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Hyperbolic metric

In complex analysis, it is customary to equip the unit disk D with
the hyperbolic metric
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Then Aut(D) acts isometrically on (D, Ap), while holomorphic
mappings F : D — DD are contractions.



Finite Blaschke products

A finite Blaschke product is a holomorphic self-map of the unit
disk which is asymptotically a hyperbolic isometry.
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A finite Blaschke product is product of automorphisms of the disk:

d
; zZ—aj
Fle)=e"l{—, aeD
i=1 !

Theorem. (M. Heins, 1962) Given a set C of d — 1 points in the
unit disk, there exists a unique Blaschke product of degree d with
critical set C.

We have uniqueness up to post-composition with Mobius transfor-

mations. If m € Aut(ID), we have critmo F = crit F.




The quasigeodesic property

The hyperbolic metric Ap has constant negative curvature

_Alog)\D _ 4
Y

Lemma. Let v be a curve in (D, \p) and kg be its geodesic
curvature.

» If kg <1, then 7 cannot intersect itself.

> If kg < c <1, then  lies within a bounded distance of a
hyperbolic geodesic.
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Liouville correspondence

The Liouville correspondence provides a bridge between complex
analysis and non-linear elliptic PDEs:

hol. maps solutions of the
F:D—D Gauss curvature equation

A holomorphic self-map F of the unit disk defines the conformal
pseudometric
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which has constant negative curvature —1, away from the critical

AF

points of F, where it has concentrated negative curvature.
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Liouville correspondence

The Liouville correspondence provides a bridge between complex
analysis and non-linear elliptic PDEs:

hol. maps solutions of the
F:D—D Gauss curvature equation
The function ur = log Ar satisfies the Gauss curvature equation:

Au= e +2r Z Oc.

cEcrit F

Any solution of the above equation arises from a holomorphic
self-map of the unit disk, which is uniquely determined up to
post-composition with an element of Aut(D).
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Heins theorem (proof)

Construction of a finite Blaschke product F¢ with critical set C:

1. Let uc be the pointwise maximal solution of

Au= e + 2w25c.
ceC

2. Define F¢ as the Liouville map of uc.

3. One uses the maximality of the solution u¢ to conclude that
Fc is a finite Blaschke product.



Inner functions

An inner function is a holomorphic self-map of D such that for
almost every 0 € [0, 27), the radial boundary value
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Inner functions

An inner function is a holomorphic self-map of D such that for
almost every 0 € [0, 27), the radial boundary value

lim F(re®)

r—1

exists and has absolute value 1.

Different inner functions can have the same critical set. For example,

Fi(z) = z and F»(z) = exp(Zt}) have no critical points.
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Figure: The universal covering map of the punctured disk.



BS decomposition

An inner function can be represented as a (possibly infinite)
Blaschke product x singular inner function:
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Here, B records the zero set, while S records the boundary zero
structure.




Inner functions of finite entropy / Stable topology

Let Z be the space of inner functions with derivative in the
Nevanlinna class:

/ log |F'(e?)|dm < oo,
oD

where F, — F if the convergence is uniform on compact sets and

/Iog]F,’,(z)|dm%/ log |F'(z)|dm.
oD oD

In 1974, P. Ahern and D. Clark showed that F’ admits a BSO
decomposition, allowing us to define Inn F’ := BS, where B records
the critical set of F and S records the boundary critical structure.
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Dyakonov's question

Theorem. (Kraus 2013, I. 2017) An inner function F € ¢ is
uniquely determined by Inn F’ up to post-composition with a
Mobius transformation.

An inner function BS,, is a critical structure if and only if s lives
on a countable union of Beurling-Carleson sets.

Definition. A Beurling-Carleson set E is a closed subset of the unit
circle which has measure 0 such that

IEllse == > Il |0gm < 00,

where {/;} are the complementary arcs.



What this talk is about

For a finite Blaschke product F, we define:

» Critical point measure:

pr= 3 (1—lcl) -6
cEcrit F
» Critical value measure:

ve=» (1=le])- dr(c)-

cEcrit F

Question. Can we extend these definitions to inner functions in a
meaningful way?



F(z) = exp fT':)
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Figure: For the universal covering map of the punctured disk, the critical
point measure is yur = d_1 and the critical value measure is vg = .



Critical value measures
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Critical value measures

Theorem 1. Suppose F € ¢ and F, — F is a stable
approximation by finite Blaschke products.

The critical value measures

vi, = Y (1—1el) - 0ryo)

cccrit F,

converge in the weak-x topology to a measure vr.

1. vg does not depend on the approximating sequence F,.

2. The measure v is supported on the open unit disk.



Components of inner functions
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Suppose V C D is a Jordan domain and U is a connected
component of the pre-image F~1(V).



Components of inner functions
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Form the component inner function Fy =1 ~! o F o ¢, where ,
are Riemann maps from D to U and V respectively.



Components of inner functions
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crit Fy = o~ crit F), @ o(F) = (¢ 1) (O do(F')|(aunom)-




Angular derivatives
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Suppose ¢ : D — Q is a Riemann map onto a Jordan domain.

We say ¢ has an angular derivative at ¢ € 0D if
lim ¢(r¢)
r—1

exists and is finite.



Angular derivatives
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According to the Rodin-Warschawski theorem, ¢ has a non-zero
angular derivative if and only if

r,s—0
r>s

lim { Iogf — Mod F,s} = 0.



Angular derivatives

V)
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We are interested in the case when Q2 C D.

The Rodin-Warschawski theorem says that ¢ has a non-zero
angular derivative at { € D iff Q is sufficiently thick at

¢(¢) € OD.



Thick limits
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We say that a holomorphic function F : D — D has thick limit L at
¢ € OD if Ve > 0, some connected component of F~1(B(L,¢)) is
thick at C.



Thick limits

We say that a holomorphic function F : D — D has thick limit L at
¢ € OD if Ve > 0, some connected component of F~(B(L,¢)) is
thick at C.

By a result of K. Burdzy from 1986, this is the same as F having a
minimal fine limit L at .




Abundance of thick limits

Theorem 3. Suppose F € ¢ is an inner function with
Inn F" = BS,,. For almost every ¢ € 0D with respect to p,
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Abundance of thick limits

Theorem 3. Suppose F € ¢ is an inner function with
Inn F" = BS,,. For almost every ¢ € 0D with respect to p,

thick-lim F(z)

z—(
exists and lies in the open unit disk D.

Special case. Suppose i is a singular measure on the unit circle
supported on a Beurling-Carleson set E. Then,

1
/ w(B(¢,€)) tde < oo, pa.e. ¢ € ID.
0



Fundamental lemma

Lemma (Dyakonov 1992, Kraus 2013, I. 2017)

For any inner function F € _#, A is the minimal solution of
GCE(C) which satisfies

2|’
| ’ > |InnF’|/\D.

AF =
FrIo R T

Corollary
Suppose Fi,F> € # withInnF{ =S, andInnFy =S,,. If
p1 < po then

AR 2 AR,



Estimates for F/L with p supported on E

Lemma (Coarse estimate, |. 2021)
For { € 0D\ E, we have

|F(Q)] < C(u(8D)) - dist(¢, E)~*.

Lemma (Fine estimate)

Suppose ( € OD \ E. Write z = (1 — §)( where § = dist((, E). If
P.(z) > 1 then

IF.(OI<C- P“éz), (e dD\E,

for some universal constant C > 0.



Abundance of thick limits (proof)
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We want to show that |F,(x) — Fu(y)| < [, [F(2)] - |dz| is small.



Abundance of thick limits (proof)
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To estimate |F/,(2), we estimate either Af, _(2) or AFNRight (2).



Abundance of thick limits (proof)
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For p-a.e. x, both measures pi ¢fi(x) and fiRight(x) are substantial.



Thank you for your attention!



