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Abstract

Makarov’s principle relates three characteristics of Bloch functions that

resemble the variance of a Gaussian: asymptotic variance, the constant in

Makarov’s law of iterated logarithm and the second derivative of the integral

means spectrum at the origin. While these quantities need not be equal in

general, we show that the universal bounds agree if we take the supremum

over the Bloch unit ball. For the supremum (of either of these quantities),

we give the estimate Σ2
B < min(0.9,Σ2), where Σ2 is the analogous quantity

associated to the unit ball in the L∞ norm on the Bloch space. This improves

on the upper bound in Pommerenke’s estimate 0.6852 < Σ2
B ≤ 1.

1 Introduction

The Bloch space consists of analytic functions in the unit disk for which

‖b‖B := sup
z∈D

(1− |z|2)|b′(z)| <∞,

while a function b0 belongs to the little Bloch space B0 if

lim
|z|→1−

(1− |z|2)|b′0(z)| = 0.

Makarov’s principle [11] is concerned with three characteristics of functions b ∈ B/B0
that measure the growth of b near the unit circle:
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• The asymptotic variance

σ2(b) = lim sup
r→1

1

2π| log(1− r)|

ˆ
|z|=r
|b(z)|2 |dz|. (1.1)

• The LIL constant

CLIL(b) = ess sup
θ∈[0,2π)

{
lim sup
r→1

|b(reiθ)|√
log 1

1−r log log log 1
1−r

}
. (1.2)

• The integral means spectrum

βb(τ) = lim sup
r→1

1

| log(1− r)|
· log

ˆ
|z|=r

∣∣eτb(z)∣∣ |dz|, τ ∈ C. (1.3)

The above quantities are unrelated for general Bloch functions, see [4, 13] for inter-

esting examples. Nevertheless, when one takes the supremum over natural classes of

Bloch functions, the universal bounds coincide. In this paper, we prove Makarov’s

principle for the Bloch unit ball:

Theorem 1.1.

Σ2
B := sup

‖b‖B≤1
σ2(b) = sup

‖b‖B≤1
C2

LIL(b) = lim
τ→0

4

|τ |2
· sup
‖b‖B≤1

βb(τ).

We also give two different upper bounds for Σ2
B. The first upper bound is an

explicit estimate, while the second upper bound is in terms of an analogous quantity

associated to the unit ball of B/B0 equipped with the “L∞ norm.”

Theorem 1.2.

Σ2
B < min(0.9,Σ2).

Previously, it was known that CLIL(b) ≤ ‖b‖B which was first established by

Pommerenke [20] in 1985 who used an iterative scheme involving Hardy’s identity.

Two other proofs of this fact appeared since then: Bañuelos [3] came up with a

clever argument based on an L∞ estimate for the Littlewood-Paley g∗ function while

Lyons [14] used hyperbolic Brownian motion. We can also mention the efforts of
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Przytycki [22] who proved the weaker statement CLIL(b) ≤ 16
log 2
‖b‖B by emulating a

method of Philipp and Stout for lacunary trigonometric series, as well as Makarov’s

original result [15] which says that CLIL(b) ≤ C‖b‖B holds with some constant C > 0.

Nevertheless, the question whether “CLIL(b) ≤ ‖b‖B” was sharp remained open. The

above theorem answers this question in the negative.

For the lower bound, Pommerenke gave an example of a Bloch function with

CLIL(b) ≤ 0.685 ‖b‖B, see [21, Theorem 8.10].

1.1 The L∞ norm on the Bloch space

The original statement of Makarov’s principle from [11] deals with another unit ball

which is more natural from the point of view of quasiconformal geometry. There,

B/B0 is equipped with the “L∞ norm” coming from the representation B = P (L∞)

via the Bergman projection

Pµ(z) =
1

π

ˆ
D

µ(w)

(1− zw)2
|dw|2. (1.4)

That is,

‖b‖B/B0,∞ := inf
Pµ∼b
‖µ‖∞,

where the infimum is taken over all µ ∈ L∞(D) such that Pµ = b+ b0 with b0 ∈ B0.
When one takes the supremum over the (B/B0,∞) unit ball, one obtains a different

constant:

Σ2 := sup
‖µ‖∞≤1

σ2(Pµ) = sup
‖µ‖∞≤1

C2
LIL(Pµ) = lim

τ→0

4

|τ |2
· sup
‖µ‖∞≤1

βPµ(τ). (1.5)

The quantitity Σ2 is naturally related to the problem of dimensions of quasicircles .

If D(k) is the maximal dimension of a k-quasicircle, then according to [1, 8, 10],

D(k) = 1 + Σ2k2 + o(k2), 0 < k < 1,

0.879 < Σ2 < 1.

The proof of Theorem 1.1 uses fractal approximation techniques and is quite similar

to that of (1.5), but requires some modifications which we describe in this paper. In
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fact, the argument is applicable with any reasonable norm on B/B0, for instance,

‖b‖B/B0,m = lim sup
|z|→1

(1− |z|2)m|b(m)(z)|, m ≥ 2, (1.6)

lead to the constants Σ2
B,m. The details will be given in Section 3.

1.2 Why Σ2
B < 1?

We now describe the idea behind the bound “Σ2
B ≤ 0.9.” Suppose b is a Bloch

function of norm 1. Since b is a holomorphic function, it is reasonable to expect that

the Bloch quotient |2b′/ρ| = |b′(z)|(1− |z|2) is strictly less than 1 on average, where

ρ(z) = 2
1−|z|2 is the density of the hyperbolic metric on the unit disk. One way to

make this precise is to say that

α(R) := sup
‖b‖B≤1

[
sup
B

 
B

∣∣∣∣2b′ρ (z)

∣∣∣∣2 ρ2|dz|2 ] < 1, (1.7)

where the inner supremum is taken over all balls B ⊂ D of hyperbolic radius R. Here,

the notation
ffl
. . . ρ2|dz|2 suggests that we consider the average in the hyperbolic

metric. We will later give a quantitative estimate for α(R), but in order to prove

(1.7), the following observation is sufficient:

Lemma 1.1. Suppose b ∈ B is a Bloch function with ‖b‖B = 1. There exists R, S >

0 such that any ball B = Bhyp(z,R) ⊂ D of hyperbolic radius R contains a ball

Bhyp(ζ, S) on which the Bloch quotient is less than 1/2.

Proof. Since the Bloch quotient is invariant under automorphisms of the disk, it is

enough to consider the case when B is centered at the origin. If the lemma were

false, then by the Lipschitz property of Bloch functions, there would exist a sequence

of functions bn in the Bloch unit ball with |2b′n/ρ| > 1/10 on Bhyp(0, n). A normal

families argument would produce a Bloch function b for which the Bloch quotient

was strictly bounded away from 0 on the entire disk. This would contradict the

maximum modulus principle applied to 1/b′.

In Section 4, we will show that α(R) dominates the asymptotic variance and find

a value of R for which α(R) ≤ 0.9.
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Lemma 1.2.

sup
‖b‖B=1

σ2(b) ≤ inf
R>0

α(R). (1.8)

Theorem 1.1 implies that the right hand side of (1.8) also bounds the LIL constant

and the quadratic behaviour of the integral means spectrum at the origin.

1.3 An application to harmonic measure

To conclude the introduction, we apply Makarov’s principle for the Bloch unit ball

to study metric properties of harmonic measure of simply-connected domains. Let S

denote the collection of conformal maps f : D→ C satisfying f(0) = 0 and f ′(0) = 1.

The Becker class SB ⊂ S consists of conformal maps for which ‖ log f ′‖B ≤ 1.

According to Becker’s univalence criterion, it is in bijection with functions in the

Bloch unit ball with b(0) = 0. A theorem of Makarov [16], [7, Theorem VIII.2.1]

shows:

Corollary 1.1. (i) Let f ∈ SB be a function in the Becker class, Ω = f(D) be the

image of the unit disk and z0 be a point in Ω. The harmonic measure ωz0 on ∂Ω as

viewed from z0 is absolutely continuous with respect to the Hausdorff measure Λh(t),

h(t) = t exp

{
C

√
log

1

t
log log log

1

t

}
, 0 < t < 10−7,

for any C ≥ CLIL(log f ′). In particular, C =
√

Σ2
B works.

(ii) Conversely, if C <
√

Σ2
B, there exists a conformal map in SB for which

ωz0 ⊥ Λh(t).

The above corollary has a surprising consequence. As discussed in [10],

sup
f∈S

σ2(log f ′) ≥ Σ2 > Σ2
B = sup

f∈SB

σ2(log f ′),

which shows that functions in the Becker class are rather tame. For more bounds on

supf∈S σ
2(log f ′), we refer the reader to the works [12, 9, 1].
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2 The Bergman projection

As mentioned in the introduction, the Bergman projection takes L∞(D) to the Bloch

space. The estimate Σ2
B < Σ2 is immediate from the following representation which

is interesting in its own right:

Lemma 2.1. The Bergman projection P : L∞(D)→ B/B0 is surjective. Any b ∈ B
may be represented as

b = Pµ+ b0, with ‖µ‖∞ ≤ C‖b‖B, b0 ∈ B0. (2.1)

Furthermore, the optimal constant C in (2.1) is strictly less than 1.

Proof. For a Bloch function b ∈ B, set

µb(z) := (1/z) · 2b′/ρ. (2.2)

The reader may notice that µb is not bounded near the origin, however, only the

asymptotic bound lim sup|z|→1 |µb(z)| ≤ ‖b‖B is essential here. We claim that Pµb(z) =

b(z)− b(0). For this purpose, we consider the reproducing formula

f(z) =
2

π

ˆ
D

f(w)(1− |w|2)
(1− zw)3

|dw|2 (2.3)

of the weighted Bergman space A2
1 with norm

‖f(z)‖2A2
1

=
2

π

ˆ
D
|f(z)|2(1− |z|2)|dz|2, (2.4)

for instance see [23, Theorem 2.7]. By considering dilates f(rz) and taking r → 1−,

it follows that (2.3) holds for all holomorphic functions f for which

‖f‖A∞1 := sup
z∈D
|f(z)|(1− |z|2) < ∞.
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This allows us to take f = b′ which gives (Pµb)
′ = b′, thus Pµb and b agree up to an

additive constant. To evaluate this constant, note that Pµb(0) = 0 by the definition

of the Bergman projection (1.4). This proves the claim.

To proceed further, we use duality considerations. Without loss of generality, we

can assume that ‖b‖B = 1 and b(0) = 0. As is well known, e.g. see [23, Theorem

3.17] or [8], the Bloch space equipped with the L∞ norm ‖b‖B,∞ := infPν=b ‖ν‖∞ is

the isometric dual of the Bergman space A1 with respect to the pairing

〈b, g〉 = lim
r→1

1

π

ˆ
D
b(z)g(rz) |dz|2, b ∈ B, g ∈ A1.

Since the Bergman projection is self-adjoint, the above duality implies

inf
Pν=b

‖ν‖∞ = sup
g

∣∣∣∣ˆ
D
µb(z)g(z) |dz|2

∣∣∣∣, ˆ
D
|g(z)| = 1.

Readers familiar with asymptotic Teichmüller spaces (see [6, Chapter 14.10]) will

recognize that the infimum of ‖ν‖∞ over ν ∈ L∞(D) satisfying Pν = b + b0 with

b0 ∈ B0 and b0(0) = 0 is given by

inf
Pν=b+b0

‖ν‖∞ = sup
{gn}

lim sup
n→∞

∣∣∣∣ˆ
D
µb(z)gn(z) |dz|2

∣∣∣∣, (2.5)

where the supremum is taken over all degenerating Hamilton sequences {gn} ⊂ A1,

i.e. sequences with
´
D |gn| = 1 for which gn → 0 uniformly on compact subsets of the

disk. A normal families argument and Lemma 1.1 show that a definite proportion

of the mass of |gn| is “wasted” on the set where |2b′/ρ| < 1/2. Therefore, the right

hand side of (2.5) is bounded by a constant strictly less than 1.

Remark. One can compare Lemma 2.1 to a result of Perälä [19] which says that the

operator seminorm ‖P‖L∞→B = 8/π. By contrast, the optimal constant C in (2.1)

is not known.
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2.1 Working in the upper half-plane

While it is simpler to visualize the duality arguments in the unit disk, the upper

half-plane is a more natural setting for the fractal approximation techniques. We

are therefore led to consider the Bloch space B(H) which consists of holomorphic

functions on H with

‖b‖B(H) = sup
z∈H

2y · |b′(z)| <∞. (2.6)

Instead of using the Bergman projection, we prefer to represent Bloch functions in

H via the modified Beurling transform S# : L∞(H)→ B(H),

S#µ(z) = − 1

π

ˆ
H
µ(w)

[
1

(w − z)2
− 1

w(w − 1)

]
|dw|2, (2.7)

which includes the term − 1
w(w−1) to guarantee convergence. We often abuse notation

and write

“(Sµ)′(z)” := (S#µ)′(z) = − 2

π

ˆ
H

µ(w)

(w − z)3
|dw|2.

In this setting, (2.2) becomes

µb = 2i · b′(z)/ρH, S#µb = b+ C. (2.8)

2.2 Locality of the Beurling transform

For our purposes, the most important property of the Beurling transform is that it

is local in nature [10, Section 4]:

Lemma 2.2. (i) Suppose µ is a Beltrami coefficient supported on the lower half-plane

with ‖µ‖∞ ≤ 1. Then,
∣∣(2(Sµ)′/ρH)(z)

∣∣ ≤ 8/π.

(ii) For any ε > 0, there exists R > 0 sufficiently large so that if the hyperbolic

distance dH(z, suppµ) ≥ R then
∣∣(2(Sµ)′/ρH)(z)

∣∣ ≤ ε.

In particular, if µ1 and µ2 are two Beltrami coefficients on H with ‖µi‖∞ ≤ 1,

i = 1, 2 that agree on a ball Bhyp(z,R) ⊂ H with R large, then∣∣∣∣2(Sµ1)
′

ρH
(z)− 2(Sµ2)

′

ρH
(z)

∣∣∣∣ ≤ 2ε. (2.9)
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2.3 Boxes and grids

By a box in the upper half-plane, we mean a rectangle whose sides are parallel

to the coordinate axes, with the bottom side located above the real axis. Boxes

naturally arise in grids. One natural collection of grids are the n-adic grids Gn,

defined for integer n ≥ 2. An n-adic interval I ⊂ R is an interval of the form

Ij,k =
[
j · n−k, (j + 1) · n−k

]
. To an n-adic interval I, we associate the n-adic box

�I =
{
w : Rew ∈ I, Imw ∈

[
n−1|I|, |I|

]}
.

It is easy to see that the boxes �Ij,k with j, k ∈ Z have disjoint interiors and their

union is H.

If µ is a Beltrami coefficient supported on the lower half-plane, we say that µ is

periodic with respect to a grid G (or rather with respect to G ) if for any two boxes

B1, B2 ∈ G , we have µ|B1
= L∗(µ|B2

), where L(z) = az + b, a > 0, b ∈ R, is the

affine map that takes B1 to B2. We remind the reader that when computing the

pullback, Beltrami coefficients are viewed as (−1, 1)-forms.

Given µ defined on a box B, and a grid G containing B, there exists a unique

periodic Beltrami coefficient µper which agrees with µ on B. As discussed in [11],

for Bloch functions b = S#µ with periodic µ, the three characteristics in Makarov’s

principle are equal.

2.4 An isoperimetric property of the metric |dz|2/y

The metric |dz|2/y will play an important role in the work. The crucial feature that

makes the periodization arguments work is the following isoperimetric property: if

S > 0 is held fixed, then

Area(∂S�, |dz|2/y)

Area(�, |dz|2/y)
→ 0, � ∈ Gn, n→∞, (2.10)

where ∂S� := {z ∈ � : dH(z, ∂�) < S}.
Combining the isoperimetric property of |dz|2/y with (2.9), we see that if µ1 = µ2

agree on the reflection � of a box � ∈ Gn, then the difference∣∣∣∣∣
 
�

∣∣∣∣2(Sµ1)
′

ρH
(z)

∣∣∣∣2 |dz|2y −
 
�

∣∣∣∣2(Sµ2)
′

ρH
(z)

∣∣∣∣2 |dz|2y
∣∣∣∣∣ = o(1), as n→∞. (2.11)
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Here, we have used the elementary identity
∣∣|a|2− |b|2∣∣ ≤ |a− b| · |a+ b| and Lemma

2.2(i).

3 Box Lemma

For a Bloch function b ∈ B(H), its asymptotic variance is given by

σ2
[0,1](b) = lim sup

y→0+

1

| log y|

ˆ 1

0

|b(x+ iy)|2 dx, (3.1)

= lim sup
h→0+

1

| log h|

ˆ 1

h

ˆ 1

0

∣∣∣∣2b′(x+ iy)

ρH

∣∣∣∣2 |dz|2y . (3.2)

The equivalence of the two definitions is due to McMullen [18, Section 6], for a

purely upper half-plane proof, see [11]. It is not difficult to show that the maximum

asymptotic variance over the unit ball in B(H) coincides with the unit disk version:

Σ2
B = sup

‖b‖B(H)≤1
σ2
[0,1](b).

The same is true for the other characteristics of Bloch functions from the introduc-

tion. One can prove this by precomposing Bloch functions b ∈ B with the exponential

ξ(w) = e2πiw like in [10, Section 3]. We leave the details to the reader.

The proof of Makarov’s principle for the Bloch unit ball rests on the following

Box Lemma :

Lemma 3.1. (i) Given ε > 0, if n ≥ n(ε) is sufficiently large, then for any Bloch

function b with ‖b‖B(H) ≤ 1 and � ∈ Gn,

 
�

∣∣∣∣2b′ρH (z)

∣∣∣∣2 |dz|2y < Σ2
B + ε. (3.3)

(ii) Conversely, for n ≥ n(ε) sufficiently large, there exists a Bloch function b

with ‖b‖B(H) ≤ 1, which satisfies

 
�

∣∣∣∣2b′ρH (z)

∣∣∣∣2 |dz|2y > Σ2
B − ε (3.4)

on every box � ∈ Gn. Furthermore, b may be taken of the form b = S#µ for some

Beltrami coefficient µ with |µ| ≤ χH that is periodic with respect to the n-adic grid.
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With the help of Lemma 3.1, the proof of Theorem 1.1 can be completed using

the scheme laid out in [11]:

1. Following Makarov [17], a Bloch function b ∈ B(H) defines an n-adic martingale

on [0, 1]. Namely, for an n-adic interval I ⊂ [0, 1], one can define

BI := lim
h→0+

1

|I|

ˆ
I+ih

b(x+ ih)dx (3.5)

so that if I1, I2, . . . , In are the n-adic children of I, then BI = (1/n)
∑n

j=1BIj .

2. Box averages (3.3) describe the local variation of this martingale. Set

VarI B :=
1

n

n∑
j=1

|BIj −BI |2.

An argument involving Green’s formula on �I shows that

VarI B

log n
=

 
�I

∣∣∣∣2b′ρH (z)

∣∣∣∣2 |dz|2y +O
(
‖b‖2B(H)/

√
log n

)
.

3. The local variance controls the three characteristics in Makarov’s principle. Let

m = infI
VarI B
logn

and M = supI
VarI B
logn

. One can show that the three character-

istics in Makarov’s principle are pinched between m and M . The key point

is that the characteristics can be defined in terms of the martingale B, so the

problem is purely combinatorial.

Proof of Lemma 3.1. (i) Assume for the sake of contradiction that there is a box

� ⊂ H and a function b in the Bloch unit ball for which

 
�

∣∣∣∣2b′ρH (z)

∣∣∣∣2 |dz|2y > Σ2
B + ε. (3.6)

We can choose a Beltrami coefficient µ with µ ≤ χH and S#µ = b+ C, for instance

µ = 2i · b′(z)/ρH will do, cf. (2.8). We then form the Beltrami coefficient µper ≤ χH

by restricting µ to � and periodizing with respect to Gn, that is, on �j ∈ Gn, we
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define µper = L∗jµ, where Lj(z) = az+ b is the unique affine mapping with a > 0 and

b ∈ R that maps �j to �. According to (2.11), we would have

 
�j

∣∣∣∣2(Sµper)
′

ρH
(z)

∣∣∣∣2 |dz|2y > Σ2
B + 2ε/3, for all �j ∈ Gn, (3.7)

when n is large. However, this is not yet a contradiction since ‖S#µper‖B(H) might

be greater than 1.

For z ∈ �j, let h(z) = dH(z, ∂�j). Fix a number S > 0 very large, but much

smaller than R = log n. We now modify µper on the set W = {z : h(z) < S}. More

precisely, we define a new Beltrami coefficient

µ̂per(z) =

{
(h(z)/S) · µper, z ∈ W,
µper, z /∈ W.

(3.8)

By making S large, we can make ‖S#µ̂per‖B(H) ≤ 1 + ε/3. Furthermore, if R >> S is

large, Lemma 2.2 and the isoperimetric property (2.10) guarantee that∣∣∣σ2
[0,1](S#µ̂per)− σ2

[0,1](S#µper)
∣∣∣ ≤ ε/3.

This contradicts the definition of Σ2
B (we may divide µ̂per by 1 + ε/3), so our initial

assumption must have been wrong.

(ii) Conversely, suppose b is a Bloch function with

‖b‖B(H) ≤ 1 and σ2
[0,1](b) ≥ Σ2 − ε/2.

Consider the n-adic grid Gn. By the pigeon-hole principle, there exists an n-adic

box � for which the integral in (3.3) is at least Σ2 − ε/2. Set ν = 2i · b′(z)/ρH so

that S#ν = b+C. Restricting ν to � and periodizing over n-adic boxes produces a

Beltrami coefficient ν̂per which satisfies

 
�j

∣∣∣∣2(S ν̂per)′

ρH
(z)

∣∣∣∣2 |dz|2y > Σ2 − ε, for all �j ∈ Gn. (3.9)

This completes the proof.

12



Remark. To see that the periodization argument works for the norms

‖b‖B/B0,m = lim sup
|z|→1

(1− |z|2)m|b(m)(z)|, m ≥ 2,

it suffices to show that µ →
∣∣(Sµ)(m+1)/ρmH )(z)

∣∣ satisfies a variant of Lemma 2.2.

We leave it to the reader to generalize the argument from [10, Section 4]. With a

bit more work, one can show that the above argument is applicable to the Zygmund

norm on the Bloch space. Here, one takes a Bloch function b(z), forms

f(z) =

ˆ z

0

b(w)dw

and then restricts to the unit circle, cf. [7, Theorems II.3.4 and VII.1.3]. A similar

construction involving fractional integration endows the Bloch space with the Cα

norms (0 < α < 1). More precisely, if b ∈ B then

f(z) =

ˆ
D

b(w)

(1− zw)2−α
|dw|2

satisfies supz∈D(1− |z|2)1−α|f ′(z)| ≤ Cα‖b‖B and hence extends to a Cα function on

the unit circle. In fact, if b = Pµ with µ ∈ L∞(D) then Fubini’s theorem shows that

f(z) =
´
D

µ(w)
(1−zw)2−α |dw|

2 from which the growth bound is clear. Further, the value

of the Cα quotient |f(z1)−f(z2)||z1−z2|α , z1, z2 ∈ S1 is determined (up to small error) by the

values of µ in a neighbourhood of the Euclidean midpoint of the hyperbolic geodesic

joining z1 and z2. The reader interested in working out the details can examine [23,

Chapter 7] and [7, Theorem II.3.2].

These constructions lead to the constants Σ2
B,m, Σ2

Z and Σ2
Cα . We note however

that one can construct (equivalent) norms on B/B0 which cannot be described as

lim sup|z|→1 of local behaviour. For these irregular norms, the periodization scheme

does not work.
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4 Coefficient estimates

In this section, we prove Lemma 1.2 and give an explicit estimate for the quantity

α(R) = sup
‖b‖B(H)≤1

{ 
Bhyp(i,R)

∣∣∣∣2b′ρH (z)

∣∣∣∣2 ρ2H|dz|2}.
The proof of Lemma 1.2 uses the motif of geometry of averages which says that

averages of high concentration control averages of low concentration, e.g. the L∞

norm controls the L1 norm of a function.

Proof of Lemma 1.2. Suppose b ∈ B(H) is a Bloch function of norm 1. If we average

 
Bhyp(z,R)

∣∣∣∣2b′ρH (z)

∣∣∣∣2 ρ2H|dz|2 ≤ α(R)

over z ∈ [0, 1]× [h, 1] with respect to the measure |dz|2/y, we see that the quantity

(3.2) is bounded by α(R) + OR(1/| log h|) as h → 0+. Thus, σ2
[0,1](b) ≤ α(R) as

desired.

We proceed to give a quantitative bound for α(R). For this purpose, we switch

back to the unit disk and consider a Bloch function b ∈ B of norm 1. Let us expand

b′ as a power series:

b′(z) = q0 + q1z + q2z
2 + q3z

3 + · · · .

To give a bound for

ˆ
|z|≤r
|b′(z)|2 |dz|2 = 2π

∞∑
k=0

r2k+2

2k + 2
|qk|2,

we need to estimate the coefficients {qk}. Since ‖b‖B ≤ 1, Cauchy’s estimates show:

|qk| ≤
k + 2

2

(
k + 2

k

)k/2
, k ≥ 1. (4.1)

We estimate the first few terms together, rather than one at a time. To do this,

we will use Parseval’s identity and the following general principle (see [2] or [5, Satz
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3.2.1]): To maximize a continuous and increasing functional of |q0| and |q1| in the

unit ball of B, it is enough to consider the special functions b(z) = (3/4)
√

3Sa(z)2

where

Sa(z) =
z + a

1 + az
, a ∈ [0, 1/

√
3].

For these special functions,

q0 = (3/2)
√

3a(1− a2), q1 = (3/2)
√

3(1− a2)(1− 3a2). (4.2)

We remark that the parameter a in our paper is denoted by z0 in [5], also Bonk works

with the Bloch function rather than its derivative, which explains the discrepancy in

the factor of 2 between our q1 and Bonk’s a2.

With this principle in mind, we give two estimates, one when |q2| is small, and

another when |q2| is large:

Lemma 4.1. If |q2| ≤ 2, then for r ≤ 0.4, the following inequality holds:

r2

2
|q0|2 +

r4

4
|q1|2 +

r6

6
|q2|2 ≤

r2

2
+

2

3
r6. (4.3)

Proof. Straightforward computations show that for all the special functions Sa,

r2

2
|q0|2 +

r4

4
|q1|2 ≤

r2

2
.

Hence, the above estimate is true for any function in the Bloch unit ball. Together

with the assumption |q2| ≤ 2, this gives (4.3).

Lemma 4.2. If |q2| ≥ 2, then for r ≤ 0.4, we have

r2

2
|q0|2 +

r4

4
|q1|2 +

r6

6
|q2|2 +

r8

8
|q3|2 ≤

r2

2
+

17

24
r6 + 2.77 r8. (4.4)

Proof. By Parseval’s formula,

|q0|2 + |q1|2s2 + |q2|2s4 + |q3|2s6 + · · · ≤ 1

(1− s2)2
, s ∈ [0, 1].

In particular,

|q3|2s6 ≤
1

(1− s2)2
− 4s4

15



since |q2| ≥ 2 by assumption. The choice s2 = 0.58 gives |q3|2 ≤ 22.16 or

r8

8
|q3|2 ≤ 2.77 r8.

It remains to show that

r2

2
|q0|2 +

r4

4
|q1|2 +

r6

6
|q2|2 ≤

r2

2
+

17

24
r6. (4.5)

For this purpose, consider the function

φ(z) =
1− τ

2

(
b′(
√
τz) + b′(−

√
τz)
)

= (1− τ)q0 + (1− τ)τ q2z
2 + · · · ,

where τ is an auxiliary parameter in [0, 1]. By construction, |φ(z)| ≤ 1 in the unit

disk. Applying the Schwarz lemma to φ(
√
z) gives

(1− τ)τ |q2| ≤ 1− (1− τ)2|q0|2.

Maximizing over τ ∈ [0, 1], we obtain

|q2| ≤ 2 + 2
√

1− |q0|2.

Therefore to prove (4.5), we have to show that the inequality

r2

2
|q0|2 +

r4

4
|q1|2 +

r6

6

(
2 + 2

√
1− |q0|2

)2
≤ r2

2
+

17

24
r6, r ≤ 0.4,

is valid for all q0, q1 of the form (4.2), with a ∈ [0, 1). Routine computations show

that this is indeed the case. We leave the details to the reader.

Lemma 4.3. If r = 0.4 then

(1− r2)
πr2

ˆ
|z|≤r
|b′(z)|2 |dz|2 ≤ 0.8998.

Proof. If |q2| ≤ 2, then from Lemma 4.1 and Cauchy’s estimates (4.1),

∞∑
k=0

r2k+2

2k + 2
|qk|2 ≤

r2

2
+

2

3
r6 +

∞∑
k=3

r2k+2

2k + 2

(
k + 2

2

)2(
k + 2

k

)k
,
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while if |q2| ≥ 2, Lemma 4.2 gives

∞∑
k=0

r2k+2

2k + 2
|qk|2 ≤

r2

2
+

17

24
r6 + 2.77 r8 +

∞∑
k=4

r2k+2

2k + 2

(
k + 2

2

)2(
k + 2

k

)k
.

Plugging in the value r = 0.4, numerical computations show that in either case, the

left hand side does note exceed 0.8998.

Since the hyperbolic area of the ball B(0, r) is

ˆ
|z|≤r

ρ2 |dz|2 = 2π

ˆ r

0

4s

(1− s2)2
ds = 4π

r2

1− r2
,

we see that Lemma 4.3 is equivalent to the statement

α(η(0.4)) < 0.8998,

where η(0.4) is the hyperbolic radius of the ball {z : |z| ≤ 0.4}. This shows Σ2
B < 0.9,

which completes the proof of Theorem 1.2.
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