM05, Lemma J.1],

log |OF ′(z)| = 1

m(Iz)

∫
Iz

log |F ′|dm+O(1), z ∈ D,

where O(1) is a quantity bounded by a constant independent of z ∈ D. Combining

with the estimate (4.6), we get

log
1− |F (z)|

1− |z|
=

1

m(Iz)

∫
Iz

log |F ′|dm+O(1), z ∈ D. (4.7)

On the other hand, by Corollary 3.2, there is a universal constant L > 0 so that

log
1− |F (z)|

1− |z|
≤ log |F ′(ξ)|+ L, ξ ∈ Iz. (4.8)
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We pick M = M(ε) > 0 sufficiently large so that the estimates (4.7) and (4.8)

guarantee that

m

({
ξ ∈ Iz : log |F ′(ξ)| ≥ log

1− |F (z)|
1− |z|

+M

})
≤ εm(Iz), z ∈ D. (4.9)

Fix an arc I ⊂ ∂D and run the stopping time argument with the parameter

M1 = M + L to find pairwise disjoint arcs Jk ⊂ I with

log
1− |F (zJk)|

1− |zJk |
≥M1 + log

1− |F (zI)|
1− |zI |

.

Since

log |F ′(ξ)| ≥M + log
1− |F (zI)|

1− |zI |
, ξ ∈ Jk,

by Corollary 3.2, the total length of the arcs
∑
m(Jk) ≤ εm(I). By the assumption

(1.3) and the estimate (4.3), we have

|F ′(z)| ≤ |OF ′(z)| ≤ C
1− |F (z)|

1− |z|
≤ C1e

M1
1− |F (zI)|

1− |zI |
,

for any z ∈ QI \
⋃
kQJk .

(5)⇒ (2). Let I ⊂ ∂D be an arc. In view of the estimate (1.4), the angular derivative

satisfies

|F ′(ξ)| ≤ C(ε) · 1− |F (zI)|
1− |zI |

, ξ ∈ I \
⋃

Jk.

Since
∑
m(Jk) < εm(I), there exists c1 = c1(ε) > 0 such that

ω

(
zI ,

{
ξ ∈ ∂D : |F ′(ξ)| ≤ C(ε) · 1− |F (zI)|

1− |zI |

}
,D
)
≥ c1.

The proof is complete.

5 Carleson condition for critical points

In this section, we show that APHA mappings can be described using various Car-

leson measure conditions. The plan is to show the implications (3) ⇒ (6) ⇒ (7) ⇒
(4) of Theorem 1.1.
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5.1 Background on Möbius distortion

Recall that the Möbius distortion

µ(z) = 1− (1− |z|2)|F ′(z)|
1− |F (z)|2

of an analytic self-mapping F of the unit disk measures how much F deviates from

an automorphism of the disk at a point z ∈ D. The following lemma follows from a

normal families argument:

Lemma 5.1. Let F be an analytic self-mapping of the unit disk and µ be its Möbius

distortion.

(i) There exists a constant µ0 > 0 such that if F ′(c) = 0, then µ(w) > µ0 for any

w ∈ Bh(c, 1).

(ii) For any R > 0, there exists a sufficiently large constant N = N(R) so that if

Bh(z, 1) contains N critical points of F counted with multiplicity, then µ(w) > 1/2

for any w ∈ Bh(z,R).

We will also use the following lemma which characterizes inner functions of finite

entropy in terms of their Möbius distortion:

Lemma 5.2. An inner function F has finite entropy if and only if its Mobius dis-

tortion µ satisfies ∫
D
µ(z)

dA(z)

1− |z|
<∞. (5.1)

Proof. Without loss of generality, we can assume that F (0) = 0. By [Ivr19, Lemma

3.3], an inner function has finite entropy if and only if

lim
r→1

∫
|z|=r

log
1− |F (z)|2

1− |z|2
|dz| <∞,

in which case, ∫
∂D

log |F ′(z)|dm = lim
r→1

1

2π

∫
|z|=r

log
1− |F (z)|2

1− |z|2
|dz|.
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Applying Green’s formula on the disk {z : |z| ≤ r} and taking r → 1 shows that the

above expression is equal to

1

2π

∫
D

∆

(
log

1− |F (z)|2

1− |z|2

)
log

1

|z|
dA(z).

Since

∆

(
log

1− |F (z)|2

1− |z|2

)
=

(
2

1− |z|2

)2

−
(

2|F ′(z)|
1− |F (z)|2

)2

, z ∈ D,

the above integral is comparable to∫
D
(λ2(z)− λ2

F (z)) · λ−1(z) dA(z) �
∫
D
(λ(z)− λF (z)) dA(z) �

∫
D
µ(z)

dA(z)

1− |z|
,

which proves the lemma.

5.2 Carleson-Newman Blaschke products

A Blaschke product is called an interpolating Blaschke product if its zeros form an

interpolating sequence for bounded analytic functions in D. According to a celebrated

result of L. Carleson, a Blaschke product is interpolating if and only if its zeros are

separated in the hyperbolic metric and there exists a constant C > 0 such that∑
z∈QI :B(z)=0

(1− |z|) ≤ Cm(I), (5.2)

for any Carleson square QI ⊂ D. A proof can be found in [Gar07, Chapter VII].

Recall from the introduction that a Blaschke product B is a Carleson-Newman

Blaschke product if (5.2) holds, without requiring separation. It is well-known that

Carleson-Newman Blaschke products are precisely those Blaschke products which

can be factored into a finite product of interpolating Blaschke products.

In the following lemma, we gather several elementary properties of Carleson-

Newman Blaschke products that will be used below:

Lemma 5.3. Suppose B is a Carleson-Newman Blaschke product with zeros {zn}.
(a) For any ε > 0, there exists a δ > 0 such that

{z ∈ D : |B(z)| < δ} ⊂
⋃

Bh(zn, ε). (5.3)
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(b) For any ρ > 0, there exists an N = N(B, ρ) such that any disk of hyperbolic

radius ρ contains at most N zeros of B, counted with multiplicity.

(c) There exist constants δ, ε > 0 such that for any z ∈ D there exists w ∈ D
with dh(w, z) ≤ δ such that |B(w)| ≥ ε. Conversely, the existence of such constants

implies that B is a Carleson-Newman Blaschke product.

Proof. For interpolating sequences, (a) is just [KL69, Lemma 1]. If B = B1B2 · · ·Bk

is a finite product of interpolating Blaschke products, with constants δ1, δ2, . . . , δk

corresponding to ε for which the inclusion (5.3) holds, then (5.3) also holds for B

with δ = δ1δ2 . . . δk.

From (5.2), it is clear that any disk contained in the top part of a Carleson square

may contain a uniformly bounded number of zeros of B. This proves (b) for disks

of sufficiently small hyperbolic radius. To see the general case, it is enough to notice

that any disk of a fixed hyperbolic radius can be covered by a bounded number

of disks of small hyperbolic radius. Finally, (c) can be found in [MN04, Theorem

2.2].

For future reference, we record the following corollary:

Corollary 5.4. Suppose B is a Carleson-Newman Blaschke product with zeros {zn}.
For any ρ > 0, there exist constants δ,m > 0, an integer N ∈ N and a collection of

round annuli

An = {z ∈ D : rn < dh(zn, z) < Rn}

satisfying the following conditions:

(1) An ⊂ {z ∈ D : ρ < dh(zn, z) < 2ρ}.

(2) Rn/rn ≥ 1 +m.

(3) |B(z)| > δ for z ∈ An.

(4) Any point in the unit disk is contained in at most N of the annuli An.

Proof. By Lemma 5.3(b), there exists an integer N = N(B) so that any disk of

hyperbolic radius 2ρ contains at most N zeros of B, which a fortiori implies (4).

27



This allows us to choose the annuli An which satisfy the conditions (1), (2) with

m � 1/N . By replacing each annulus with the middle third sub-annulus, we can

guarantee that

(3′) dh
(
An, {z : B(z) = 0}

)
& 1/N .

An application of Lemma 5.3(a) provides a δ so that (3) holds.

5.3 Equivalence of (3), (6) and (7) in Theorem 1.1

(3)⇒ (6). Fix a point z ∈ D and let [z, z1] denote the geodesic arc joining z, z1 ∈ D.

From

dh(F (z1), F (z)) ≤
∫

[z,z1]

2|F ′(w)|
1− |F (w)|2

|dw|,

it is clear that ∫
[z,z1]

µ(w)
2|dw|

1− |w|2
≤ dh(z1, z)− dh(F (z1), F (z)).

By the triangle inequality, we have

dh(F (z1), F (z)) ≥ dh(|F (z1)|, |F (z)|) ≥ dh(0, |F (z1)|)− dh(0, |F (z)|).

In particular, if z1 belongs to a geodesic ray which connects z to a point ξ ∈ Iz, then∫
[z,z1]

µ(w)
2|dw|

1− |w|2
≤
{

log
1− |z|
1− |z1|

+O(1)

}
−
{

log
1− |F (z)|
1− |F (z1)|

+O(1)

}
≤ log

1− |F (z1)|
1− |z1|

− log
1− |F (z)|

1− |z|
+O(1).

Taking z1 → ξ along [z, ξ), we obtain∫
[z,ξ)

µ(w)
2|dw|

1− |w|2
≤ log |F ′(ξ)| − log

1− |F (z)|
1− |z|

+O(1).

It remains to integrate over ξ ∈ I and invoke the estimate (1.2).
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(6)⇒ (7). By Lemma 5.1(ii), the Carleson condition for the Möbius distortion given

in the estimate (1.5) implies that the number of critical points of F (counted with

multiplicity) in any disk of hyperbolic radius 1 is uniformly bounded above. In other

words, any point in the unit disk is contained in a uniformly bounded number of

disks Bh(c, 1) with c ∈ critF . The Carleson estimate for critical points∑
c∈QI :F ′(c)=0

(1− |c|) . m(I),

now follows from Lemma 5.1(i).

To see that F satisfies Condition (7), it remains to show that F is a maximal

Blaschke product. From Lemma 5.2, we know that F has finite entropy. According

to [Ivr19, Corollary 2.2], F is a maximal Blaschke product if and only if the inner

factor of F ′ is a Blaschke product.

We proceed by contradiction: if F is not a maximal Blaschke product, then F ′ has

a nontrivial singular inner factor. Let σ = σ(F ′) be the corresponding singular mea-

sure. As explained in [IK22, Theorem 1.2], for σ a.e. ξ ∈ ∂D, the non-tangential limit

limr→1 F (rξ) exists and lies in the open unit disk D. In particular, by Lemma 2.3,

µ(z) → 1 as z → ξ non-tangentially. As a result, the measure µ(z)(1 − |z|)−1dA(z)

violates the Carleson condition in the Carleson squares QI associated to small arcs

I centered at ξ of lengths tending to 0.

(7)⇒ (4). Since C is a Blaschke sequence, the derivative of the maximal Blaschke

product F with critical set C is in the Nevanlinna class by [Kra13, Theorem 4.4].

Let F ′ = BO be the inner-outer factorization of F ′. By Lemma 5.3(c), there exist

constants ε > 0 and δ > 0 such that for any z ∈ D, there exists a w ∈ D with

dh(z, w) ≤ δ such that |F ′(w)| ≥ ε|O(w)|. As |O(z)| � |O(w)|,

1− |F (z)|
1− |z|

� 1− |F (w)|2

1− |w|2
≥ |F ′(w)| ≥ ε|O(w)| � |O(z)|.

The estimate in the other direction always holds in view of Dyakonov’s inequality

(1.6).
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6 Aleksandrov-Clark measures

In this section, we show Theorem 1.3. Given a positive Borel measure σ on the unit

circle, recall that H[σ] is defined as

H[σ](z) =

∫
∂D

dσ(ξ)

|ξ − z|2
, z ∈ D.

Let u be the Poisson extension of σ to D. Note that H[σ](z) = u(z)/(1 − |z|2),

z ∈ D. For a Carleson square Q = QI , we denote its center by zQ = zI . By

Harnack’s inequality, for any Carleson square Q, we have

1− |z|2

1− |zQ|2
.

u(z)

u(zQ)
.

1− |zQ|2

1− |z|2
, z ∈ Q.

In particular, H[σ] is bounded below in D by a positive constant and for any Carleson

square Q, we have

H[σ](zQ) . H[σ](z), z ∈ Q. (6.1)

Theorem 1.3 follows from the following more general result:

Theorem 6.1. Let σ be a Borel measure on ∂D and let H[σ] be defined by (1.8).

The following statements are equivalent:

(a) The measure σ is the Aleksandrov-Clark measure of some APHA mapping F

and some α ∈ ∂D.

(b) ∆
(
logH[σ](z)

)
(1− |z|2)dA(z) is a Carleson measure.

(c) There exists a constant C > 0 such that for any Carleson square Q ⊂ D and

any M > 1, we have ∑
Qj∈A(Q,M)

`(Qj) .M−C`(Q),

where A(Q,M) is the collection of maximal dyadic subsquares {Qj} of Q such that

H[σ](zQj) ≥MH[σ](zQ).

(d) The function logH[σ] ∈ BMO(∂D) and

1

|I|

∫
I

logH[σ](ξ)dm(ξ) = logH[σ](zI) +O(1), (6.2)

uniformly over all arcs I ⊂ ∂D.
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(a) ⇔ (b). Let u be the Poisson extension of σ to D. Since u is the real part of

(α + F )/(α− F ) for some α ∈ ∂D, a quick computation shows that

2|F ′(z)|
1− |F (z)|2

=
|∇u(z)|
u(z)

, z ∈ D.

Since ∆(log u) = −|∇u|2/u2, we have

4

(1− |z|)2
− 4|F ′(z)|2

(1− |F (z)|2)2
= ∆

(
− log(1− |z|2) + log u(z)

)
= ∆

(
logH[σ](z)

)
, z ∈ D.

In other words,

4

(
1− (1− |z|2)2|F ′(z)|2

(1− |F (z)|2)2

)
1

1− |z|2
= ∆

(
logH[σ](z)

)
(1− |z|2), z ∈ D.

By Condition (6) of Theorem 1.1, F is an APHA mapping if and only if

∆
(
logH[σ](z)

)
(1− |z|2)dA(z)

is a Carleson measure. This proves the equivalence of statements (a) and (b).

(b) ⇒ (c). Let M0 be a large constant to be fixed later. Fix a Carleson square Q ( D
and 0 < r < 1. Applying Green’s identity to the functions logH[σ](z) and log r

|z| in

the domain Ω(r) = Ω ∩ {z : |z| ≤ r}, where Ω = Q \
⋃
Qj∈A(Q,M0) Qj, we get∫

∂Ω(r)

log
(
H[σ](z)

)
∂n log

r

|z|
ds(z)−

∫
∂Ω(r)

log
r

|z|
∂n
(
logH[σ](z)

)
ds(z) =

= −
∫

Ω(r)

∆
(
logH[σ](z)

)
log

r

|z|
dA(z).

Since H[σ](z) = u(z)/(1− |z|2), Harnack’s inequality tells us that

log
r

|z|
· ∂n
(
logH[σ](z)

)
is uniformly bounded in Ω(r), independent of 1/2 < r < 1. Consequently, the

second integral is bounded by a constant multiple of `(Q). By the assumption, the
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area integral is also bounded by a constant multiple of `(Q). Hence, there exists a

constant C1 > 0, independent of 1/2 < r < 1, such that∣∣∣∣ ∫
∂Ω(r)

log
(
H[σ](z)

)
∂n log

r

|z|
ds(z)

∣∣∣∣ ≤ C1`(Q). (6.3)

Let E = E(r) =
{
ξ ∈ ∂D : rξ ∈ Ω(r)

}
and A(r) ⊂ A(Q,M) be the subcollection

of squares with `(Qj) > 1− r. As ∂n log r
|z| vanishes on the radial portion of ∂Ω(r),

we have ∫
∂Ω(r)

log
(
H[σ](z)

)
∂n log

r

|z|
ds(z) =∫

∂Q∩{1−|z|=`(Q)}
log
(
H[σ](z)

)
ds(z)−

∑
Qj∈A(r)

∫
∂Qj∩{1−|z|=`(Qj)}

log
(
H[σ](z)

)
ds(z)

−
∫
E

log
(
H[σ](rξ)

)
dm(ξ) +O(`(Q)),

where the error term comes from replacing ∂n log(r/|z|) = −1/|z| with 1 and using

the estimate H[σ](z) ≤ σ(∂D)/(1− |z|)2 for z ∈ D.

By Harnack’s inequality, logH[σ](z)− logH[σ](w) = O(1) if the hyperbolic dis-

tance dh(z, w) = O(1). Therefore,∫
∂Ω(r)

log
(
H[σ](z)

)
∂n log

r

|z|
ds(z) = log

(
H[σ](zQ)

)
`(Q)−

∑
Qj∈A(r)

log
(
H[σ](zQj)

)
`(Qj)

−
∫
E

log
(
H[σ](rξ)

)
dm(ξ) +O(`(Q)).

By construction, logH[σ](zQj) = logH[σ](zQ) + logM0 + O(1). Putting the above

estimates together, we obtain

logH[σ](zQ) =
∑

Qj∈A(r)

(
logH[σ](zQ) + logM0

)`(Qj)

`(Q)
+

∫
E

logH[σ](rξ)
dm(ξ)

`(Q)
+O(1).

From (6.1), we see that logH[σ](rξ) ≥ logH[σ](zQ) + O(1) for any ξ ∈ E. Since∑
Qj∈A(r) `(Qj) +m(E) = `(Q), there exists a constant C > 0 such that

(logM0)
∑
j∈A(r)

`(Qj) ≤ C`(Q).
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Taking r → 1, we arrive at ∑
Qj∈A(Q,M0)

`(Qj) ≤
C

logM0

`(Q).

We now fix M0 ≥ 2eC so that ∑
Qj∈A(Q,M0)

`(Qj) ≤
1

2
`(Q).

Notice that for any k ∈ N, each square in A(Q,Mk
0 ) is contained in one of the squares

in A(Q,Mk−1
0 ). Consequently, if MN−1

0 ≤ M ≤ MN
0 for some positive integer N ,

then ∑
Qj∈A(Q,M)

`(Qj) ≤
1

2N−1
`(Q) . M−C`(Q),

where C = (log2M0)−1. This proves (c).

(c) ⇒ (b). Pick M0 > 0 large enough so that for any Carleson square Q, we have∑
Qj∈A(Q,M0)

`(Qj) ≤
1

2
`(Q).

Fix a Carleson square Q0 and consider the domain

Ω0(Q0) = Q0 \
⋃

Qj∈A(Q0,M0)

Qj.

For each Qj ∈ A(Q0,M0), we form an analogous domain

Ω(Qj) = Qj \
⋃

Ql∈A(Qj ,M0)

Ql.

Set Ω1(Q0) =
⋃
Qj∈A(Q0,M0) Ω(Qj). Continuing inductively, we arrive at the decom-

position Q0 =
⋃
n Ωn(Q0). If Q is one of the Carleson squares appearing in the

construction, then∣∣logH[σ](z)− logH[σ](zQ)
∣∣ ≤ logM0 +O(1), z ∈ Ω(Q).
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Applying Green’s identity as in the proof of (b) ⇒ (c) shows that∫
Ω(Q)

∆
(
logH[σ](z)

)
log

1

|z|
dA(z) ≤ C(M0)`(Q).

Summing over all Carleson squares appearing in the construction, we obtain∫
Q0

∆
(
logH[σ](z)

)
log

1

|z|
dA(z) . C(M0)`(Q),

as desired.

(d) ⇒ (c). Let Q = QI be a Carleson square. By (6.2), there exists a constant L of

size O(1), such that each Carleson square in the collection A(Q,M) is contained in

a Carleson square from the family B(M) of maximal dyadic subsquares Qj = QIj of

Q such that

1

m(Ij)

∫
Ij

logH[σ](ξ)dm(ξ) ≥ 1

m(I)

∫
I

logH[σ](ξ)dm(ξ) + logM − L.

Since logH[σ] ∈ BMO(∂D), the John-Nirenberg Theorem tells us that there exists

a universal constant c > 0 such that∑
Qj∈B(M)

`(Qj) . e−c logM`(Q).

As the above statement a fortiori holds for A(Q,M) in place of B(M), this proves

(c).

(c) ⇒ (d). Note that assumption (c) gives that supr<1H[σ](rξ) <∞ for m a.e. ξ ∈
∂D. It follows that

H[σ](ξ) ≤ lim sup
r→1

H[σ](rξ) < ∞, m a.e. ξ ∈ ∂D.

Pick M > 1 large enough so that M−C < 1/10. By estimate (c), we have

m
({
ξ ∈ I : H[σ](ξ) ≤MH[σ](zI)

})
≥ 9

10
m(I),
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for any arc I ⊂ ∂D. Recall from (6.1) that H[σ](zI) . H[σ](ξ) for any ξ ∈ I.

Consequently,

m
({
ξ ∈ I : H[σ](zI) . H[σ](ξ) ≤MH[σ](zI)

})
≥ 9

10
m(I),

for any arc I ⊂ ∂D. A classical result of Stromberg tells us that logH[σ] ∈ BMO(∂D)

and
1

m(I)

∫
I

logH[σ]dm = logH[σ](zI) +O(M).

See Exercise 4 on [Gar07, p. 261].

7 Lyapunov exponents

Let F be an inner function with F (0) = 0 and {σα : α ∈ ∂D} be the collection of its

Aleksandrov-Clark measures. As explained in the introduction, each measure σα is a

singular probability measure on the unit circle supported on the set of points where

F has radial limit α. Recall that if the measure

σα =
∑

F (β)=α

|F ′(β)|−1δβ, α ∈ ∂D,

is discrete, then its Lyapunov exponent χ(σα) is given by

χ(σα) =

∫
∂D

log |F ′(ξ)|dσα(ξ) =
∑

F (β)=α

|F ′(β)|−1 log |F ′(β)|, α ∈ ∂D.

Lemma 7.1. An inner function F has finite entropy if and only if for m a.e. α ∈ ∂D,

the measure σα is discrete and the function χ(σα) belongs to L1(∂D).

Proof. Suppose that F has finite entropy. Since |F ′(ξ)| < ∞, for m a.e. ξ ∈ ∂D,

the measure σα is discrete for m a.e. α ∈ ∂D. By the Aleksandrov disintegration

theorem

dm(ξ) =

∫
∂D
dσα(ξ)dm(α),
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we have ∫
∂D

log |F ′(ξ)|dm(ξ) =

∫
∂D

∫
∂D

log |F ′(ξ)|dσα(ξ)dm(α)

=

∫
∂D
χ(σα)dm(α). (7.1)

Conversely, assume that σα is a discrete measure and χ(σα) <∞ for m a.e. α ∈ ∂D.

Let E ⊂ ∂D be the Lebesgue measure zero set of points α ∈ ∂D for which σα is not

discrete. By Löwner’s lemma, its pre-image F−1(E) ⊂ D also has Lebesgue measure

zero. Consequently, |F ′(ξ)| < ∞ for m a.e. ξ ∈ ∂D. The identity (7.1) then implies

that F has finite entropy.

The following lemma says that the Lyapunov exponent χ(σα) defines a lower

semicontinuous function on the unit circle:

Lemma 7.2. Suppose αn is a sequence of points on the unit circle converging to α.

If the measures {σαn} are discrete and the Lyapunov exponents χ(σαn) are uniformly

bounded, then σα is also discrete and χ(σα) ≤ lim infn→∞ χ(σαn).

In view of Julia’s lemma, for any α ∈ ∂D,

|F ′(α)| = lim inf
z→α

1− |F (z)|
1− |z|

.

In particular, if αn → α, then |F ′(α)| ≤ lim infn→∞ |F ′(αn)| and so the function

α→ |F ′(α)| is lower semicontinuous on the unit circle.

Proof. There exists a constant M > 0 such that χ(σαn) ≤ M for any n ∈ N. From

the definition of the Lyapunov exponent, it is easy to see that

σαn
(
{β : |F ′(β)| ≤ N}

)
≥ 1− M

logN
, n = 1, 2, . . . .

As σαn converges weakly to σα and β → |F ′(β)| is lower semicontinuous, we also

have

σα
(
{β : |F ′(β)| ≤ N}

)
≥ 1− M

logN
.

Consequently, the limiting measure σα is discrete and it makes sense to talk about its

Lyapunov exponent. The weak convergence σαn → σα and the lower semicontinuity

of β → log |F ′(β)| give χ(σα) ≤ lim infn→∞ χ(σαn).
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In the remainder of this section, we show Theorem 1.4 which says that for AHPA

mappings, χ(σα) coincides with a C∞(∂D) function on a set of full Lebesgue measure.

7.1 Weighted composition operators and APHA maps

Let F be an inner function satisfying the conditions of Theorem 1.1 with F (0) = 0.

Let OF ′ be the outer part of F ′. We consider the family of weighted composition

operators

Csg = (g ◦ F )O−sF ′ (7.2)

acting on the weighted Bergman spaces A2
α with α > −1, which consist of analytic

functions g on D with

‖g‖2
A2
α

=
1

cα

∫
D
|g(z)|2(1− |z|2)αdA(z) <∞,

where the constant cα is chosen so that ‖1‖A2
α

= 1 and 1 is the function that is

identically 1 on the unit disk. In terms of Taylor series, we have

g(z) =
∞∑
n=0

anz
n =⇒ ‖g‖2

A2
α
�

∞∑
n=0

n−1−α|an|2.

Lemma 7.3. Fix a negative real number σ < 0. Then, for α ≥ −1−2σ, the weighted

composition operators Cs define an analytic Banach-valued function from the right

half-plane C+
σ := {s ∈ C : Re s > σ} to the Banach space of bounded linear operators

from A2
α to itself.

Proof. Step 0. By the Littlewood-Paley identity, we have

‖Csg‖2
A2
α
� |g(0)O−sF ′ (0)|2 +

∫
D

∣∣((g ◦ F )(z)(OF ′)−s(z)
)′∣∣2(1− |z|)2+αdA(z).

The constant term |g(0)O−sF ′ (0)|2 varies analytically for s ∈ C and is bounded by

|OF ′(0)|−2 Re s‖g‖2
A2
α
. Meanwhile, the above integral splits into two parts:

I =

∫
D

∣∣(g ◦ F )′(z)O−sF ′ (z)
∣∣2(1− |z|)2+αdA(z)
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and

II = |s|2
∫
D

∣∣(g ◦ F (z)) · (OF ′(z))−s(logOF ′(z))′
∣∣2(1− |z|)2+αdA(z).

Step 1. By Statement (4) of Theorem 1.1, we have

|OF ′(z)| � 1− |F (z)|
1− |z|

, z ∈ D.

A change of variables shows that

I .
∫
D
|g′(z)|2N(z)dA(z),

where

N(z) = (1− |z|)−2 Re s
∑

F (w)=z

(1− |w|)2+α+2 Re s.

Note that by the remark following Lemma 3.4, there exists a constant C = CF > 0

such that ∑
F (w)=z

(1− |w|) ≤ C(1− |z|), z ∈ D.

In particular, for any β ≥ 1, we have∑
F (w)=z

(1− |w|)β ≤ Cβ(1− |z|)β, z ∈ D.

Taking β = 2 + α + 2 Re s ≥ 1, we deduce

N(z) = (1− |z|)−2 Re s
∑

F (w)=z

(1− |w|)2+α+2 Re s . (1− |z|)2+α.

Consequently, I . ‖g‖2
A2
α
.

Step 2. We now estimate II under the additional assumption that |OF ′(z)| �
|F ′(z)| at all points z ∈ D. While this simplifying assumption does not always hold,

the computation below will serve as a guide in the general case. Since logOF ′ lies in

the Bloch space, we have

II .
∫
D

∣∣(g ◦ F )(z) · (OF ′(z))−s
∣∣2(1− |z|)αdA(z).
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Using that |F ′(z)| � |OF ′(z)| � (1− |F (z)|)/(1− |z|), z ∈ D, we get

II .
∫
D

∣∣(g ◦ F )(z)|2
(

1− |F (z)|
1− |z|

)−2 Re s−2

|F ′(z)|2(1− |z|)αdA(z).

Now, a change of variables shows that

II .
∫
D
|g(z)|2N2(z)dA(z),

where

N2(z) =
∑

F (w)=z

(
1− |z|
1− |w|

)−2−2 Re s

(1− |w|)α

= (1− |z|)−2−2 Re s
∑

F (w)=z

(1− |w|)α+2+2 Re s.

Arguing as above shows that N2(z) . (1 − |z|)α if 2 + α + 2 Re s ≥ 1. As a result,

II . ‖g‖2
A2
α

under the assumption that |OF ′(z)| � |F ′(z)| at all points z ∈ D.

Step 3. Recall that for an inner function F satisfying the conditions of Theorem

1.1, the inner part of F ′ is a Carleson-Newman Blaschke product B. Corollary

5.4 produces constants m, δ > 0, N ∈ N and a collection of round annuli Ac =

Ah(c, rc, Rc) associated to the critical points {c ∈ D : F ′(c) = 0} of F such that:

(1) Ac ⊂ {z ∈ D : 1 < dh(z, c) < 2}.

(2) Rc/rc ≥ 1 +m.

(3) |B(z)| > δ on any annulus Ac.

(4) The collection {Ac : F ′(c) = 0} is quasi-disjoint in the sense that any point in

the unit disk is contained in at most N such annuli.

By (2) and the maximum modulus principle or subharmonicity considerations,

for any holomorphic function ϕ on the unit disk we have∫
Bh(c,1)

|ϕ(z)|(1− |z|)αdA(z) .
∫
Ac

|ϕ(z)|(1− |z|)αdA(z), c ∈ D. (7.3)
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Form the sets

U =
⋃

c:F ′(c)=0

Bh(c, 1) and A =
⋃

c:F ′(c)=0

Ac.

By Lemma 5.3(a), |B(z)| is bounded below on D \ U by a positive constant that

depends on F .

Step 4. To give a rigorous proof for the estimate II . ‖g‖2
A2
α
, we split the integral

over U and D \ U . Since |OF ′(z))| � |F ′(z)| for z ∈ D \ U , the integral∫
D\U

∣∣(g ◦ F )(z) · (OF ′(z))−s
∣∣2(1− |z|)αdA(z)

may be handled as in Step 2. The estimate (7.3) and the quasi-disjointness of the

annuli {Ac : F ′(c) = 0} yield∫
U

∣∣g(F (z))(OF ′(z))−s
∣∣2(1− |z|)αdA(z) .

∫
A

∣∣g(F (z))(OF ′(z))−s
∣∣2(1− |z|)αdA(z),

which also fits into the framework of Step 2 as |OF ′(z))| � |F ′(z)| for z ∈ A.

Step 5. Continuity. In this step, we notice that the operators Cs vary continuously

in s ∈ C+
σ . To this end, we need to show that the operator norm of Ct − Cs tends

to 0 as t→ s. This may be checked using the dominated convergence theorem. We

leave the details to the reader.

Step 6. Analyticity. By Morera’s theorem, to verify that the operator Cs varies

analytically in s, it suffices to check that for any loop γ ⊂ C+
σ ,
∫
γ
Cs ds is the zero

operator. Note that the operator-valued integral is well-defined as Cs is continuous

in s by Step 5. By Cauchy’s theorem, we have[(∫
γ

Cs ds

)
g

]
(z) = g(F (z))

∫
γ

(OF ′(z))−sds = 0,

as desired.

Proof of Theorem 1.4. Since the Banach space derivative Ċ0 = (d/ds)|s=0 Cs exists,

it coincides with pointwise derivative g(z) → (d/ds)|s=0(Csg(z)). Consequently, Ċ0

is just the weighted composition operator

g → −(g ◦ F ) log(OF ′).
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Taking the dual with respect to the L2 pairing on the unit circle, we see that the

weighted transfer operator

L̇0g(α) = −
∫
∂D

log(OF ′)g dσα

acts on the Dirichlet-type spaces D1+α that are dual to A2
α, which consist of holo-

morphic functions h(z) =
∑
anz

n on the unit disk for which

∞∑
n=0

n1+α|an|2 <∞.

We refer the reader to [IU23] for an in-depth discussion on the duality between

composition and transfer operators: the unweighted case is discussed in Sections 3.1

and 3.2, while the weighted case is presented in Section 4.1. Taking the constant

function h = 1, we see that

Re L̇s1(α) = −χ(σα)

belongs to the Sobolev space W β,2(∂D) for any β = 1+α
2

> 0. Consequently, χ(σα)

agrees with a C∞(∂D) function a.e.
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