Critical values
of inner functions

Oleg Ivrii and Uri Kreitner

June 20, 2023
Hyperbolic metric

In complex analysis, it is customary to equip the unit disk \mathbb{D} with the hyperbolic metric

$$\lambda_{\mathbb{D}} = \frac{2|dz|}{1 - |z|^2}.$$

Then $\text{Aut}(\mathbb{D})$ acts isometrically on $(\mathbb{D}, \lambda_{\mathbb{D}})$, while holomorphic mappings $F : \mathbb{D} \to \mathbb{D}$ are contractions.
Finite Blaschke products

A finite Blaschke product is a holomorphic self-map of the unit disk which is asymptotically a hyperbolic isometry.
A finite Blaschke product is product of automorphisms of the disk:

\[F(z) = e^{i\alpha} \prod_{i=1}^{d} \frac{z - a_i}{1 - \bar{a}_i z}, \quad a_i \in \mathbb{D}. \]
Heins theorem

A finite Blaschke product is product of automorphisms of the disk:

$$F(z) = e^{i\alpha} \prod_{i=1}^{d} \frac{z - a_i}{1 - \overline{a_i}z}, \quad a_i \in \mathbb{D}.$$

Theorem. (M. Heins, 1962) Given a set C of $d - 1$ points in the unit disk, there exists a unique Blaschke product of degree d with critical set C.
A finite Blaschke product is product of automorphisms of the disk:

\[F(z) = e^{i\alpha} \prod_{i=1}^{d} \frac{z - a_i}{1 - \overline{a}_i z}, \quad a_i \in \mathbb{D}. \]

Theorem. (M. Heins, 1962) Given a set \(C \) of \(d - 1 \) points in the unit disk, there exists a unique Blaschke product of degree \(d \) with critical set \(C \).

We have uniqueness up to post-composition with Möbius transformations. If \(m \in \text{Aut}(\mathbb{D}) \), we have \(\text{crit } m \circ F = \text{crit } F \).
The quasigeodesic property

The hyperbolic metric λ_D has constant negative curvature

$$- \frac{\Delta \log \lambda_D}{\lambda_D^2} = -1.$$

Lemma. Let γ be a curve in (\mathbb{D}, λ_D) and k_g be its geodesic curvature.

- If $k_g \leq 1$, then γ cannot intersect itself.
- If $k_g < c < 1$, then γ lies within a bounded distance of a hyperbolic geodesic.
Liouville correspondence

The Liouville correspondence provides a bridge between complex analysis and non-linear elliptic PDEs:

\[
\begin{align*}
\{ \text{hol. maps} & \} \quad \longleftrightarrow \quad \{ \text{solutions of the Gauss curvature equation} & \}
\end{align*}
\]
Liouville correspondence

The Liouville correspondence provides a bridge between complex analysis and non-linear elliptic PDEs:

\[
\begin{cases}
\text{hol. maps} & F : \mathbb{D} \rightarrow \mathbb{D} \\
\text{solutions of the Gauss curvature equation}
\end{cases}
\]

A holomorphic self-map \(F \) of the unit disk defines the conformal pseudometric

\[
\lambda_F = \frac{2|F'|}{1 - |F|^2},
\]
The Liouville correspondence provides a bridge between complex analysis and non-linear elliptic PDEs:

\[
\left\{ \text{hol. maps } F : \mathbb{D} \to \mathbb{D} \right\} \leftrightarrow \left\{ \text{solutions of the Gauss curvature equation} \right\}
\]

A holomorphic self-map \(F \) of the unit disk defines the conformal pseudometric

\[
\lambda_F = \frac{2|F'|}{1 - |F|^2},
\]

which has constant negative curvature \(-1\), away from the critical points of \(F \),
The Liouville correspondence provides a bridge between complex analysis and non-linear elliptic PDEs:

\[
\left\{ \begin{array}{c}
\text{hol. maps} \\
F : \mathbb{D} \to \mathbb{D}
\end{array} \right\} \iff \left\{ \begin{array}{c}
\text{solutions of the Gauss curvature equation}
\end{array} \right\}
\]

A holomorphic self-map \(F \) of the unit disk defines the conformal pseudometric

\[
\lambda_F = \frac{2|F'|}{1 - |F|^2},
\]

which has constant negative curvature \(-1\), away from the critical points of \(F \), where it has concentrated negative curvature.
The Liouville correspondence provides a bridge between complex analysis and non-linear elliptic PDEs:

\[
\left\{ \text{hol. maps} \right\} \quad \longleftrightarrow \quad \left\{ \text{solutions of the Gauss curvature equation} \right\}
\]

The function \(u_F = \log \lambda_F \) satisfies the Gauss curvature equation:

\[
\Delta u = e^{2u} + 2\pi \sum_{c \in \text{crit } F} \delta_c.
\]
Liouville correspondence

The Liouville correspondence provides a bridge between complex analysis and non-linear elliptic PDEs:

\[
\begin{align*}
\{ \text{hol. maps} \} & \quad \leftrightarrow \quad \{ \text{solutions of the Gauss curvature equation} \} \\
F : \mathbb{D} \to \mathbb{D} & \quad \leftrightarrow \quad \text{solutions of the Gauss curvature equation}
\end{align*}
\]

The function \(u_F = \log \lambda_F \) satisfies the Gauss curvature equation:

\[
\Delta u = e^{2u} + 2\pi \sum_{c \in \text{crit } F} \delta_c.
\]

Any solution of the above equation arises from a holomorphic self-map of the unit disk, which is uniquely determined up to post-composition with an element of \(\text{Aut}(\mathbb{D}) \).
Heins theorem (proof)

Construction of a finite Blaschke product F_C with critical set C:

1. Let u_C be the pointwise maximal solution of

$$\Delta u = e^{2u} + 2\pi \sum_{c \in C} \delta_c.$$
Heins theorem (proof)

Construction of a finite Blaschke product F_C with critical set C:

1. Let u_C be the pointwise maximal solution of

 $$\Delta u = e^{2u} + 2\pi \sum_{c \in C} \delta_c.$$

2. Define F_C as the Liouville map of u_C.

Heins theorem (proof)

Construction of a finite Blaschke product F_C with critical set C:

1. Let u_C be the pointwise maximal solution of

$$\Delta u = e^{2u} + 2\pi \sum_{c \in C} \delta_c.$$

2. Define F_C as the Liouville map of u_C.

3. One uses the maximality of the solution u_C to conclude that F_C is a finite Blaschke product.
Inner functions

An inner function is a holomorphic self-map of \mathbb{D} such that for almost every $\theta \in [0, 2\pi)$, the radial boundary value

$$\lim_{r \to 1} F(re^{i\theta})$$

exists and has absolute value 1.
Inner functions

An inner function is a holomorphic self-map of \mathbb{D} such that for almost every $\theta \in [0, 2\pi)$, the radial boundary value

$$\lim_{r \to 1} F(re^{i\theta})$$

exists and has absolute value 1.

Different inner functions can have the same critical set. For example, $F_1(z) = z$ and $F_2(z) = \exp\left(\frac{z+1}{z-1}\right)$ have no critical points.
Figure: The universal covering map of the punctured disk.

$$F(z) = \exp\left(\frac{z-1}{z+1}\right)$$

Critical point $c = -(1-\sqrt{n})$ of multiplicity n.

Figure: The universal covering map of the punctured disk.
An **inner function** can be represented as a (possibly infinite) Blaschke product \times singular inner function:

$$B(z) = e^{i\alpha} \prod_{i} -\frac{\overline{a_i}}{|a_i|} \cdot \frac{z - a_i}{1 - \overline{a_i}z}, \quad a_i \in \mathbb{D}, \quad \sum_{i}(1 - |a_i|) < \infty.$$

$$S(z) = \exp\left(-\int_{S^1} \frac{\zeta + z}{\zeta - z} d\mu_\zeta\right), \quad \mu \perp m, \quad \mu \geq 0.$$

Here, B records the zero set, while S records the boundary zero structure.
Let \mathcal{I} be the space of inner functions with derivative in the Nevanlinna class:

$$\int_{\partial \mathbb{D}} \log |F'(e^{i\theta})| \, dm < \infty,$$

where $F_n \to F$ if the convergence is uniform on compact sets and

$$\int_{\partial \mathbb{D}} \log |F'_n(z)| \, dm \to \int_{\partial \mathbb{D}} \log |F'(z)| \, dm.$$

In 1974, P. Ahern and D. Clark showed that F' admits a BSO decomposition, allowing us to define $\text{Inn} F' := BS$, where B records the critical set of F and S records the boundary critical structure.
Dyakonov’s question

Theorem. (Kraus 2013, I. 2017) An inner function $F \in \mathcal{I}$ is uniquely determined by $\text{Inn } F'$ up to post-composition with a Möbius transformation.
Dyakonov’s question

Theorem. (Kraus 2013, I. 2017) An inner function $F \in \mathcal{I}$ is uniquely determined by $\text{Inn } F'$ up to post-composition with a Möbius transformation.

An inner function BS_μ is a critical structure if and only if μ lives on a countable union of Beurling-Carleson sets.
Dyakonov’s question

Theorem. (Kraus 2013, I. 2017) An inner function $F \in \mathcal{J}$ is uniquely determined by $\text{Inn } F'$ up to post-composition with a Möbius transformation.

An inner function BS_μ is a critical structure if and only if μ lives on a countable union of Beurling-Carleson sets.

Definition. A Beurling-Carleson set E is a closed subset of the unit circle which has measure 0 such that

$$\|E\|_{BC} := \sum |l_j| \cdot \log \frac{1}{|l_j|} < \infty,$$

where $\{l_j\}$ are the complementary arcs.
What this talk is about

For a finite Blaschke product F, we define:

- Critical point measure:
 \[
 \mu_F = \sum_{c \in \text{crit} F} (1 - |c|) \cdot \delta_c
 \]

- Critical value measure:
 \[
 \nu_F = \sum_{c \in \text{crit} F} (1 - |c|) \cdot \delta_{F(c)}.
 \]

Question. Can we extend these definitions to inner functions in a meaningful way?
Figure: For the universal covering map of the punctured disk, the critical point measure is $\mu_F = \delta_{-1}$ and the critical value measure is $\nu_F = \delta_0$.
Critical value measures

Theorem 1. Suppose $F \in \mathcal{J}$ and $F_n \to F$ is a stable approximation by finite Blaschke products.

The critical value measures

$$\nu_{F_n} = \sum_{c \in \text{crit } F_n} (1 - |c|) \cdot \delta_{F_n}(c)$$

converge in the weak-* topology to a measure ν_F.

1. ν_F does not depend on the approximating sequence F_n.
2. The measure ν_F is supported on the open unit disk.
Theorem 1. Suppose $F \in \mathcal{J}$ and $F_n \to F$ is a stable approximation by finite Blaschke products.

The critical value measures

$$\nu_{F_n} = \sum_{c \in \text{crit } F_n} (1 - |c|) \cdot \delta_{F_n}(c)$$

converge in the weak-\ast topology to a measure ν_F.

1. ν_F does not depend on the approximating sequence F_n.
Theorem 1. Suppose $F \in \mathcal{J}$ and $F_n \to F$ is a stable approximation by finite Blaschke products.

The critical value measures

$$
\nu_{F_n} = \sum_{c \in \text{crit } F_n} (1 - |c|) \cdot \delta_{F_n(c)}
$$

converge in the weak-* topology to a measure ν_F.

1. ν_F does not depend on the approximating sequence F_n.
2. The measure ν_F is supported on the open unit disk.
Suppose $V \subset \mathbb{D}$ is a Jordan domain and U is a connected component of the pre-image $F^{-1}(V)$.
Form the **component inner function** $F_U = \psi^{-1} \circ F \circ \varphi$, where φ, ψ are Riemann maps from \mathbb{D} to U and V respectively.
Components of inner functions

Theorem 2.
\[\text{crit } F_U = \varphi^{-1} (\text{crit } F), \quad \varphi_* \sigma(F'_U) = |(\varphi^{-1})'(\zeta)| \, d\sigma(F')|_{(\partial U \cap \partial D)}. \]
Angular derivatives

Suppose \(\varphi : \mathbb{D} \to \Omega \) is a Riemann map onto a Jordan domain. We say \(\varphi \) has an \textbf{angular derivative} at \(\zeta \in \partial \mathbb{D} \) if

\[
\lim_{r \to 1} \varphi'(r \zeta)
\]

exists and is finite.
Angular derivatives

According to the Rodin-Warschawski theorem, \(\varphi \) has a non-zero angular derivative if and only if

\[
\lim_{r,s \to 0, \ r > s} \left\{ \frac{1}{\pi} \cdot \log \frac{r}{s} - \text{Mod} \Gamma_{r,s} \right\} = 0.
\]
Angular derivatives

We are interested in the case when $\Omega \subset \mathbb{D}$.

The Rodin-Warschawski theorem says that φ has a non-zero angular derivative at $\zeta \in \partial \mathbb{D}$ iff Ω is sufficiently thick at $\varphi(\zeta) \in \partial \mathbb{D}$.
We say that a holomorphic function $F : \mathbb{D} \to \mathbb{D}$ has **thick limit** L at $\zeta \in \partial \mathbb{D}$ if $\forall \varepsilon > 0$, some connected component of $F^{-1}(B(L, \varepsilon))$ is thick at ζ.

By a result of K. Burdzy from 1986, this is the same as F having a **minimal fine limit** L at ζ.

Thick limits
We say that a holomorphic function $F : \mathbb{D} \rightarrow \mathbb{D}$ has **thick limit** L at $\zeta \in \partial \mathbb{D}$ if $\forall \varepsilon > 0$, some connected component of $F^{-1}(B(L, \varepsilon))$ is thick at ζ.

By a result of K. Burdzy from 1986, this is the same as F having a **minimal fine limit** L at ζ.
Theorem 3. Suppose $F \in \mathcal{I}$ is an inner function with $\text{Inn } F' = BS_\mu$. For almost every $\zeta \in \partial \mathbb{D}$ with respect to μ,

$$\text{thick-lim } z \to \zeta F(z)$$

exists and lies in the open unit disk \mathbb{D}.

Abundance of thick limits

Theorem 3. Suppose $F \in \mathcal{J}$ is an inner function with \(\text{Inn } F' = BS_\mu \). For almost every $\zeta \in \partial \mathbb{D}$ with respect to μ, \[
\text{thick-lim}_{z \to \zeta} F(z) \]
exists and lies in the open unit disk \mathbb{D}.

Special case. Suppose μ is a singular measure on the unit circle supported on a Beurling-Carleson set E. Then,

\[
\int_0^1 \mu(B(\zeta, \epsilon))^{-1} d\epsilon < \infty, \quad \mu \text{ a.e. } \zeta \in \partial \mathbb{D}.
\]
Fundamental lemma

Lemma (Dyakonov 1992, Kraus 2013, I. 2017)

For any inner function $F \in \mathcal{J}$, λ_F is the \textit{minimal} solution of
\[GCE(C)\]which satisfies

$$\lambda_F = \frac{2|F'|}{1 - |F|^2} \geq |\text{Inn} F'| \lambda_{\mathbb{D}}.$$

Corollary

Suppose $F_1, F_2 \in \mathcal{J}$ with $\text{Inn} F_1' = S_{\mu_1}$ and $\text{Inn} F_2' = S_{\mu_2}$. If $\mu_1 \leq \mu_2$ then

$$\lambda_{F_1} \geq \lambda_{F_2}.$$
Estimates for F'_μ with μ supported on E

Lemma (Coarse estimate, I. 2021)

For $\zeta \in \partial \mathbb{D} \setminus E$, we have

$$|F'_\mu(\zeta)| \leq C(\mu(\partial \mathbb{D})) \cdot \text{dist}(\zeta, E)^{-4}.$$

Lemma (Fine estimate)

Suppose $\zeta \in \partial \mathbb{D} \setminus E$. Write $z = (1 - \delta)\zeta$ where $\delta = \text{dist}(\zeta, E)$. If $P_\mu(z) \geq 1$ then

$$|F'_\mu(\zeta)| \leq C \cdot \frac{P_\mu(z)}{\delta}, \quad \zeta \in \partial \mathbb{D} \setminus E,$$

for some universal constant $C > 0$.
We want to show that \(|F_\mu(x) - F_\mu(y)| \leq \int_\gamma |F'_\mu(z)| \cdot |dz|\) is small.
To estimate $|F'_{\mu}(z)|$, we estimate either $\lambda_{F_{\mu}^{\text{Left}}}(z)$ or $\lambda_{F_{\mu}^{\text{Right}}}(z)$.
Abundance of thick limits (proof)

For μ-a.e. x, both measures $\mu_{\text{Left}}(x)$ and $\mu_{\text{Right}}(x)$ are substantial.
Thank you for your attention!