Critical values of inner functions

Oleg Ivrii and Uri Kreitner

June 20, 2023

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Hyperbolic metric

In complex analysis, it is customary to equip the unit disk $\mathbb D$ with the hyperbolic metric

$$\lambda_{\mathbb{D}} = \frac{2|dz|}{1-|z|^2}$$

Then Aut(\mathbb{D}) acts isometrically on ($\mathbb{D}, \lambda_{\mathbb{D}}$), while holomorphic mappings $F : \mathbb{D} \to \mathbb{D}$ are contractions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Finite Blaschke products

A finite Blaschke product is a holomorphic self-map of the unit disk which is asymptotically a hyperbolic isometry.

Heins theorem

A finite Blaschke product is product of automorphisms of the disk:

$$F(z) = e^{ilpha} \prod_{i=1}^d rac{z-a_i}{1-\overline{a_i}z}, \qquad a_i \in \mathbb{D}.$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Heins theorem

A finite Blaschke product is product of automorphisms of the disk:

$${\sf F}(z)=e^{ilpha}\prod_{i=1}^drac{z-{\sf a}_i}{1-\overline{{\sf a}_i}z},\qquad {\sf a}_i\in\mathbb{D}.$$

Theorem. (M. Heins, 1962) Given a set C of d - 1 points in the unit disk, there exists a unique Blaschke product of degree d with critical set C.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Heins theorem

A finite Blaschke product is product of automorphisms of the disk:

$${\sf F}(z)=e^{ilpha}\prod_{i=1}^drac{z-{\sf a}_i}{1-\overline{{\sf a}_i}z},\qquad {\sf a}_i\in\mathbb{D}.$$

Theorem. (M. Heins, 1962) Given a set C of d-1 points in the unit disk, there exists a unique Blaschke product of degree d with critical set C.

We have uniqueness up to post-composition with Möbius transformations. If $m \in Aut(\mathbb{D})$, we have crit $m \circ F = crit F$.

The quasigeodesic property

The hyperbolic metric $\lambda_{\mathbb{D}}$ has constant negative curvature

$$-rac{\Delta\log\lambda_{\mathbb{D}}}{\lambda_{\mathbb{D}}^2}=-1.$$

Lemma. Let γ be a curve in $(\mathbb{D}, \lambda_{\mathbb{D}})$ and k_g be its geodesic curvature.

- If $k_g \leq 1$, then γ cannot intersect itself.
- If k_g < c < 1, then γ lies within a bounded distance of a hyperbolic geodesic.</p>

The Liouville correspondence provides a bridge between complex analysis and non-linear elliptic PDEs:

$$\left\{ \begin{array}{c} \text{hol. maps} \\ F: \mathbb{D} \to \mathbb{D} \end{array} \right\} \quad \longleftrightarrow \quad \left\{ \begin{array}{c} \text{solutions of the} \\ \text{Gauss curvature equation} \end{array} \right\}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

The Liouville correspondence provides a bridge between complex analysis and non-linear elliptic PDEs:

$$\left\{ \begin{array}{c} \text{hol. maps} \\ F: \mathbb{D} \to \mathbb{D} \end{array} \right\} \quad \longleftrightarrow \quad \left\{ \begin{array}{c} \text{solutions of the} \\ \text{Gauss curvature equation} \end{array} \right\}$$

A holomorphic self-map F of the unit disk defines the conformal pseudometric

$$\lambda_F = \frac{2|F'|}{1-|F|^2},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Liouville correspondence provides a bridge between complex analysis and non-linear elliptic PDEs:

$$\left\{ \begin{array}{c} \text{hol. maps} \\ F: \mathbb{D} \to \mathbb{D} \end{array} \right\} \quad \longleftrightarrow \quad \left\{ \begin{array}{c} \text{solutions of the} \\ \text{Gauss curvature equation} \end{array} \right\}$$

A holomorphic self-map F of the unit disk defines the conformal pseudometric

$$\lambda_F = \frac{2|F'|}{1-|F|^2},$$

which has constant negative curvature -1, away from the critical points of F,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Liouville correspondence provides a bridge between complex analysis and non-linear elliptic PDEs:

$$\left\{ \begin{array}{c} \mathsf{hol.\ maps} \\ F: \mathbb{D} \to \mathbb{D} \end{array} \right\} \quad \longleftrightarrow \quad \left\{ \begin{array}{c} \mathsf{solutions\ of\ the} \\ \mathsf{Gauss\ curvature\ equation} \end{array} \right\}$$

A holomorphic self-map F of the unit disk defines the conformal pseudometric

$$\lambda_F = \frac{2|F'|}{1-|F|^2},$$

which has constant negative curvature -1, away from the critical points of F, where it has concentrated negative curvature.

The Liouville correspondence provides a bridge between complex analysis and non-linear elliptic PDEs:

$$\left\{\begin{array}{l} \mathsf{hol.\ maps} \\ F:\mathbb{D}\to\mathbb{D} \end{array}\right\} \quad \longleftrightarrow \quad \left\{\begin{array}{l} \mathsf{solutions\ of\ the} \\ \mathsf{Gauss\ curvature\ equation} \end{array}\right\}$$

The function $u_F = \log \lambda_F$ satisfies the Gauss curvature equation:

$$\Delta u = e^{2u} + 2\pi \sum_{c \in \operatorname{crit} F} \delta_c.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Liouville correspondence provides a bridge between complex analysis and non-linear elliptic PDEs:

$$\left\{\begin{array}{c} \mathsf{hol. maps} \\ F: \mathbb{D} \to \mathbb{D} \end{array}\right\} \quad \longleftrightarrow \quad \left\{\begin{array}{c} \mathsf{solutions of the} \\ \mathsf{Gauss curvature equation} \end{array}\right\}$$

The function $u_F = \log \lambda_F$ satisfies the Gauss curvature equation:

$$\Delta u = e^{2u} + 2\pi \sum_{c \in \operatorname{crit} F} \delta_c.$$

Any solution of the above equation arises from a holomorphic self-map of the unit disk, which is uniquely determined up to post-composition with an element of $Aut(\mathbb{D})$.

Heins theorem (proof)

Construction of a finite Blaschke product F_C with critical set C:

1. Let u_C be the pointwise maximal solution of

$$\Delta u = e^{2u} + 2\pi \sum_{c \in C} \delta_c.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Heins theorem (proof)

Construction of a finite Blaschke product F_C with critical set C:

1. Let u_C be the pointwise maximal solution of

$$\Delta u = e^{2u} + 2\pi \sum_{c \in C} \delta_c.$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

2. Define F_C as the Liouville map of u_C .

Construction of a finite Blaschke product F_C with critical set C:

1. Let u_C be the pointwise maximal solution of

$$\Delta u = e^{2u} + 2\pi \sum_{c \in C} \delta_c.$$

- 2. Define F_C as the Liouville map of u_C .
- 3. One uses the maximality of the solution u_C to conclude that F_C is a finite Blaschke product.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

An inner function is a holomorphic self-map of \mathbb{D} such that for almost every $\theta \in [0, 2\pi)$, the radial boundary value

 $\lim_{r\to 1} F(re^{i\theta})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

exists and has absolute value 1.

An inner function is a holomorphic self-map of \mathbb{D} such that for almost every $\theta \in [0, 2\pi)$, the radial boundary value

 $\lim_{r\to 1} F(re^{i\theta})$

exists and has absolute value 1.

Different inner functions can have the same critical set. For example, $F_1(z) = z$ and $F_2(z) = \exp(\frac{z+1}{z-1})$ have no critical points.

Figure: The universal covering map of the punctured disk.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

An inner function can be represented as a (possibly infinite) Blaschke product \times singular inner function:

$$egin{aligned} B(z) &= e^{ilpha} \prod_i -rac{a_i}{|a_i|} \cdot rac{z-a_i}{1-\overline{a_i}z}, \quad a_i \in \mathbb{D}, \quad \sum_i (1-|a_i|) < \infty. \ S(z) &= \expigg(-\int_{\mathbb{S}^1} rac{\zeta+z}{\zeta-z} \, d\mu_\zetaigg), \quad \mu \perp m, \quad \mu \geq 0. \end{aligned}$$

Here, B records the zero set, while S records the boundary zero structure.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Inner functions of finite entropy / Stable topology

Let \mathscr{J} be the space of inner functions with derivative in the Nevanlinna class:

$$\int_{\partial \mathbb{D}} \log |F'(e^{i\theta})| dm < \infty,$$

where $F_n \rightarrow F$ if the convergence is uniform on compact sets and

$$\int_{\partial \mathbb{D}} \log |F'_n(z)| dm o \int_{\partial \mathbb{D}} \log |F'(z)| dm.$$

In 1974, P. Ahern and D. Clark showed that F' admits a BSO decomposition, allowing us to define Inn F' := BS, where B records the critical set of F and S records the boundary critical structure.

Dyakonov's question

Theorem. (Kraus 2013, I. 2017) An inner function $F \in \mathscr{J}$ is uniquely determined by Inn F' up to post-composition with a Möbius transformation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Dyakonov's question

Theorem. (Kraus 2013, I. 2017) An inner function $F \in \mathscr{J}$ is uniquely determined by Inn F' up to post-composition with a Möbius transformation.

An inner function BS_{μ} is a critical structure if and only if μ lives on a countable union of Beurling-Carleson sets.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Dyakonov's question

Theorem. (Kraus 2013, I. 2017) An inner function $F \in \mathscr{J}$ is uniquely determined by Inn F' up to post-composition with a Möbius transformation.

An inner function BS_{μ} is a critical structure if and only if μ lives on a countable union of Beurling-Carleson sets.

Definition. A Beurling-Carleson set E is a closed subset of the unit circle which has measure 0 such that

$$\|E\|_{\mathcal{BC}} := \sum |I_j| \cdot \log \frac{1}{|I_j|} < \infty,$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

where $\{I_j\}$ are the complementary arcs.

What this talk is about

For a finite Blaschke product F, we define:

Critical point measure:

$$\mu_F = \sum_{c \in \operatorname{crit} F} (1 - |c|) \cdot \delta_c$$

Critical value measure:

$$\nu_F = \sum_{c \in \operatorname{crit} F} (1 - |c|) \cdot \delta_{F(c)}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Question. Can we extend these definitions to inner functions in a meaningful way?

Figure: For the universal covering map of the punctured disk, the critical point measure is $\mu_F = \delta_{-1}$ and the critical value measure is $\nu_F = \delta_0$.

Critical value measures

Theorem 1. Suppose $F \in \mathscr{J}$ and $F_n \rightarrow F$ is a stable approximation by finite Blaschke products.

The critical value measures

$$\nu_{F_n} = \sum_{c \in \operatorname{crit} F_n} (1 - |c|) \cdot \delta_{F_n(c)}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

converge in the weak-* topology to a measure ν_F .

Critical value measures

Theorem 1. Suppose $F \in \mathscr{J}$ and $F_n \rightarrow F$ is a stable approximation by finite Blaschke products.

The critical value measures

$$\nu_{F_n} = \sum_{c \in \operatorname{crit} F_n} (1 - |c|) \cdot \delta_{F_n(c)}$$

converge in the weak-* topology to a measure ν_F .

1. ν_F does not depend on the approximating sequence F_n .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Critical value measures

Theorem 1. Suppose $F \in \mathscr{J}$ and $F_n \rightarrow F$ is a stable approximation by finite Blaschke products.

The critical value measures

$$\nu_{F_n} = \sum_{c \in \operatorname{crit} F_n} (1 - |c|) \cdot \delta_{F_n(c)}$$

converge in the weak-* topology to a measure ν_F .

1. ν_F does not depend on the approximating sequence F_n .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

2. The measure ν_F is supported on the open unit disk.

Components of inner functions

Suppose $V \subset \mathbb{D}$ is a Jordan domain and U is a connected component of the pre-image $F^{-1}(V)$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Components of inner functions

Form the component inner function $F_U = \psi^{-1} \circ F \circ \varphi$, where φ, ψ are Riemann maps from \mathbb{D} to U and V respectively.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Components of inner functions

Theorem 2. crit $F_U = \varphi^{-1}(\operatorname{crit} F), \quad \varphi_* \, \sigma(F'_U) = |(\varphi^{-1})'(\zeta)| \, d\sigma(F')|_{(\partial U \cap \partial \mathbb{D})}.$

(日) (四) (日) (日) (日)

Angular derivatives

Suppose $\varphi : \mathbb{D} \to \Omega$ is a Riemann map onto a Jordan domain. We say φ has an angular derivative at $\zeta \in \partial \mathbb{D}$ if

 $\lim_{r\to 1}\varphi'(r\zeta)$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

exists and is finite.

Angular derivatives

According to the Rodin-Warschawski theorem, φ has a non-zero angular derivative if and only if

$$\lim_{\substack{r,s\to 0\\r>s}}\left\{\frac{1}{\pi}\cdot\log\frac{r}{s}-\operatorname{Mod}\Gamma_{r,s}\right\}\,=\,0.$$

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Angular derivatives

We are interested in the case when $\Omega \subset \mathbb{D}$.

The Rodin-Warschawski theorem says that φ has a non-zero angular derivative at $\zeta \in \partial \mathbb{D}$ iff Ω is sufficiently thick at $\varphi(\zeta) \in \partial \mathbb{D}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Thick limits

We say that a holomorphic function $F : \mathbb{D} \to \mathbb{D}$ has thick limit L at $\zeta \in \partial \mathbb{D}$ if $\forall \varepsilon > 0$, some connected component of $F^{-1}(B(L, \varepsilon))$ is thick at ζ .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Thick limits

We say that a holomorphic function $F : \mathbb{D} \to \mathbb{D}$ has thick limit L at $\zeta \in \partial \mathbb{D}$ if $\forall \varepsilon > 0$, some connected component of $F^{-1}(B(L, \varepsilon))$ is thick at ζ .

By a result of K. Burdzy from 1986, this is the same as F having a minimal fine limit L at ζ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Abundance of thick limits

Theorem 3. Suppose $F \in \mathscr{J}$ is an inner function with $\operatorname{Inn} F' = BS_{\mu}$. For almost every $\zeta \in \partial \mathbb{D}$ with respect to μ ,

thick-lim F(z)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

exists and lies in the open unit disk \mathbb{D} .

Abundance of thick limits

Theorem 3. Suppose $F \in \mathscr{J}$ is an inner function with $\operatorname{Inn} F' = BS_{\mu}$. For almost every $\zeta \in \partial \mathbb{D}$ with respect to μ ,

thick-lim F(z)

exists and lies in the open unit disk \mathbb{D} .

Special case. Suppose μ is a singular measure on the unit circle supported on a Beurling-Carleson set *E*. Then,

$$\int_0^1 \mu(B(\zeta,arepsilon))^{-1} darepsilon < \infty, \qquad \mu ext{ a.e. } \zeta \in \partial \mathbb{D}.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Fundamental lemma

Lemma (Dyakonov 1992, Kraus 2013, I. 2017) For any inner function $F \in \mathcal{J}$, λ_F is the minimal solution of GCE(*C*) which satisfies

$$\lambda_F \,=\, rac{2|F'|}{1-|F|^2}\,\geq\, |\, {\sf Inn}\, F'|\lambda_{\mathbb D}.$$

Corollary

Suppose $F_1, F_2 \in \mathscr{J}$ with $Inn F_1' = S_{\mu_1}$ and $Inn F_2' = S_{\mu_2}$. If $\mu_1 \le \mu_2$ then

$$\lambda_{F_1} \geq \lambda_{F_2}$$

Estimates for F'_{μ} with μ supported on E

Lemma (Coarse estimate, I. 2021) For $\zeta \in \partial \mathbb{D} \setminus E$, we have

$$|F'_{\mu}(\zeta)| \leq C(\mu(\partial \mathbb{D})) \cdot \operatorname{dist}(\zeta, E)^{-4}.$$

Lemma (Fine estimate) Suppose $\zeta \in \partial \mathbb{D} \setminus E$. Write $z = (1 - \delta)\zeta$ where $\delta = dist(\zeta, E)$. If $P_{\mu}(z) \ge 1$ then

$$|F_{\mu}'(\zeta)| \leq C \cdot rac{P_{\mu}(z)}{\delta}, \qquad \zeta \in \partial \mathbb{D} \setminus E,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

for some universal constant C > 0.

Abundance of thick limits (proof)

We want to show that $|F_{\mu}(x) - F_{\mu}(y)| \leq \int_{\gamma} |F'_{\mu}(z)| \cdot |dz|$ is small.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Abundance of thick limits (proof)

To estimate $|F'_{\mu}(z)|$, we estimate either $\lambda_{F_{\mu_{\text{Left}}}}(z)$ or $\lambda_{F_{\mu_{\text{Right}}}}(z)$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Abundance of thick limits (proof)

For μ -a.e. x, both measures $\mu_{\text{Left}(x)}$ and $\mu_{\text{Right}(x)}$ are substantial.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Thank you for your attention!

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ