Asymptotic expansion of the Hausdorff dimension of the push-forward of Lebesgue measure

Oleg Ivrii

October 24, 2013

In this note, we are interested in the asymptotic expansion of the Hausdorff dimension of the push-forward of the Lebesgue measure near $z \to z^2$. More precisely, let h_λ be the conjugacy on the unit circle between z^2 and $z \cdot \frac{z^2 + \lambda}{1 + \lambda z}$. Suppose

$$ \text{H.dim } (h_\lambda)_* = 1 - \sum_{jk} a_{jk} \lambda^j \overline{\lambda}^k. \quad (1) $$

Question. Is the matrix $\{a_{jk}\}$ positive definite?

We explicitly compute the 2×2 minor of this matrix and verify that it is positive definite. Using a computer program, I computed a 7×7 minor and showed it to be positive definite.

We follow McMullen’s alternative calculation using DeMarco’s formula. For this purpose, it is simpler to perturb $z \to z^2$ through Blaschke products $f_k(z) = \frac{z^2 + k}{1 + k z^2}$.

Let $P(z) = z^2 + k, Q(z) = 1 + k z^2$, so that $f_k = P/Q$. Also, let $p(A, B) = A^2 + kB^2$ and let $F : \mathbb{C}^2 \to \mathbb{C}^2$ be the cover of f, given by $F(A, B) = (p(A, B), p(B, A))$.

The critical points of f are $c_1 = 0$ and $1/c_1 = \infty$. We will use the lifts $C_1 = (0, \mu)$ and $(\mu, 0)$ with $\mu^2 = 1 - |k|^2$ so that

$$ 4z_1 z_2 (1 - |k|^2) = |\det DF(z_1, z_2)| = 4 \prod |(z_1, z_2) \wedge C_i| = 4z_1 z_2 \mu^2. \quad (2) $$

Then (5.3) of McMullen’s paper says:

$$ L(f_k, (h_k)_*, m) = \log 2 + \sum G(C_i) - \log |\text{Res}(F)| \quad (3) $$

1
The resultant is the determinant of
\[
\begin{pmatrix}
1 & 0 & k & 0 \\
0 & 1 & 0 & k \\
k & 0 & 1 & 0 \\
0 & k & 0 & 1 \\
\end{pmatrix}
\]
which is \(1 - 2|k|^2 + |k|^4\).

Now let us examine the escape-rate functions \(\sum G(C_i)\). For this we purpose, consider the forward orbit of \((0, 1)\):

<table>
<thead>
<tr>
<th>Step</th>
<th>(A) up to weight 3</th>
<th>(B) up to weight 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>(k)</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>(k + k^2)</td>
<td>(1 + k^2 \cdot \bar{k})</td>
</tr>
<tr>
<td>3</td>
<td>(k + k^2 + 2k^3 + \ldots)</td>
<td>(1 + 3k^2 \cdot \bar{k} + 2k^3 \cdot \bar{k} + \ldots)</td>
</tr>
<tr>
<td>4</td>
<td>(k + k^2 + 2k^3 + \ldots)</td>
<td>(1 + 7k^2 \cdot \bar{k} + 6k^3 \cdot \bar{k} + \ldots)</td>
</tr>
<tr>
<td>5</td>
<td>(k + k^2 + 2k^3 + \ldots)</td>
<td>(1 + 15k^2 \cdot \bar{k} + 14k^3 \cdot \bar{k} + \ldots)</td>
</tr>
</tbody>
</table>

Let us evaluate
\[
\frac{1}{2^n} \log \|F^n(0, 1)\|.
\]
Here the norm is the maximum norm over the two coordinates. It picks out the \(B\) column.

Denote the attracting maximum norm over the two coordinates. It picks out the \(B\) column.

Inspection reveals that
\[
a = k + k^2 + 2k^3 + O(|k|^4).
\]
The multiplier \(f'(a) \approx 2k\). By the Schwarz lemma, we see that \(|A_n/B_n - \gamma| = O(|k|^d)\) holds for \(n \geq d\).

Since \(B_{n+1} = B_n^2(1 + \bar{k} \cdot (A_n/B_n)^2)\) for \(n \geq 3\), we see that
\[
B_{n+1} = B_n^2 \left(1 + k^2 \bar{k} + 2k^3 \bar{k} + O(|k|^5)\right).
\]
This tells us that
\[
\frac{\log B_{n+1}}{2^{n+1}} - \frac{\log B_n}{2^n} = \frac{k^2 \bar{k} + 2k^3 \bar{k}}{2^{n+1}} + O(|k|^5)
\]
\[
\frac{\log B_3}{8} = \frac{3k^2 \bar{k} + 2k^3 \bar{k}}{8}
\]
Telescopic summation yields
\[
\lim_{n \to \infty} \frac{1}{2^n} \log B_n = \frac{k^2 \bar{k}}{2} + \frac{k^3 \bar{k}}{2}.
\]
Taking real parts, we see that
\[
G(1, 0) = \frac{1}{4} (k^2 \cdot \bar{k} + k \cdot \bar{k}^2) + \frac{1}{4} (k^3 \cdot \bar{k} + k \cdot \bar{k}^3) + \ldots
\]
Notice that \(G(\mu, 0) = G(1, 0) + \log \mu\).
Thus following McMullen, we see that DeMarco’s formula yields
\[
L(f, m) = \log 2 - \log(1 - 2|k|^2 + |k|^4) + \log(1 - |k|^2) + 2 \sum G(1, 0)
\]
\[
= \log 2 - \log(1 - |k|^2) + 2 \sum G(1, 0)
\]
\[
= \log 2 + |k|^2 + \frac{k^2 \cdot \bar{k} + k \cdot \bar{k}^2}{2} + \frac{|k|^4}{2} + \frac{k^3 \cdot \bar{k} + k \cdot \bar{k}^3}{2} + \ldots
\]
Hence,
\[
\delta = \frac{\log 2}{\log 2 + |k|^2 + \frac{1}{2} (k^2 \bar{k} + k \bar{k}^2) + \frac{1}{2} |k|^4 + \frac{1}{2} (k^3 \bar{k} + k \bar{k}^3) + \ldots}
\]
Now set
\[
k = \lambda / 2 - \lambda^2 / 4 + \lambda^3 / 8 + \ldots
\]
Thus
\[
\delta = \frac{1}{1 + \frac{1}{4 \log 2} |\lambda|^2 - \frac{1}{16 \log 2} \cdot (\lambda^2 \bar{\lambda} + \lambda \bar{\lambda}^2) + \frac{5}{32 \log 2} \cdot |\lambda|^4 - \frac{1}{32 \log 2} (\lambda^3 \bar{\lambda} + \lambda \bar{\lambda}^3) + \ldots}
\]
from which we see that
\[
\delta = 1 - \frac{|\lambda|^2}{4 \log 2} + \frac{\lambda^2 \bar{\lambda} + \lambda \bar{\lambda}^2}{16 \log 2} + \left(\frac{1}{(4 \log 2)^2} - \frac{5}{32 \log 2} \right) |\lambda|^4 + \frac{1}{32 \log 2} (\lambda^3 \bar{\lambda} + \lambda \bar{\lambda}^3) + \ldots
\]
Thus in matrix form, \(1 - \delta\) is
\[
\begin{pmatrix}
\frac{1}{4 \log 2} & -\frac{1}{16 \log 2} \\
\frac{5}{32 \log 2} & -\frac{1}{(4 \log 2)^2}
\end{pmatrix}
\]
which has positive determinant.