Approximation by Cantor Sets Julia Sets

Oleg Ivrii

November 28, 2013

Abstract

In this note, we show that any compact set in the plane can be approximated by Cantor set Julia sets in the Hausdorff topology.

1 Overview

We show the following:

Theorem 1. Any compact set can be approximated in the Hausdorff topology by Julia sets of polynomials which are topologically Cantor sets.

Proof. First, approximate the given compact set by a finite set $\{p_1, p_2, \ldots, p_n\}$. Form the polynomial

$$P_1(z) = (z - p_1)(z - p_2) \cdots (z - p_n).$$

Set $P_a(z) := a \cdot P(z)$. We first show that as $|a| \to \infty$, the Julia set $\mathcal{J}(P_a)$ approaches $\{p_1, p_2, \ldots, p_n\}$ in the Hausdorff topology. Indeed, any point for which $|P_1(z)| > \epsilon$ iterates to infinity under the dynamics of P_a : in one step, z lies outside the disk $D(0, \epsilon |a|)$ and from then on, it converges to infinity very quickly.

It is left to see that $\mathcal{J}(P_a)$ is a Cantor set. If $\mathcal{J}(P_a)$ is not a Cantor set, then P_a must have an attracting or parabolic orbit or a Siegel disk. This is impossible because on sets of the form $|P_1(z)| < \epsilon$, the derivative $|P'_a(z)|$ is very large (and in particular, greater than 1).

References

- [L] Lindsey, K. A. Shapes of polynomial Julia sets, arxiv:1209.0143v2, 2013.
- [M] Milnor, J. Dynamics in One Complex Variable, Third Edition, Annals of Mathematics Studies, 2006.