Differential Equations: Practice Exam

Solve any 5 problems. All problems are worth equal marks. Time permitted: 3 hours. No aids allowed.

Problem 1

(a) Find the general real-valued solution of the homogenous second-order linear ODE with constant coefficients:

$$y'' + 2y' + y = 0.$$

(b) Find the general real-valued solution of the inhomogenous equation

$$y'' + 2y' + y = e^{-x}.$$

Hint. Search for a solution of the form $y_{\text{spec}} = Cx^n e^{-x}$.

Problem 2

(a) Determine all the equilibrium points of the system

$$\begin{cases} \dot{x} = (2+x)(y-x), \\ \dot{y} = (4-x)(y+x). \end{cases}$$

- (b) Find the eigenvalues of the linearized systems near each equilibrium point.
- (c) Use this information to classify the equilibrium points as nodal or spiral sources, sinks and saddles. (The problem has been cooked up so only the robust cases occur.)
- (d) Draw the nullclines $\{\dot{x} = 0\}$ and $\{\dot{y} = 0\}$. In each complementary region, determine the general direction of the vector field, i.e. decide whether \dot{x} and \dot{y} are positive or negative.
- (e) Sketch the phase portrait as best you can using the above information.

Problem 3

(a) Let y(x) be the solution to the initial value problem

$$\begin{cases} y'(x) = x - y^2\\ y(1) = 1. \end{cases}$$

Show that

$$\sqrt{x-1} \le y(x) \le \sqrt{x}, \qquad x \ge 1$$

(b) Show that any non-zero solution the Hermite differential equation

 $u'' - 2xu' + 2\lambda u = 0$

has at most finitely many zeros on the real line.

Hint. The substitution $v = e^{-x^2/2}u(x)$ transforms the DE into

$$v'' + (1 + 2\lambda - x^2)v = 0.$$

Problem 4

(a) Construct a homogenous second-order linear ODE with variable coefficients,

$$y''(x) + p(x)y'(x) + q(x)y(x) = 0,$$

with solutions u(x) = x and $v(x) = \sin x$.

(b) Use the method of variation of parameters to solve the inhomogenous linear ODE

$$y'' + y = \frac{1}{\cos^3 x}.$$

Warning. No marks will be given for simply applying Lagrange's formula. You are supposed to derive it in the specific example.

Problem 5 Show that for any $a, b \in \mathbb{R}$, the boundary value problem

$$y'' - y\sin x = 0,$$
 $x \in (0,1),$ $y(0) = a,$ $y(\pi) = b$

has a unique solution. You need to prove both existence and uniqueness.

Problem 6

Solve the wave equation in $x \in [0, 1], t \in [0, \infty]$ with Neumann boundary conditions:

$$\begin{cases} u_{tt} = u_{xx}, \\ u_x(t,0) = u_x(t,1) = 0, \\ u(0,x) = f(x), \\ u_t(0,x) = 0. \end{cases}$$

with $f \in C^{\infty}([0,1])$. The answer should be an infinite orthonormal series.

Hint. First search for solutions of the form u(t) = X(x)T(t).