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Abstract

In this note, we give an estimate for the dimension of the image of the unit

circle under a quasiconformal mapping whose dilatation has small support.

We also prove an analogous estimate for the rate of growth of a solution of

a second-order parabolic equation given by the Feynman-Kac formula with

a sparsely supported potential and introduce a dictionary between the two

settings.

1 Introduction

For a Beltrami coefficient µ defined on the complex plane with ‖µ‖∞ < 1, let w̃µ

denote the normalized solution of the Beltrami equation ∂w = µ ∂w which fixes the

points 0, 1,∞. In the classical question on dimensions of quasicircles, one is interested

in maximizing the Minkowski dimension of w̃µ(S1) over all Beltrami coefficients on

the plane with ‖µ‖∞ ≤ k for a fixed 0 ≤ k < 1. This question has been studied by

many authors, although a complete answer is currently out of reach. One notable

result in this area is due to S. Smirnov [16] who gave the upper bound

D(k) = sup
‖µ‖∞≤k

M. dim w̃µ(S1) ≤ 1 + k2, for all k ∈ [0, 1), (1.1)

while recently it was observed that D(k) = 1 + k2Σ2 +O(k8/3−ε) for some constant

0.87913 < Σ2 < 1, see the works [2, 9, 11].
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In the present paper, we are interested in the case when the support of µ is

contained in a garden

G =
∞⋃
j=1

Bj, dD(Bi, Bj) > R, i 6= j, (1.2)

made up of countably many horoballs Bj ⊂ D, any two of which are at least a

distance R apart in the hyperbolic metric. Equivalently, we require the horoballs

B∗j = {z ∈ D : dD(z,Bj) ≤ R/2} to be disjoint.

Let µ+(z) = µ(1/z) ·(z2/z2) denote the reflection of µ in the unit circle. Since the

support of µ+ is contained in the exterior of the unit disk, w̃µ
+

: D→ C is conformal.

Our first main theorem states:

Theorem 1.1. Suppose µ is a Beltrami coefficient on the unit disk with ‖µ‖∞ ≤ 1.

If µ has sparse support, that is, its support is contained in a garden G given by (1.2),

then

M. dim w̃kµ
+

(S1) ≤ 1 + Ce−R/2k2, k < min
(

0.49,
c

2R

)
. (1.3)

1.1 Integral means spectra

To prove Theorem 1.1, we will analyze integral means of conformal mappings. For a

conformal mapping f : D→ C, its integral means spectrum is given by

βf (p) = lim sup
r→1−

log
´
|z|=r |f

′(z)|p dθ
log 1

1−r
, p > 0. (1.4)

The connection between integral means and the Minkowski dimension of the bound-

ary of the image domain comes from the relation

βf (p) = p− 1 ⇐⇒ p = M. dim f(S1), (1.5)

valid when f(S1) is a quasicircle, see for instance [15, Corollary 10.18]. In view of

the above identity, to prove Theorem 1.1, it suffices to show:

Theorem 1.2.

βw̃kµ+ (p) ≤ Ce−R/2k2p2/4, k < 0.49, kp < c/R. (1.6)
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The advantage of estimating integral means comes from the fact that they allow

us to view Theorem 1.1 as a growth problem. To make this feature more visible,

consider the Brownian spectrum of a conformal mapping :

β̃f (p) := lim sup
t→∞

1

t
logE0|f ′(Bt)|p, (1.7)

= lim sup
t→∞

1

t
log

ˆ
D
|f ′(z)|p · pt(0, z)dAhyp(z). (1.8)

In the equations above, Bt is hyperbolic Brownian motion, that is, geometric Brow-

nian motion in D equipped with the hyperbolic metric ρ = 2|dz|
1−|z|2 . The subscript “0”

in E0 indicates that Brownian motion is to be started at the origin. Finally, pt(0, z)

is the hyperbolic heat kernel which measures the probability density that a Brownian

particle travels from 0 to z in time t.

In Section 4, we will show the elementary estimate β̃f (p) ≥ βf (p) for any p > 0;

this follows from the fact that the expected displacement of hyperbolic Brownian

motion is linear in time. Therefore, to prove Theorem 1.2, we may estimate the

Brownian spectrum instead.

Remark. The use of hyperbolic Brownian motion is inspired by the work [13] of

T. Lyons who give an alternative perspective on Makarov’s law of the iterated loga-

rithm for Bloch functions. As noted by I. Kayumov in [12], the study of the behaviour

of the integral means spectrum at the origin is slightly more general, so our consid-

erations may be viewed as an extension of Lyons’ ideas.

1.2 Growth of solutions of PDEs

Our proof of Theorem 1.2 is inspired by an analogous statement from parabolic PDEs

whose solution is given by the Feynman-Kac formula. Let ∆hyp = ρ(x)−2∆ denote

the hyperbolic Laplacian and Ahyp = ρ(x)2dA be the hyperbolic area element. For a

positive and bounded potential V , we consider the second order parabolic differential

equation
∂u

∂t
=

1

2
·∆hypu+ V (x)u(x, t), (x, t) ∈ D× (0,∞), (1.9)

where the initial condition u0(x) = u(x, 0) = limt→0+ u(x, t) is a smooth compactly

supported function. If the potential V ≡ 0, then (1.9) reduces to the heat equation.
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As is well known, the unique weak solution to (1.9) which is bounded on [0, T ]× D
for any T > 0, is given by Feynman-Kac formula

ut(x) = Ex
{
u0(Bt) exp

ˆ t

0

V (Bs)ds

}
. (1.10)

In this paper, we define (1.10) to be the solution of (1.9) even if it does not possess

sufficient regularity to be considered a genuine solution. For example, if V is not

continuous, then ut cannot be simultaneously C2 in x and C1 in t.

There are many possible ways to measure the growth of solutions of PDEs but,

for our purposes, the Lyapunov exponent

βV := lim sup
t→∞

1

t
log

ˆ
D
ut(x)dAhyp(x) (1.11)

is the most natural. Since the initial condition u0 was positive, ut will remain positive

for all time and the total mass of the solution
´
D ut(x)dAhyp(x) will be increasing in

t. Our second main theorem is an analogue of Theorem 1.2 for sparse potentials:

Theorem 1.3. For a potential V of sparse support, in that V = χG where G is of

the form (1.2),

βV (p) := βp2V ≤ Ce−R/2p2,

for 0 < p < p0(R) sufficiently small.

Remark. The choice of notation is justified by the observation that the Lyapunov

spectra βV (p) possess many of the same properties as integral means spectra of

conformal mappings, for instance, they are increasing and convex functions in p.

1.3 Alternative ideas and remarks

The main difficulty in Theorem 1.1 is to make use of the separation condition between

horoballs. Perhaps the most obvious attempt is to take a Beltrami coefficient µ

supported on G and cook up a Beltrami coefficient ν supported on D with ‖ν‖∞ <

‖µ‖∞ and w̃µ = w̃ν on S1 and then apply the general bounds on dimensions of

quasicircles mentioned above. However, it is easily seen that such an approach is

impossible: there are sparse k-quasicircles which are genuine k-quasicircles. In fact,
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this is true even if G ⊂ D is composed of a single horoball – we only need G to contain

round balls of arbitrarily large hyperbolic diameter. This easily follows from the fact

that the Teichmüller norm can be described by the dual pairing

‖µ‖T = inf
ν∼µ
‖µ‖∞ = sup

‖q‖=1

ˆ
D
µ · q,

where the supremum is taken over all integrable quadratic differentials q on the unit

disk with ‖q‖ =
´
D |q| = 1.

The reader may also try to improve on the arguments of Smirnov [16] who used

complex interpolation techniques to give an elegant proof of the bound D(k) ≤ 1+k2

suggested by Astala [1]. However, in this set of ideas, it seems unlikely that one can

make use of the sparsity assumption on the support. Another natural approach is

to extend the arguments of C. Bishop [4, Lemma 6.4] which involve a corona-type

construction. While these ideas do utilize the sparsity of the support, it is not really

clear how to exploit the martingale nature of Bloch functions in this context, which

is necessary to obtain quadratic growth.

In [11, Section 9], an analogue of Theorem 1.1 was proved using the techniques

of Becker and Pommerenke for estimating integral means of univalent functions for

gardens G that are unions of thickened geodesics (unit neighbourhoods of hyperbolic

geodesics) with the same separation condition. The case of horoballs introduces non-

uniformity and therefore requires new ideas. A priori, it was not clear to the author

how to extend these arguments either, although it can be done – see Section 5. This

approach can be most easily generalized to gardens composed of objects other than

horoballs.

Another perspective was offered by N. Michalache via the notion of mean wiggly

sets from [8]. Here, one seeks to decompose S1 = B tG so that w̃kµ
+

(G) satisfies a

mean wiggliness condition while B has dimension less than 1− ε. Hölder properties

of quasiconformal mappings guarantee that for small k > 0, M. dim w̃kµ
+

(S1) =

M. dim w̃kµ
+

(G), from which point the mean wiggly machinery can be applied. A

possible definition of G could be G =
{
eiθ ∈ S1 : β(θ) < Ce−R/2

}
where

β(θ) = lim sup
r→1

`hyp

(
[0, reiθ] ∩ G

)
`hyp

(
[0, reiθ]

) , (1.12)
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with `hyp being the hyperbolic length.

The author’s original proof of Theorem 1.1, which will be presented in Section

4, was motivated by the observation that hyperbolic Brownian motion started at a

point z0 /∈ G spends little time in the garden: for almost every Brownian path Bt,

lim sup
t→∞

´ t
0
χG(Bs)ds

t
≤ Ce−R/2. (1.13)

This may be viewed as a stochastic analogue of mean wiggliness. Since we will not

actually use (1.13) in this paper, we will not give a proof.

1.4 Dynamical considerations

Suppose Γ is a cofinite area Fuchsian group with at least one cusp. One may construct

a Beltrami coefficient µ ∈M(D)Γ satisfying the hypotheses of the theorem by lifting

a Beltrami coefficient on D/Γ supported on a collar neighbourhood of one of the

cusps. For these special dynamical coefficients, one can give an alternative proof of

Theorem 1.1 based on McMullen’s identity [14, 10] which says that

d2

dt2

∣∣∣∣
t=0

M. dim w̃tµ(S1) =
4

3
· lim
r→1−

1

2π

ˆ
|z|=r

∣∣∣∣v′′′µ+ρ2
(reiθ)

∣∣∣∣2 dθ, (1.14)

where

v′′′µ+(z) = − 6

π

ˆ
|z|>1

µ+(ζ)

(ζ − z)4
|dζ|2.

As explained in [14], since v′′′µ+ is naturally a quadratic differential, to measure its size,

one should divide by the square of the Poincaré metric. According to [10, Section 2],

one has

d2

dt2

∣∣∣∣
t=0

M. dim w̃tµ(S1) ≤ C · lim
r→1−

|G ∩ Sr|, (1.15)

≤ C · lim sup
r→1−

1

| log(1− r)|

ˆ r

0

|G ∩ Ss|
ds

1− s
, (1.16)

where Sr = {z : |z| = r}. It is not difficult to see that for a garden G which

is the union of horoballs a hyperbolic distance R apart, the quantity (1.16) is ≤
Ce−R/2, which is essentially the estimate we want. (To be honest, it is not clear how
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to use thermodynamic formalism to obtain a uniform estimate for M. dim w̃tµ(S1)

independent of µ and the underlying dynamical system.)

In any case, McMullen’s identity fails for general Beltrami coefficients µ, and

the bound (1.16) is not enough since one can concentrate the Beltrami coefficient to

expand a small arc of the unit circle and still obtain maximal dimension distortion.

Notation

We write C for the complex plane, D = {z ∈ C : |z| < 1} for the unit disk and

S1 = {z ∈ C : |z| = 1} for the unit circle. To denote balls, circles and annuli, we

use B(x, r) = {z : |z − x| = r}, Sr = {z : |z| = r} and A(r, R) = {z : r < |z| < R}
respectively. To compare quantities, we use A . B to denote A < const ·B, while

A � B means A . B . A.
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2 Background in probability

Consider the hyperbolic heat equation

∂u

∂t
=

1

2
·∆hypu, (x, t) ∈ D× (0,∞). (2.1)

Its fundamental solution, the hyperbolic heat kernel pt(x, y), is characterized by the

property that if u0(x) is a bounded continuous function on the disk then

ut(x) =

ˆ
D
pt(x, y)u0(y)dAhyp(y) (2.2)

is the unique bounded solution of (2.1) with limt→0+ ut(x) = u0(x). Since this repro-

ducing property determines pt(x, y) uniquely, the heat kernel is conformally invariant

and symmetric, that is, pt(φ(x), φ(y)) = pt(x, y) = pt(y, x) for any φ ∈ AutD.
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As noted in the introduction, pt(x, y) measures the probability density for a Brow-

nian particle to go from x to y in time t (in particular, it is strictly positive). This

means that if E ⊂ D is a measurable set, then

Px(Bt ∈ E) =

ˆ
E

pt(x, y)dAhyp(y). (2.3)

Here, the subscript “x” in Px denotes the fact that Brownian motion is started at x.

In fact, (2.3) may be taken as the definition of hyperbolic Brownian motion.

For t > 0, we define the partial Green’s function as gt(x, y) :=
´ t

0
ps(x, y)ds. Tak-

ing t =∞ gives the usual Green’s function g∞(x, y). The Green’s function measures

the occupation density of Brownian motion, that is, the integral
´
E
g∞(x, y)dAhyp(y)

computes the expected amount of time Brownian motion starting at x spends in E.

When y = 0, we will shorten notation to pt(x) := pt(0, x) and gt(x) := gt(0, x).

We have the explicit formula

g∞(x) =
1

π
log

1

|x|
. (2.4)

The above formula should not be surprising. According to [6, Chapter 4.8],

g∞(x)dA(x) =
1

π
log

1

|x|
dA(x)

is the occupation measure for the Euclidean Brownian motion in C started at the

origin and simulated until it hits ∂D. This coincidence is explained by the fact that

hyperbolic Brownian motion is a time change of the Euclidean Brownian motion by

ρ(x)2, that is, if one wants to simulate hyperbolic Brownian motion up to time t, one

can instead simulate two-dimensional Euclidean Brownian motion W2 up to time τ

defined by t =
´ τ

0
ρ2(W2(s))ds.

The existence of the Green’s function implies that hyperbolic Brownian motion

is transient: any path tends to the unit circle. In fact, the hyperbolic distance from

the starting point to Bt grows linearly with time, i.e. for any ε > 0,

P0

(
(1− ε)t < dD(0, Bt) < (1 + ε)t

)
→ 1, as t→∞. (2.5)

At times, we will use the following precise estimate from [5, Theorem 3.1]:

pt(x, y) ∼ 1 + ρ

t (1 + ρ+ t)1/2
· exp

(
− t

4
− ρ2

4t
− ρ

2

)
, dD(x, y) = ρ, (2.6)

uniform for 0 ≤ ρ <∞ and 0 < t <∞.
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2.1 Brownian motion escapes from horoballs

The theme of the next two lemmas is that if a Brownian motion enters a horoball,

it does not want to stay there for very long.

Lemma 2.1. Let B be a horoball in the unit disk and consider hyperbolic Brownian

motion started at a point x ∈ D. Let `(B) =
´∞

0
χB(Bs)ds denote the amount of

time Brownian motion spends in B. Then,

(i) If x ∈ ∂B, Ex
(
`(B)

)
� 1.

(ii) If x ∈ ∂B∗ = ∂{y ∈ D : dD(y,B) ≤ R/2}, then Ex
(
`(B)

)
� e−R/2.

Proof. (i) We compute the expected amount of time that Brownian motion spends

in B by integrating the Green’s function g∞:

Ex(`(B)) =

ˆ
B

g∞(x, y)dAhyp(y).

By the conformal invariance of Brownian motion, this integral is independent of the

choice of horoball B and the point x ∈ ∂B. For a horoball B passing through x = 0,

this is

E0(`(B)) =
1

π

ˆ
B

log
1

|y|
dAhyp(y) <∞.

(ii) Similarly, conformal invariance allows us to consider the case when the initial

point x = 0 and B ⊂ D is a horoball that rests on 1. The assumption on the

hyperbolic distance from x to B implies that the Euclidean diameter of B is � e−R/2.

Integrating, we obtain

E0(`(B)) =
1

π

ˆ
B

log
1

|y|
dAhyp(y) � e−R/2

as desired.

Lemma 2.2. Let B be a horoball in the unit disk and consider hyperbolic Brownian

motion started at a point x ∈ ∂B. Then, Px(Bt ∈ B) < Ce−γt for some γ > 0.

Proof. As in the proof of Lemma 2.1(i), we may assume that the horoball B passes

through x = 0. To see the lemma, note that P
(
dD(0, Bt) < t/2

)
and |B ∩ Srt | decay

exponentially in t, where the latter quantity is just the length of the intersection of

B and Srt = {z ∈ D : dD(0, z) = t}. For the decay of the first quantity, the reader

may consult (2.6).
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2.2 Monotonicity of the partial Green’s functions

For a horoball B in the disk which does not contain the origin, we denote its top

point (the one closest to the origin) by zB and its Euclidean center by zmid
B . The

following lemma will be useful in the sequel:

Lemma 2.3. We have:

(i) For a fixed t > 0, the quotient gt(r)/g∞(r) is decreasing in r ∈ [0, 1).

(ii) For a horoball B in the unit disk contained in {z ∈ D : 1/2 < |z| < 1},

gt(z
mid
B ) .

ˆ
B

gt(x)dAhyp(x) . gt(zB).

Proof. (i) Let us show that gt(r1)/g∞(r1) > gt(r2)/g∞(r2) if r1 < r2. Consider two

very thin disjoint annuli A1 = A(r1, r
′
1) and A2 = A(r2, r

′
2). From the probabilistic

interpretation of the Green’s function, it is clear that the function

G1(x) =

ˆ
A1

g∞(x, y)dAhyp(y)

only depends on |x|, is constant on B(0, r1) and is decreasing for |x| ≥ r1. We denote

the value of G1 on B(0, r1) by E1. We define G2 and E2 similarly using the annulus

A2 in place of A1.

We claim that for any x ∈ D,

1

E2

·
ˆ
A2

g∞(x, y)dAhyp(y) ≥ 1

E1

·
ˆ
A1

g∞(x, y)dAhyp(y). (2.7)

There are three possibilities: either x ∈ B(0, r1), A(r1, r2) or A(r2, 1). We examine

the three cases separately. In the first case,
ˆ
A1

g∞(x, y)dAhyp(y) = E1,

ˆ
A2

g∞(x, y)dAhyp(y) = E2,

so (2.7) is an equality. In the second case,

ˆ
A1

g∞(x, y)dAhyp(y) < E1,

ˆ
A2

g∞(x, y)dAhyp(y) = E2,

so (2.7) holds with strict inequality.
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Finally, in the third case when x ∈ A(r2, 1), if a path of Brownian motion started

at x hits A1, it must first cross the circle Sr2 = {z : |z| = r2}, so the third case can

only be worse than the second case. This proves (2.7).

Let gt,∞ = g∞ − gt. From (2.7) and the Markov property of Brownian motion, it

is clear that

1

E2

·
ˆ
A2

gt,∞(0, y)dAhyp(y) ≥ 1

E1

·
ˆ
A1

gt,∞(0, y)dAhyp(y). (2.8)

Subtracting both sides of the previous inequality from 1, we get

1

E2

·
ˆ
A2

gt(0, y)dAhyp(y) ≤ 1

E1

·
ˆ
A1

gt(0, y)dAhyp(y). (2.9)

Letting the thickness of the annuli A1 and A2 tend to zero, we arrive at (i).

(ii) For t =∞, this is a simple computation based on the explicit expression for

g∞. For t < ∞, we use (i). The upper bound is immediate, while for the lower

bound, we only need to estimate the integral over the top half of B.

We will also need:

Lemma 2.4. Suppose B1 ( B2 are two horoballs which rest on the same point of

the unit circle and x ∈ ∂B2. Then, for any t > 0,´
B1
gt(x, y)dAhyp(y)´

B1
g∞(x, y)dAhyp(y)

<

´
B2
gt(x, y)dAhyp(y)´

B2
g∞(x, y)dAhyp(y)

. (2.10)

Proof. By conformal invariance, the ratio on the right side of (2.10) does not depend

on the choice of starting point x ∈ ∂B2. We can therefore denote this ratio by Qt.
Clearly, Qt is increasing in t since gt(x, y) is. In order for a Brownian path emanating

from x ∈ ∂B2 to contribute to the numerator of the left side of (2.10), it must cross

∂B1 before time t. Let Π denote the collection of all such paths. We partition Π into

disjoint collections Π(x′, t′), indexed by x′ ∈ ∂B1 and 0 < t′ < t, where x′ and t′ are

respectively the location and time of first entry into B1. By the Markov property of

Brownian motion and the conformal equivalence of horoballs, the ratio

expected time Brownian motion spends in B1 during [0, t]

expected time Brownian motion spends in B1

over the bundle Π(x′, t′) is Qt−t′ . Since the ratio over any bundle is less than Qt, the

ratio on the left side of (2.10) must also be less than Qt. This proves the lemma.
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3 Feynman-Kac formula

Consider a potential V : D → R, which we assume to be positive and bounded.

We are interested in studying the growth of solutions of the second order parabolic

differential equation

∂u

∂t
=

1

2
·∆hypu+ V (x)u(x, t), (x, t) ∈ D× (0,∞), (3.1)

where the initial condition u0(x) = u(x, 0) is a smooth positive compactly supported

function.

3.1 Basic properties

Since pt(x, y)→ 0 as dD(x, y)→∞, the Feynman-Kac formula (1.10) guarantees that

ut vanishes on the unit circle, i.e. ut(x) → 0 as |x| → 1. In fact, since pt(x, y) → 0

super-exponentially quickly by (2.6), ut must vanish on the unit circle to infinite

order. Applying Green’s formula, we find

ˆ
D

∆hyput(x)dAhyp(x) =

ˆ
D

∆ut(x)dA(x) =

ˆ
S1
∂nut(x)|dx| = 0,

where ∂n denotes differentiation with respect to the outward pointing unit normal.

In light of the above identity, if we integrate (3.1) over the unit disk, we obtain the

crucial formula

d

dt

ˆ
D
ut(x)dAhyp(x) =

ˆ
D
V (x)ut(x)dAhyp(x), (3.2)

which says that locally near a point x ∈ D, the mass of ut grows at rate V . The

following theorem provides a convenient way to compute the Lyapunov exponent

(1.11):

Theorem 3.1. The rate of growth of the solution is given by

βV = lim sup
t→∞

1

t
· log E0

{
exp

ˆ t

0

V (Bs)ds

}
, (3.3)

irrespective of the initial condition.
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Proof. For the proof, we consider the auxiliary function

vt(x) := Ex
{

exp

ˆ t

0

V (Bs)ds

}
. (3.4)

Using the Markov property of Brownian, it is easy to see that

p1(x1, y) < φ
(
dD(x1, x2)

)
· p2(x2, y)

for some increasing function φ : (0,∞)→ (0,∞). Another application of the Markov

property of Brownian motion shows

vt+1(x1)

vt+2(x2)
< φ

(
dD(x1, x2)

)
· e‖V ‖∞ , t > 0.

Reversing the roles of x1 and x2 gives an inequality in the other direction. Therefore,

the growth rates of all functions vt(x), x ∈ D, are the same.

From the Feynman-Kac formula and the symmetry of the Brownian transition

function pt(x, y) = pt(y, x), it follows that

ˆ
D
ut(x)dAhyp(x) =

ˆ
D
u0(x) · Ex

{
exp

ˆ t

0

V (Bs)ds

}
dAhyp(x)

=

ˆ
D
u0(x)vt(x) dAhyp(x). (3.5)

The above equation says that
´
D ut(x)dAhyp(x) is a weighted average of vt(x) over a

compact subset of the disk and therefore it must have the same growth rate as well.

This proves (3.3).

Before continuing further, we note that since the total mass of ut is increasing in

time, the rate of growth of ut is the same as that of

ût =

ˆ t

0

us(x)ds, (3.6)

i.e.

βV = lim sup
t→∞

1

t
log

ˆ
D
ût(x)dAhyp(x). (3.7)

In practice, we prefer to work with ût since it is slightly easier to estimate.
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3.2 Some useful measures

For each x ∈ D and t ∈ (0,∞), we may disintegrate (3.4) to obtain a measure

vt(x, y)dAhyp(y) on the unit disk with the property that

ˆ
E

vt(x, y)dAhyp(y) = Ex
{
χE(Bt) · exp

ˆ t

0

V (Bs)ds

}
(3.8)

holds for any measurable set E ⊂ D. Indeed, the right hand side of (3.8) defines a

measure on the unit disk, which is absolutely continuous since the exponential term

is bounded and Ex
(
χE(Bt)

)
= Px(Bt ∈ E) =

´
E
pt(x, y)dAhyp(y). We set

v̂t(x, y) :=

ˆ t

0

vs(x, y)ds.

Using the symmetry of the Brownian transition function as before shows

ˆ
E

ût(x)dAhyp(x) =

ˆ
D
u0(x)

{ˆ
E

v̂t(x, y)dAhyp(y)

}
dAhyp(x). (3.9)

3.3 Potentials supported on gardens

We now turn our attention to Theorem 1.3. For the proof, we may assume that

suppu0 ∩ G = ∅. In view of (3.2), in order to obtain an upper bound for βV , it

suffices to prove a non-concentration estimate – i.e. to show that most of the mass

of ut(x) is located outside of G.

Lemma 3.1. For a parameter p > 0, consider the potential V = p2 · χG where G is

of the form (1.2), and let ut(x) be any solution of (3.1). If p < p0(R) is sufficiently

small, then for any horoball B ⊂ G and any t > 0,
´
B
ût(x)dAhyp(x)´

B∗
ût(x)dAhyp(x)

≤ Ce−R/2, (3.10)

where as usual B∗ = {z ∈ D : dD(z,B) ≤ R/2}.

Temporarily assuming Lemma 3.1, note that since V = 0 on D \ G,
ˆ
D
V (x)ût(x)dAhyp(x) ≤ Ce−R/2p2

ˆ
D
ût(x)dAhyp(x), t > 0. (3.11)
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Combining with (3.2), we arrive at the inequality

d

dt

ˆ
D
ût(x)dAhyp(x) =

ˆ
D
ut(x)dAhyp(x),

=

ˆ t

0

(
d

ds

ˆ
D
us(x)dAhyp(x)

)
ds+

ˆ
D
u0(x)dAhyp(x),

=

ˆ t

0

(ˆ
D
V (x)us(x)dAhyp(x)ds

)
+ C(u0),

=

ˆ
D
V (x)ût(x)dAhyp(x) + C(u0),

≤ Ce−R/2p2

ˆ
D
ût(x)dAhyp(x) + C(u0), (3.12)

from which Theorem 1.3 follows after integration.

3.4 Proof of the non-concentration estimate

Recall that by (3.9), for any measurable set E ⊂ D, the integral
´
E
ût(x)dAhyp(x)

is a weighted average of
´
E
v̂t(x, y)dAhyp(y). Therefore, it is sufficient to show the

non-concentration estimate for each v̂t(x, y), x ∈ suppu0 ⊂ D \ G instead.

Lemma 3.2. For any x /∈ B∗ and t > 0, the ratio

Qx,t(B,B∗) =

´
B
v̂t(x, y)dAhyp(y)´

B∗
v̂t(x, y)dAhyp(y)

≤ Ce−R/2. (3.13)

More precisely, the implication (Lemma 3.2⇒ Lemma 3.1) follows from (3.9) and

the following elementary observation: if (X,µ) is a measure space and f, g : X →
[0,∞) are non-negative functions on X, then

´
X
f(ξ)dµ´

X
g(ξ)dµ

≤ ess sup
ξ∈X

f(ξ)

g(ξ)
.

Similar reasoning shows that it is sufficient to consider the case when x ∈ ∂B∗.

Inspecting the definition of v̂t(x, y), we see that in order for a Brownian path started

at x /∈ B∗ to contribute to either the numerator or denominator of (3.13), it must

cross ∂B∗ before time t. Let Π denote the collection of all such paths. We partition
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Π into disjoint collections Π(x′, t′), indexed by x ∈ ∂B∗ and 0 < t′ < t, where x′

and t′ are respectively the location and time of first entry into B∗. By the Markov

property of Brownian motion, the ratio over each bundle Π(x′, t′) is at most Ce−R/2,

so the same must be true for Qx,t(B,B∗).

Proof of Lemma 3.2, assuming x ∈ ∂B∗. According to Lemma 2.2, P(Bt ∈ B∗) .

e−γt for some γ > 0. Utilizing the crude estimate V ≤ p2 gives

ˆ
B∗
vt(x, y)dAhyp(y) = Ex

{
χB∗(Bt) · exp

ˆ t

0

V (Bs)ds

}
. e−(γ−p2)t.

Therefore, if the exponent p2 < γ − δ, then the contribution of long paths is very

small: for any ε > 0, we can find L(ε) sufficiently large to ensure that∣∣∣∣ˆ
B∗
v̂t(x, y)dAhyp(y)−

ˆ
B∗
v̂L(ε)(x, y)dAhyp(y)

∣∣∣∣ < ε, for t > L(ε).

Since P(Bt ∈ B) ≤ P(Bt ∈ B∗), we must also have∣∣∣∣ˆ
B

v̂t(x, y)dAhyp(y)−
ˆ
B

v̂L(ε)(x, y)dAhyp(y)

∣∣∣∣ < ε, for t > L(ε).

Hence, it is sufficient to prove (3.13) for t ≤ L(ε).

By making p > 0 sufficiently small, we can ensure that 1 < ep
2L(ε) < 1 + ε which

means that the exponential term in (3.8) is essentially frozen if t ≤ L(ε). Thus

Qx,t(B,B∗) can be estimated by

Qx,t(B,B∗) ≤ (1 + ε) ·
´
B
gt(x, y)dAhyp(y)´

B∗
gt(x, y)dAhyp(y)

. (3.14)

In view of Lemma 2.4 and Lemma 2.1, this is ≤ Ce−R/2 as desired.
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4 Brownian integral means spectrum

We now return to the original problem involving conformal mappings. To prove

Theorem 1.1, we translate the Feynman-Kac argument from the previous section. In

this section, we give a direct translation which mimics the previous section as much

as possible. Later, we will give a slightly simplified account of this argument that

does not involve Brownian motion.

Let f : D→ C be a conformal mapping. Fix p > 0 and consider the functions

ut(x) = |f ′(x)|p · pt(x) (4.1)

and

ût(x) =

ˆ t

0

us(x)ds = |f ′(x)|p · gt(x). (4.2)

Differentiating, we discover

d

dt

ˆ
D
|f ′(x)|p · pt(x)dAhyp(x) =

1

2

ˆ
D
|f ′(x)|p ·∆hyp[pt(x)]dAhyp(x),

=
1

2

ˆ
D

∆hyp|f ′(x)|p · pt(x)dAhyp(x),

=

ˆ
D
V (x)|f ′(x)|p · pt(x)dAhyp(x), (4.3)

where

V =
1

2
· p2|nf/ρ|2 and nf := f ′′/f ′. (4.4)

By [15, Proposition 4.1], the “potential” V (z) ≤ 9p2/2 is bounded. The above

identity suggests, by comparison with (3.2), that estimating integral means

β̃f (p) := lim sup
t→∞

1

t
log

ˆ
D
ut(x)dAhyp(x), (4.5)

is quite similar to studying the growth rate of solutions of parabolic equations given

by Feynman-Kac formula. However, now the mass flows differently: in the Feynman-

Kac setting, the mass increases at rate V near a point equally in all directions, while

in the conformal setting, the mass is spread out unevenly.
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Similarly to (3.7) and (3.12), we have

β̃f (p) = lim sup
t→∞

1

t
log

ˆ
D
ût(x)dAhyp(x) (4.6)

and
d

dt

ˆ
D
ût(x)dAhyp(x) ≤ C(p, f) +

ˆ
D
V (x)ût(x)dAhyp. (4.7)

The other property of the “Brownian spectrum” (1.8) of a conformal mapping

that we need is that it is larger than the usual integral means spectrum (1.4):

Lemma 4.1. The inequality βf (p) ≤ β̃f (p) holds for any conformal map f .

Proof. Fix an ε > 0. Since the integral means
´
Sr
|f ′(z)|p dθ are increasing in r, (2.5)

shows that ˆ
D
ut(x)dAhyp(x) ≥ 1

2

ˆ
Srt

|f ′(z)|p dθ, t ≥ t0(ε), (4.8)

where rt is chosen so that dD(0, Srt) = (1− ε)t. Hence, β̃f (p) ≥ (1− ε)βf (p). Since

ε > 0 was arbitrary, the proof is complete.

In reality, with exponentially small probability, Brownian particles can travel

farther than expected, so the two characteristics need not be equal. Using (2.6), it

is not difficult to show the precise relation β̃f (p) = βf (p) +βf (p)
2, for any conformal

map f , but we will not need this fact.

4.1 Sparse conformal mappings

We now recall the setting of Theorems 1.1 and 1.2. We begin with a Beltrami

coefficient µ with ‖µ‖∞ ≤ 1, supported on a garden G ⊂ D satisfying the sparsity

condition (1.2). We reflect µ in the unit circle to obtain a Beltrami coefficient µ+,

and then solve the Beltrami equation ∂w = kµ+ ∂w for some k < 0.49 to obtain a

quasiconformal map f = w̃kµ
+

which is conformal on D.

We now fix a p > 0. To estimate β̃f (p), we consider the potential V (z) from (4.4).

Since f is holomorphic, V = 1
2
· p2|nf/ρ|2 cannot be identically zero on D \ G (unless

f is linear). Nevertheless, by carefully estimating the non-linearity nf = f ′′/f ′ (see

Appendix A), one can show that V decays exponentially quickly away from G, with

a sufficiently large exponent.
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Lemma 4.2. Let S(z) := dD(z,G) denote the hyperbolic distance from a point z ∈ D
to the garden G. For any δ > 0, we can find an 0 < rδ < 1 so that

V (z) ≤ V δ
2 (z) :=


Ck2p2e−1.01S(z) + δ, |z| > rδ, S(z) < R/2,

Ck2p2e−1.01R/2 + δ, |z| > rδ, S(z) ≥ R/2,

M, |z| < rδ.

(4.9)

Remark. The bound on the compact set {z : |z| < rδ} is unimportant since it plays

no role in determining the integral means spectrum.

We will write V2 for V δ
2 − δ. Proceeding by analogy with Section 3, the following

non-concentration estimate is likely to be useful:

Lemma 4.3. Suppose B ⊂ G is one of the horoballs in the garden. If the enlarged

horoball B∗ ⊂ {z : rδ < |z| < 1}, then for any t > 0,´
B∗
V δ

2 (x)ût(x)dAhyp(x)´
B∗
ût(x)dAhyp(x)

≤ Ck2p2e−R/2 + δ, kp < c/R. (4.10)

Assuming Lemma 4.3 for the moment, we have´
D V (x)ût(x)dAhyp(x)´

D ût(x)dAhyp(x)
≤ Ck2p2e−R/2 + δ, t > t0. (4.11)

Indeed, by the transience of Brownian motion, the contribution of B(0, rδ) to the in-

tegrals in the numerator and denominator of (4.11) is negligible for t > t0. Similarly,

Lemma 2.2 allows us to neglect finitely many large horoballs B∗i which happen to

intersect {z : |z| = rδ}. Finally, the analogue of (4.10) for the complementary region

A(rδ, 1) ∩ {z : S(z) ≥ R/2} is trivial since V δ
2 (z) ≤ Ck2p2e−R/2 + δ there.

Recalling (4.7) and integrating, we arrive at β̃w̃kµ+ (p) ≤ Ce−R/2k2p2 + δ. Since

δ > 0 was arbitrary, we conclude that β̃w̃kµ+ (p) ≤ Ce−R/2k2p2. Applying Lemma 4.1

proves βw̃kµ+ (p) ≤ Ce−R/2k2p2, which is the statement of Theorem 1.2. As mentioned

in the introduction, Theorem 1.1 can be obtained from Theorem 1.2 using (1.5).

4.2 Proof of the non-concentration estimate

To prove the non-concentration estimate, we use bounds on the Bloch norm of con-

formal maps. Recall that the Bloch space B consists of all holomorphic functions on
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the unit disk which satisfy

‖g‖B := sup
z∈D
|g′(z)|(1− |z|2) = 2 · sup

z∈D
|(g′/ρ)(z)| < ∞.

By [15, Proposition 4.1], if f : D → C is a conformal mapping, then ‖ log f ′‖B ≤ 6.

If we know that f admits a k-quasiconformal extension to the plane, then by Lehto’s

majorant principle [15, Chapter 5.6], this bound can be improved to ‖ log f ′‖B ≤ 6k.

We will use this bound in the integrated form | log f ′(x)− log f ′(y)| ≤ 3k · dD(x, y),

for x, y ∈ D. Before proving Lemma 4.3, we first show the weaker statement
´
B∗
V δ

2 (x)û∞(x)dAhyp(x)´
B∗
û∞(x)dAhyp(x)

≤ Ck2p2e−R/2 + δ, kp < c/R. (4.12)

This relies on the “freezing lemma” which says that for the purpose of estimating

integral means, |f ′(z)|p is essentially constant on horoballs:

Lemma 4.4. Suppose f : D → C is a conformal mapping which admits a k-

quasiconformal extension to the plane. If 6kp < 0.49, then
ˆ
B∗
|f ′(z)|p g∞(z)dAhyp(z) � diamB∗ · |f ′(zB∗)|p. (4.13)

If additionally k < 0.49 and kp < c/R, then
ˆ
B∗
V2(z)|f ′(z)|p g∞(z)dAhyp(z) � Ck2p2e−R/2 · diamB∗ · |f ′(zB∗)|p. (4.14)

Proof. We begin with (4.13). For the lower bound, it suffices to observe that the

integral over the top half of B∗ is comparable to diamB∗ · |f ′(zB∗)|p. For the upper

bound, we use

ˆ
B∗
|f ′(z)|p g∞(z)dAhyp(z) . |f ′(zB∗)|p ·

ˆ
B∗

(
1− |zB∗|
1− |z|

)6kp |dz|2

1− |z|
.

The right hand side is integrable provided that 6kp < 1/2. By asking for 6kp < 0.49,

we ensure that the integral over the top half of B∗ controls the integral over the

bottom half.

We turn to (4.14). It is useful to decompose B∗ into shells. For 1 ≤ m ≤ n =

dR/2e, set Bm = {z ∈ B∗ : dD(z,B) ≤ m}, Sm = Bm \ Bm−1 and S0 = B. Thus
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B∗ =
⋃n
m=0 S

m. The condition kp < c/R ensures that |f ′(zBm)|p � |f ′(zB∗)|p for

all m = 0, 1, . . . , n. According to (4.9), V2(z) � Ck2p2e−1.01m for z ∈ Sm. As m

increases, the contributions of Sm decay exponentially (due to the exponent 1.01),

so the integral in (4.14) is dominated by the integral over S0 = B.

Equation (4.12) follows after dividing (4.14) by (4.13). In order to show Lemma

4.3, it remains to replace “∞” with “t.” This last step is not necessary when one

uses the Becker-Pommerenke method described in the next section, nevertheless it

is quite easy with help of Lemma 2.3.

Proof of Lemma 4.3. Since V2 ≤ Ck2p2e−R/2 is small on shells n and n− 1, we need

not worry about them in the numerator. Estimating the numerator (with two shells

removed) from above and the denominator from below, we get

ˆ
Bn−2

V2(z)|f ′(z)|p gt(z)dAhyp(z) . |f ′(zB∗)|p ·
n−2∑
m=0

V2(zBm) · gt(zBm)

. |f ′(zB∗)|p · gt(zBn−2) ·
n−2∑
m=0

k2p2e−1.01m · e
m

en−2

. |f ′(zB∗)|p · gt(zBn−2) · k2p2e−R/2

and ˆ
B∗
|f ′(z)|p gt(z)dAhyp(z) & |f ′(zB∗)|p · gt(zBn−2).

Hence, (4.10) follows after division.

5 Becker-Pommerenke argument

The reader may suspect that Brownian motion is not truly required to prove Theo-

rems 1.1 and 1.2. In this section, we give a slightly simplified account of the above

argument using the framework of Becker and Pommerenke for estimating integral

means as presented in [11]. This deterministic approach is based on the study of the

growth rate of the function

û(r) :=

ˆ
B(0,r)

|f ′(z)|p · g∞(z)dAhyp,
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as r → 1. The reader may compare the above function with the one in (4.2). As

in [11], we prefer to work in the upper half-plane H = {z ∈ C : Im z > 0} since it

greatly simplifies the computation.

5.1 Growth of functions in the upper half-plane

We write z = x+ iy and ρH = 1/y. For a holomorphic function f : H→ C satisfying

the periodicity condition f(z + 1) = f(z) + 1, define

u(y) :=

ˆ 1

0

|f ′(x+ iy)|p dx, (5.1)

and

û(y) :=

ˆ
A(y)

|f ′(x+ it)|p dxdt
t
, (5.2)

where y ∈ (0, 1] and A(y) is the rectangle [0, 1] × [y, 1] ⊂ H. Taking the second

derivative as in [11, Section 7], we obtain:

Lemma 5.1.

u′′(y) =
p2

4y2

ˆ 1

0

|f ′(x+ iy)|p
∣∣∣∣2nfρH

∣∣∣∣2dx (5.3)

û′′(y) =
p2

4y2

ˆ
A(y)

|f ′(x+ it)|p
∣∣∣∣2nfρH

∣∣∣∣2 dxdtt +Op,f (1/y2). (5.4)

Proof. The periodicity condition implies that

∂2
x

ˆ 1

0

|f ′(x+ iy + s)|pds = 0 =⇒ u′′(y) = ∆

ˆ 1

0

|f ′(x+ iy + s)|pds.

Expanding ∆ = 4∂∂ proves (5.3). For the second statement, note

û(y) =

ˆ 1

y

u(t)
dt

t
=

ˆ 1/y

1

u(yt)
dt

t
.

Differentiation shows

û′(y) =

ˆ 1/y

1

u′(yt) dt− u(1)/y,

û′′(y) =

ˆ 1/y

1

u′′(yt) tdt− u′(1)/y2 + u(1)/y2 =
1

y2

ˆ 1

y

u′′(t) tdt+O(1/y2).

After some rearranging, we arrive at (5.4).
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5.2 A non-concentration estimate

Let G =
⋃
Bj be a collection of horoballs in H such that dH(Bi, Bj) > R for i 6= j,

and suppose µ is a Beltrami coefficient with ‖µ‖∞ ≤ 1 whose support is contained

in the reflected garden G ⊂ H. Without loss of generality, we may assume that G is

contained in {z ∈ C : 0 < Im z < 2} and that G and µ are invariant under z → z+ 1

so that f = w̃kµ satisfies the periodicity condition f(z+1) = f(z)+1. For a horoball

B in the upper half-plane, let B∗ = {z ∈ H : dH(z, B) < R/2}, where dH(·, ·) denotes

the hyperbolic distance in H. The separation condition ensures us that the horoballs

B∗j are disjoint. In this setting, the statement of Theorem 1.2 becomes:

Theorem 5.1. For f = w̃kµ as above,

βf (p) ≤ Ce−R/2k2p2/4, k < 0.49, kp < c/R, (5.5)

where the integral means spectrum of f : H→ C is given by

βf (p) = lim sup
y→0+

log
´ 1

0
|f ′(x+ iy)|p dx
| log y|

, p > 0.

We define û(y) by (5.2). From the definition, it is clear that û(y) ≥ 0 and

û′(y) ≤ 0 for y ∈ (0, 1]. Our aim is to show the estimate

û′′(y) ≤
[
β̃ · û(y) +O(1)

]
· (1/y2), β̃ = Ce−R/2k2p2/4. (5.6)

From the differential inequality (5.6), it is not difficult to deduce Theorem 5.1: if

we define β as the unique positive root of β2 + β = β̃, then by [11, Lemma 7.1], we

have û(y) ≤ Cy−β which easily implies that βf (p) ≤ β. This is fine since β and β̃

are comparable when either quantity is small. Note that the O(1) term in (5.6) is

pretty harmless in this discussion.

The proof of (5.6) is quite simple and most of the heavy lifting has been done in

Section 4. For a set K ⊂ H, let us write

Q(K) :=

´
K
|f ′(x+ iy)p|

∣∣2nf
ρH

∣∣2 |dz|2
y´

K
|f ′(x+ iy)p| |dz|2

y

. (5.7)
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In this formalism, we must show that

Q(A(y)) ≤ Ce−R/2k2, (5.8)

provided y > 0 is sufficiently small. By an analogue of the freezing lemma for the

upper half-plane (Lemma 4.4, with |dz|2/y replacing g∞dAhyp), we have

Q
(
B∗j ∩ A(y)

)
≤ Ce−R/2k2

for each enlarged horoball B∗j . Outside G∗ =
⋃
B∗j , the weight

∣∣2nf
ρH

∣∣2 is negligible, and

so the quotient Q
(
A(y) \ G∗

)
≤ Ce−R/2k2 is small as well. Putting these estimates

together proves (5.8), (5.6) and Theorem 5.1.

Remark. Define a “flower” of order γ to be an image of

F (1, 0, γ) =
{
z ∈ H : −1 < x < 1, xγ < y < 1

}
under an affine mapping z → az + b with a > 0, b ∈ R. The argument in this

section is also applicable when the garden G is a union of flowers
⋃∞
j=1 F (aj, bj, γj)

which are located at least a hyperbolic distance R apart, provided the orders {γj} are

bounded. In this case, (5.5) still holds but the constants c and C could be different.

The bound on the orders implies that there exists an ε > 0 sufficiently small so

that
´
Fj
|dz|2/y1+ε <∞, for all Fj ⊂ G, which is needed to establish an analogue of

Lemma 4.4. We leave the details to the interested reader.

A Dyn’kin’s estimate

In [7, Theorem 1], E. Dyn’kin proved a general estimate for the non-linearity nf =

f ′′/f ′ of a conformal mapping f : D → C which admits a quasiconformal extension

to a homeomorphism of the plane, mapping C onto itself:

Lemma A.1. Suppose 0 < k < 1 and f : D→ C is a conformal mapping which has

a k-quasiconformal extension to the plane with dilatation µ. Then,∣∣∣∣nfρ (z)

∣∣∣∣ ≤ Ck(1− |z|)1−k
[
1 +

ˆ 1

1−|z|

ω(z, t)

t2−k
dt

]
, |z| < 1, (A.1)
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where

ω(z, t) =

(
1

πt2

ˆ
|ζ−z|≤t

|µ(ζ)|2|dζ|2
)1/2

.

Here, the constant Ck can be taken to be non-decreasing in k ∈ (0, 1).

If one is interested in utilizing only the support of µ, Dyn’kin’s technique yields

a slightly better estimate:

Lemma A.2. Suppose 0 < k < 1 and f : D→ C is a conformal mapping which has

a k-quasiconformal extension to the plane with dilatation µ. Then,∣∣∣∣nfρ (z)

∣∣∣∣ ≤ C ′k(1− |z|)1−k
[
1 +

ˆ 1

1−|z|

ω̃(z, t)

t2−k
dt

]
, |z| < 1, (A.2)

where

ω̃(z, t) = k ·
(
| suppµ ∩B(z, t)|

|B(z, t)|

) 1
1+k

.

Again, the constant C ′k can be taken to be non-decreasing in k ∈ (0, 1).

The proof of the above lemma is nearly identical to that of Dyn’kin’s theorem,

so we only give a sketch of the argument and explain where the improvement comes

from. By post-composing with a linear map, we may assume that f(0) = 0 and

f ′(0) = 1. Set r = 1 − |z|, Bj = B(z, 2jr) and Ej = suppµ ∩ B(z, 2jr). By the

Cauchy-Green formula and the elementary bound |f(z)| ≤ Ck for |z| ≤ 2, we have

|f ′′(z)| ≤
∣∣∣∣ 2π
ˆ

1<|ζ|<2

∂f

∂ζ

|dζ|2

(ζ − z)3

∣∣∣∣+ Ck, |z| < 1.

Applying the Cauchy-Schwarz inequality, we see that the contribution of the annulus

{ζ : 2jr < |ζ − z| < 2j+1r} does not exceed

1

(2jr)3

(ˆ
Ej

|µ(ζ)|2|dζ|2
)1/2

(ˆ
Ej

∣∣∣∣∂f∂ζ
∣∣∣∣2|dζ|2

)1/2

.

Dyn’kin estimates the first term by (2jr) · ω(z, 2jr); to estimate the second term, he

replaces the integrand with the Jacobian of f and uses the coarse bound

|f(Ej)| ≤ |f(Bj)|.
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In our setting, Astala’s area distortion theorem [3, Theorem 13.1.5] yields the stronger

estimate

|f(Ej)| ≤ Ck|f(Bj)|
(
|Ej|
|Bj|

) 1−k
1+k

.

The use of this stronger estimate explains why the exponent in Lemma A.2 is 1
2

+
1
2
· 1−k

1+k
= 1

1+k
compared to the exponent in Lemma A.1 which is only 1

2
.

In this paper, we utilize the above estimate in a slightly different form. Let

(suppµ)+ ⊂ D be the reflection of the support of µ in the unit circle. In terms of

the hyperbolic distance from z to (suppµ)+, the estimate says:

Corollary A.1. Suppose 0 < k < 1, dD
(
z, (suppµ)+

)
> L and dD(z, 0) > L. Then,∣∣∣∣nfρ (z)

∣∣∣∣ . k · Le−(1−k)L + (1− |z|)1−k,

where the implicit constant can be taken to be non-decreasing in k ∈ (0, 1).

Proof. For j = 0, 1, 2, . . . , bLc, the assumptions on the support of µ imply that the

Euclidean area ∣∣suppµ ∩B
(
z, ej(1− |z|)

)∣∣ ≤ C(1− |z|)2e3j−L,

which gives the bounds ω
(
z, ej(1 − |z|)

)
. k · e(j−L)/2 and ω̃

(
z, ej(1 − |z|)

)
. k ·

e(j−L)/(1+k). Hence, the right hand side of (A.2) is bounded above by

C(1− |z|)1−k
(

1 +

ˆ ∞
eL(1−|z|)

k

t2−k
dt+

bLc∑
j=0

ˆ ej+1(1−|z|)

ej(1−|z|)

k · Ce(j−L)/(1+k)

t2−k
dt

)
. (A.3)

After opening the brackets, the second term in (A.3) is

=
Ck

1− k
(1− |z|)1−k[eL(1− |z|)

]−(1−k) � Ck · e−L(1−k), (A.4)

while the j-th term in the sum is comparable to

C(1− |z|)1−k
ˆ ej+1(1−|z|)

ej(1−|z|)

k · e(j−L)/(1+k)

t2−k
dt � Ck · e−j(1−k) · e(j−L)/(1+k).

Since 1/(1 +k)− (1−k) > 0 for any 0 < k < 1, this is an increasing geometric series

in j. In particular, each term in the sum is bounded by the last term with j = L.

Putting these estimates together gives the corollary.
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B Wiggly potentials

In this appendix, we give another entry in the dictionary between integral means

spectra of conformal maps and perturbations of the Laplacian. Call a potential V (x)

wiggly if there exists R,α > 0 such that
´
B
V (x) > α over any ball of hyperbolic

radius R.

Theorem B.1. For a wiggly potential V , there exists a constant c = c(α,R) > 0

such that βV (p) = βp2V > cp2 for 0 < p ≤ 1.

This is reminiscent of a variant of a theorem of P. Jones where we use non-linearity

instead of the Schwarzian derivative:

Theorem B.2. Suppose f : D→ C is a conformal mapping onto a bounded domain

with quasicircle boundary, such that any point z ∈ D is located within hyperbolic

distance R of a point w ∈ D with ∣∣∣∣nfρ (w)

∣∣∣∣ > α.

Then, there exists a constant c(α,R) > 0 so that

βf (p) > c(α,R)p2, 0 < p ≤ 1.

Theorem B.2 is a special case of [11, Theorem 1.5]. We leave the proof of Theorem

B.1 as an exercise for the reader.
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