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Abstract

In this paper, we study meromorphic functions on a domain Ω ⊂ C whose

image has finite spherical area, counted with multiplicity. The paper is com-

posed of two parts. In the first part, we show that the limit of a sequence of

meromorphic functions is naturally defined on Ω union a tree of spheres. In

the second part, we show that a set E ⊂ Ω is removable if and only if it is

negligible for extremal distance.

1 Introduction

Let Ω ⊂ C be a domain in the complex plane. A holomorphic function on Ω belongs

to the classical Dirichlet space D = D(Ω) if the Euclidean area of its image counted

with multiplicity is finite:

AC(F,Ω) =

∫
Ω

|F ′(z)|2 |dz|2 <∞. (1.1)

In this paper, we present two mostly independent vignettes on the “spherical Dirichlet

space” F = F(Ω) which consists of meromorphic functions on Ω whose images have

finite spherical area, i.e.

AĈ(F,Ω) =

∫
Ω

(
2|F ′(z)|

1 + |F (z)|2

)2

|dz|2 <∞. (1.2)
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1.1 Bubbling of meromorphic functions

Suppose that {Fn} is a sequence of meromorphic functions on a domain Ω ⊂ C for

which

AĈ(Fn,Ω) =

∫
Ω

(
2|F ′n(z)|

1 + |Fn(z)|2

)2

|dz|2 ≤ C. (1.3)

If C < 4π, then {Fn} is a normal family since the image of each Fn misses a positive

area subset of the sphere. In general, {Fn} is only quasinormal in the sense that a

subsequence converges locally uniformly in Ω \ S, where S is a finite set.

We assume that no point p ∈ S is redundant, i.e. that {Fn} is not normal in any

neighbourhood of p. This implies that for any p ∈ S and r > 0,

AĈ(Fn, B(p, r)) ≥ 4π,

for all n sufficiently large. In particular, the cardinality of S is at most bC/4πc. We

pass to a further subsequence so that the measures

µn = F ∗ndAĈ =

(
2|F ′n(z)|

1 + |Fn(z)|2

)2

|dz|2

converge weakly to a measure µ. The limiting measure µ may have point masses at

the points of S. In [GKR20], Grahl, Kraus and Roth observed that µ({p}) ≥ 4π for

any p ∈ S, and suggested that mass is quantized:

µ({p}) = 4πD, for some integer D ≥ 1.

It is intuitively clear that a part of the structure is lost when one takes the naive

pointwise limit F : Ω → Ĉ. After reading their manuscript, the author showed

the following theorem which describes the “full limit” of the meromorphic functions

Fn : Ω→ Ĉ :

Theorem 1.1. After passing to a subsequence, the full limit of the Fn is naturally

a meromorphic function defined on a multi-nodal surface X obtained by gluing trees

of spheres to Ω at points of S. The full limit consists of:

• A meromorphic function F : Ω → Ĉ, obtained as the pointwise limit of the

functions Fn : Ω→ C on Ω \ S.
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• Each sphere Σk ⊂ X, k = 1, 2, . . . , N , comes equipped with a rational function

Rk : Σk → Ĉ of degree Dk ≥ 1. These rational functions are obtained as

appropriate rescaling limits of the Fn and are determined uniquely up to pre-

composition with affine maps z → az + b in AutC.

The limiting mass is µ({p}) = 4πD, where D =
∑
Dk is the sum of the degrees of

the rational maps associated to spheres contained in trees attached at p.

Remark. A multi-nodal surface X is a topological space obtained by gluing a finite

or countable collection of surfaces {Sk} at a discrete set of points, so that each point

in X is contained in at most finitely surfaces Sk. A point in X is called a regular

point if it is contained in exactly one surface Sk and a multi-node if it is contained

in more than one surface. (In the literature, a node refers to a multi-node that is

contained in exactly two surfaces. A nodal surface is a multi-nodal surface, where

each multi-node is at worst a node.)

Actually, Theorem 1.1 was already known in much greater generality: it was

proved for pseudo-holomorphic mappings into almost Kähler manifolds by Parker

and Wolfson [PW93] and for quasiregular mappings by Pankka and Souto [PS19].

The locally univalent case has also been obtained by Li and Shafrir [LS94] using PDE

techniques. Nevertheless, we hope that our elementary argument will be accessible

to a wider audience as it involves only elementary notions from complex analysis and

topology.

One definition from topology that will feature prominently in our argument is that

of an orientation-preserving branched cover F̂ : Ĉ → Ĉ : a continuous self-mapping

of the sphere, which is a local homeomorphism outside of a finite set of points, where

it is topologically equivalent to z → zn for some n ≥ 2. If the topological degree of

F̂ is d, then F̂ has 2d− 2 critical points counted with multiplicity (as is the case for

a rational function of degree d) and every point w ∈ Ĉ that is not a critical value is

covered exactly d times. In particular, the spherical area of the image (counted with

multiplicity) AĈ(F, Ĉ) = 4πd.
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1.2 Removable sets

A compact set E ⊂ Ω is called removable for Dirichlet functions if any holomorphic

function in D(Ω \ E) extends to a holomorphic function in D(Ω). Similarly, we say

that a set E ⊂ Ω is removable for spherical Dirichlet functions if any meromorphic

function in F(Ω \ E) extends to a meromorphic function in F(Ω).

In a classical work [AB50], Ahlfors and Beurling showed that a set is removable

for Dirichlet functions if and only if it is a NED (negligible for extremal distance)

set. A set E is NED if for any rectangle R, the modulus of curves connecting a

pair of opposite sides that avoid E computes the modulus of R. NED sets have

2-dimensional Lebesgue measure zero and are totally disconnected, but the converse

is far from true.

NED sets have a number of other characterizations, for example, a set E is NED

if any conformal embedding C \E → C is linear. In the second half of the paper, we

show that the NED condition also characterizes removable sets for spherical Dirichlet

functions:

Theorem 1.2. A compact set E is removable for spherical Dirichlet functions if and

only if it is NED.

One direction is easy:

Lemma 1.3. Suppose a compact set E ⊂ Ω is removable for spherical Dirichlet

functions. Then, it is also removable for usual Dirichlet functions and therefore

NED.

Proof. We first notice that any F -removable set E has 2-dimensional Lebesgue

measure zero. Otherwise, one can find a non-trivial quasiconformal homeomor-

phism wµ : C → C whose dilatation is supported on E. As wµ is injective,

AĈ(wµ,Ω \ E) ≤ 4π and wµ ∈ F(Ω \ E). Since wµ is conformal on Ω \ E but

not conformal on Ω, it cannot extend to a meromorphic function on Ω.

Suppose F is a holomorphic function in D(Ω \E). If E is removable for the class

F , then F extends to a meromorphic function on Ω which satisfies∫
Ω

|F ′(z)|2 |dz|2 =

∫
Ω\E
|F ′(z)|2 |dz|2 <∞.
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As the last condition is incompatible with F having poles, F is holomorphic on Ω.

Thus, F ∈ D(Ω) as desired.

The original argument of Ahlfors and Beurling which showed that NED sets are

Dirichlet removable used a special identity involving conformal maps to slit domains,

while a newer proof by Hedberg [Hed74] utilized the connection between the Dirichlet

energy and the condenser capacity. Since these miraculous connections are unavail-

able in the spherical setting, it is unlikely that one can extend these approaches

to spherical Dirichlet functions. Our proof is a slight improvement of the beautiful

isoperimetric argument of Parker and Wolfson [PW93] who observed that points are

removable for spherical Dirichlet functions.

In the case when F is defined on the complex plane, one can show that the

singularity at infinity is removable using Nevanlinna theory:

Lemma 1.4. Suppose F : C→ Ĉ is a meromorphic function whose image has finite

spherical area, counted with multiplicity:

AĈ(F,C) =

∫
C

(
2|F ′(z)|

1 + |F (z)|2

)2

|dz|2 <∞.

Then F is a rational function. If degF = d then AĈ(F,C) = 4πd.

Proof. From the Ahlfors-Shimizu interpretation of Nevanlinna theory [Hay64, Sec-

tion 1.5], it is easy to see that the function F can attain any value a ∈ Ĉ only a finite

number of times. One merely needs to use the fact that the Nevanlinna counting

function is bounded above by the Ahlfors-Shimizu characteristic:∑
F (z)=a
|z|<r

log
r

|z|
≤ 1

4π

∫ r

0

AĈ(F,B(0, t)) · dt
t

+O(1), F (0) 6= a.

By Picard’s theorem, the singularity at infinity cannot be essential, and therefore, is

at worst a pole. Hence, F is a rational function.

We also mention a third approach to removability due to Chen and Li [CL91]

who used the method of moving planes to prove Lemma 1.4 for locally univalent

functions. While their result is unable to handle holomorphic functions with critical

points, it is applicable to other non-linear PDEs and works in higher dimensions.
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1.3 Rescaling limits

Suppose F : Ω → Ĉ is a meromorphic function. A rescaling of F is a map of the

form F ◦m where m is a Möbius transformation.

Corollary 1.5. Suppose that {Fn} is a sequence of meromorphic functions on a

domain Ω ⊂ Ĉ satisfying (1.3) and F̃n = Fn ◦ mn is a sequence of rescalings of

Fn : Ω→ Ĉ defined on balls B(0, Rn) with Rn →∞. After passing to a subsequence,

the maps F̃n converge locally uniformly to a rational function R on C minus a finite

set of points.

Proof. Since the spherical areas

AĈ
(
F̃n, B(0, R)

)
= AĈ

(
Fn,mn(B(0, Rn))

)
≤ C,

are uniformly bounded, the sequence F̃n is quasi-normal on any ball B(0, R). After

passing to a subsequence, the F̃n converge to a meromorphic function F̃ : C → Ĉ
satisfying

AĈ
(
F̃ ,C

)
= lim

R→∞
AĈ
(
F̃ , B(0, R)

)
≤ lim

R→∞

{
lim inf
n→∞

AĈ
(
F̃n, B(0, R)

)}
≤ C,

locally uniformly outside a finite set of cardinality at most bC/4πc. From Lemma

1.4, it follows that F̃ = R is a rational function.

We say that a sequence of rescalings F̃n is trivial if the limit R is a constant

function. The rational functions Rk, k = 1, 2, . . . , N in Theorem 1.1 will be obtained

as rescalings of the sequence {Fn} near points of S. One difficulty in Theorem 1.1

is to figure out where to rescale. This is a somewhat delicate matter: for instance,

in the proof of Zalcman’s lemma [Mar19], one rescales at local maxima of certain

functions associated with the Fn. This approach is guaranteed to provide at least one

rescaling limit, but in general, is unable to give the full set of non-trivial rescaling

limits. The approach of Li and Shafrir [LS94] uses a similar idea and therefore suffers

from the same drawback.
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2 Mass quantization

Since the issue of bubbling is a local matter, by shrinking the domain Ω, we may

assume that the set S = {p} consists of a single point. For simplicity of exposition,

we assume that the sequence Fn satisfies the following three conditions:

1. The limit function F is not constant,

2. F is holomorphic near p ∈ S,

3. p is not a critical point of F , i.e. F ′(p) 6= 0.

We call such sequences of meromorphic functions elementary. In Section 4, we will

explain how to handle the case of general sequences.

Lemma 2.1 (Mass quantization). Suppose Fn : Ω → Ĉ is an elementary sequence

of meromorphic functions with AĈ(Fn,Ω) ≤ C. After passing to a subsequence, we

may assume that the measures µn = F ∗ndAĈ converge weakly to a measure µ on Ω.

Then, µ({p}) = 4πD for some integer D ≥ 1.

Proof. Choose r > 0 sufficiently small so that F is univalent in a neighbourhood of

B(p, r). In particular, B(p, r) ⊂ Ω contains no critical points of F . By discarding

countably many radii, we may assume that each map Fn has no critical points on

∂B(p, r), although it may have plenty of critical points inside B(p, r).

We orient the boundary ∂B(p, r) counter-clockwise, so that F (∂B(p, r)) is a Jor-

dan curve which winds counter-clockwise around F (p). Since Fn → F uniformly

on a neighbourhood of ∂B(p, r), for n sufficiently large, Fn(∂B(p, r)) will also be a

Jordan curve which winds counter-clockwise around F (p).

We extend F |B(p,r) to an orientation-preserving diffeomorphism F̂ : Ĉ → Ĉ by

selecting an orientation-preserving diffeomorphism Ĉ \B(p, r)→ Ĉ \F (B(p, r)) that

agrees with F on ∂B(p, r).

In a similar way, we extend each Fn|B(p,r) to an orientation-preserving branched

cover F̂n : Ĉ→ Ĉ by selecting an orientation-preserving diffeomorphism Ĉ \B(p, r)→
Ĉ \Fn(B(p, r)) that agrees with Fn on ∂B(p, r). Since the Fn converge uniformly to

F on ∂B(p, r), one can choose the extensions F̂n|Ĉ \B(p,r) which tend to F̂ |Ĉ \B(p,r)

uniformly in the spherical metric.

7



Let dn be the topological degree of F̂n. Since F̂n is a dn : 1 mapping of the

Riemann sphere to itself,

AĈ
(
F̂n, B(p, r)

)
+ AĈ

(
F̂n, Ĉ \B(p, r)

)
= 4πdn.

As AĈ(F̂n, Ĉ \B(p, r)) < 4π, the degrees dn are uniformly bounded above. We pass

to a subsequence for which {dn} is constant.

Since d = 1 is the topological degree of F̂ ,

AĈ
(
F̂ , B(p, r)

)
+ AĈ

(
F̂ , Ĉ \B(p, r)

)
= 4πd.

It is clear that the degree of F̂n can only drop in the limit, i.e. d ≤ dn, and bubbling

occurs when there is a strictly inequality: d < dn.

As

AĈ
(
F̂n, Ĉ \B(p, r)

)
→ AĈ

(
F̂ , Ĉ \B(p, r)

)
,

the spherical area of Fn(B(p, r)) can only drop by a multiple of 4π, i.e.

lim
n→∞

AĈ
(
F̂n, B(p, r)

)
= AĈ

(
F̂ , B(p, r)

)
+ 4πD,

where D = dn − d. The 4πD drop in area must also be accompanied with a drop

in 2D critical points. Since the convergence Fn → F is uniform away from p, by

Hurwitz theorem, these critical points must tend to p as n→∞.

3 Tree structure

In this section, we prove Theorem 1.1 for elementary sequences of meromorphic

functions. Continuing the discussion from the previous section, we pass to a further

subsequence so that the critical values of F̂n converge in Ĉ and denote the limiting

critical value set by V . Pick a round ball B = B(w, ρ) so that

B(w, 2ρ) ⊂ C \
(
V ∪ F (B(p, r))

)
.

The pre-image F̂−1
n (B) consists of dn connected components. Since exactly one of

these connected components is outside B(p, r), the remaining dn−1 components are

compactly contained in B(p, r), which we label B(n)
1 ,B(n)

2 , . . . ,B(n)
dn−1.
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By construction, Fn maps each topological disk B(n)
i conformally onto B and each

Jordan curve γ
(n)
i := ∂B(n)

i homeomorphically onto ∂B. Let z
(n)
i be the pre-image

of w contained in B(n)
i and r

(n)
i := diam B(n)

i . By Koebe’s distortion theorem, the

domains B(n)
i are uniformly round: there exists constants C1, C2 > 0, independent

of n, such that

B(z
(n)
i , C1 · r(n)

i ) ⊂ B(n)
i ⊂ B(z

(n)
i , C2 · r(n)

i ).

Clusters. Passing to a subsequence if necessary, the curves γ
(n)
i := ∂B(n)

i become

organized into clusters, with γ
(n)
i and γ

(n)
j in the same cluster if

diam γ
(n)
i � dist(γ

(n)
i , γ

(n)
j ) � diam γ

(n)
j , as n→∞.

In other words, we ask that the ratios

dist(γ
(n)
i , γ

(n)
j )

diam γ
(n)
j

and
diam γ

(n)
i

diam γ
(n)
j

are bounded from 0 and ∞.

Spheres. We let N denote the number of clusters. By Corollary 1.5, each cluster

Cj has a non-constant rescaling limit:

Fn(z
(n)
j + r

(n)
j z)→ Rj(z),

where the convergence is uniform on C \Sj, where Sj is a finite set. Since the degree

of Rj is just the size of the cluster Cj, the degrees of the rational functions Rj add

up to dn − 1 = D.

From the construction, it is clear that the rational functions Rj are uniquely

determined up to pre-composition with affine maps in AutC.

Lemma 3.1. The degrees of the rescaling limits account for the drop in the degree:

degR1 + degR2 + · · ·+ degRN = D.

9



Tree structure. In turn, the clusters are naturally organized into a tree of spheres

structure. We say that the sphere (Σi,Ri) is a descendant of (Σj,Rj) if for any γi ∈ Ci

and γj ∈ Cj,

diam γ
(n)
i

diam γ
(n)
j

→ 0, dist(γ
(n)
i , γ

(n)
j ) . diam γ

(n)
j , as n→∞,

and write (Σi,Ri) ≺ (Σj,Rj). We view every sphere (Σi,Ri) as a descendant of

(Ω, F ). The relation≺ is clearly transitive. We say that (Σi,Ri) is a direct descendant

of (Σj,Rj) if there is no index k for which (Σi,Ri) ≺ (Σk,Rk) ≺ (Σj,Rj).

Assembly. If (Σi,Ri) is a direct descendant of (Σj,Rj), then we attach (Σi,Ri)

to (Σj,Rj) by gluing the point at infinity in Σi to

pi,j = lim
n→∞

z
(n)
i − z

(n)
j

r
(n)
j

∈ Σj.

Similarly, if (Σi,Ri) is a direct descendant of (Ω, F ), then we attach (Σi,Ri) to

(Ω, F ) by gluing the point at infinity in Σi to p ∈ Ω.

As Ri(∞) = Rj(pi,j), the full limit (F,R1, . . . ,RN) is continuous on the multi-

nodal surface X obtained by gluing Ω and the spheres Σ1,Σ2, . . . ,ΣN .

4 General sequences

We now explain how to handle general sequences of meromorphic functions Fn.

Q. What happens if F has a pole at p instead of being holomorphic?

A. We can instead work with 1/Fn. Under this transformation, the spherical deriva-

tive remains unchanged:

2|(1/Fn)′|
1 + |1/Fn|2

=
2|F ′n/F 2

n |
1 + |1/Fn|2

=
2|F ′n|

1 + |Fn|2
.

Q. What happens if F has a critical point at p of order a ≥ 1?
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A. The proof proceeds as before, but this time, we cannot extend Fn|B(p,r) and F |B(p,r)

to be one-to-one on Ĉ \B(p, r). When defining the extensions F̂n|B(p,r) and F̂ |B(p,r),

we add a critical point of order a at infinity. The extensions are faciliated by the

following lemma:

Lemma 4.1. (i) Suppose F : ∂B(p, r) → C is a C1 immersed curve in the plane

such that F (p) /∈ F (∂B(p, r)) and

d

dθ
arg
(
F (p+ reiθ)− F (p)

)
> 0.

If F (∂B(p, r)) winds k = a+ 1 times counter-clockwise around F (p), then F extends

to a C1 orientation-preserving branched cover F̂ : Ĉ \ B(p, r)→ Ĉ which is k : 1 in

a neighbourhood of infinity and has no other critical points.

(ii) Suppose F is a C1 mapping defined on the closed ball B(p, r) whose restriction

to ∂B(p, r) satisfies the assumptions of part (i). Then F extends to a C1 branched

cover F̂ of the Riemann sphere.

Sketch of proof. We may choose F̂ so that it maps the ray [p + reiθ,∞) diffeomor-

phically onto the ray [F (p+ reiθ),∞). In part (ii), a little care needs to be taken so

that the extension F̂ is C1 on ∂B(p, r).

The assumptions of the above lemma hold when r > 0 is sufficiently small. We

point out some minor differences in the computation:

• F̂ is a rational map of degree d = a+ 1.

• The degree of F̂n drops by D = dn − d = dn − (a+ 1).

• B(p, r) contains 2D extra critical points of Fn, which disappear in the limit.

• a+ 1 connected components of F̂−1
n (B) are outside B(p, r).

• dn − (a + 1) = D connected components of F̂−1
n (B) are compactly contained

in B(p, r), so Lemma 3.1 remains true in this context.
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Q. What happens if the limit F is a constant function?

A. Since bubbling is a local matter, we may assume that the domain Ω is bounded.

We can then work with the perturbed sequence Fn,1(z) = Fn(z) + z. Since

2|F ′n(z) + 1|
1 + |Fn(z) + z|2

� 2|F ′n(z)|
1 + |Fn(z)|2

,

when either quantity is large, the spherical areas AĈ
(
Fn(z) + z,Ω

)
are uniformly

bounded if and only if the AĈ(Fn,Ω) are. The construction in Section 3 produces a

tree of spheres (Σk,Rk,1) for the perturbed sequence of meromorphic functions. The

rational functions for the original sequence are simply Rk(z) = Rk,1(z)− p, where p

is the point in Ω to which the branch of the tree containing Σk is attached. (When

we zoom in near p ∈ S, the function z looks like a constant.)

Further remark. In the locally univalent case, Li and Shafrir [LS94] observed

that all bubbles are simple (correspond to rational functions of degree 1) and are

attached directly to Ω. In this case, the limit function has to be constant. This

can be seen from the construction of the tree of spheres as the formation of non-

simple bubbles and higher-order bubbles involves critical points. W. Chen [Che99]

has constructed sequences of meromorphic functions without critical points which

feature an arbitrary number of simple bubbles.

5 Preliminaries for removability

We now turn to the second half of the paper, where we show that NED sets are

removable for spherical Dirichlet functions.

5.1 Notation

Let E ⊂ Ω be a compact set and F ∈ F(Ω \ E) be a spherical Dirichlet function.

For a rectifiable curve γ ⊂ Ω, we denote the spherical length of its image counted

with multiplicity by

L(γ) =

∫
γ\E

2|F ′(z)|
1 + |F (z)|2

|dz|.
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We will write Γ for the domain enclosed by γ. Similarly, for an open set U ⊂ Ω, we

write

E (U) =

∫
U\E

4|F ′(z)|2

(1 + |F (z)|2)2
· |dz|2.

5.2 NED sets

In [VG77, Theorem 3.1], Vodopyanov and Goldshtein showed that NED sets are

removable for continuous W 1,2
loc functions: if F ∈ W 1,2

loc (Ω\E,R) extends continuously

to Ω, then F ∈ W 1,2
loc (Ω,R). Another proof is given in [Nta21]. It is easy to see

that the Vodopyanov-Goldshtein characterization of NED sets is also valid when one

considers Sobolev spaces with values in the complex numbers C or the Riemann

sphere Ĉ.

Remark. (i) Since we are dealing with continuous functions, there is no difficulty in

defining Sobolev spaces with values in the Riemann sphere by passing to coordinate

charts.

(ii) From the Vodopyanov-Goldshtein characterization of NED sets, it follows that

in order to show that a compact set E ⊂ Ω is removable for F(Ω), it is enough to show

that any spherical Dirichlet function F ∈ F(Ω \E) extends to a continuous function

from Ω to Ĉ. Indeed, as NED sets have Lebsgue measure zero, the membership

F ∈ F(Ω \ E) ∩W 1,2
loc (Ω, Ĉ) implies that F is weakly holomorphic (in the sense of

distributions) on Ω, so that by Weyl’s lemma, F is strongly holomorphic on Ω.

One of our main tools will be a lemma due to Ntalampekos which allows one to

perturb curves off NED sets. Recall that a family of curves Γ0 ⊂ Ω has modulus

zero, if for any ε > 0, there exists a measurable function λ : Ω→ [0,∞) such that∫
Ω

λ(z)2|dz|2 < ε and

∫
γ

λ(z)|dz| ≥ 1, γ ∈ Γ0.

Lemma 5.1 (Ntalampekos perturbation lemma). Let Ω ⊂ C be a domain in the

plane and γ be a rectifiable path in Ω that lies outside an exceptional curve family

Γ0 = Γ0(F ) of modulus zero. There exists a path γ̂ with the same endpoints as γ that

avoids the set E (except possibly, at the endpoints) with

dHaus(γ, γ̂) < ε, |L(γ̂)− L(γ)| < ε.
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If γ is a Jordan curve, then one may choose the perturbed path γ̂ ⊂ Ω \ E to be a

smooth Jordan curve.

The above statement is a consequence of [Nta21, Theorem 7.1, (I)⇔ (V I)] with

ρ(z) =
2|F ′(z)|

1 + |F (z)|2
· χΩ\E(z).

Remark. (i) Since the metric ρ is continuous on Ω \ E, once we perturb a Jordan

curve γ off E, it is easy to perturb γ further to obtain a smooth curve.

(ii) Lemma 5.1 implies that NED sets are totally disconnected, however, the

NED property is much more restrictive. For instance, by [AB50, Theorem 10], NED

sets are metrically removable: any two points x, y ∈ C can be joined by a curve

which avoids the set E (except possibly, at the endpoints) whose Euclidean length

is arbitrarily close to |x − y|. One can also deduce the metric removability of NED

sets from [Nta21, Theorem 7.1] with ρ = χC. For more information on metrically

removable sets, we refer the reader to the work of Kalmykov, Kovalev and Rajala

[KKR19].

5.3 Length-area estimates

We will use the following classical length-area estimate:

Lemma 5.2. Suppose A = A(p; s, r) = {z ∈ C : r < |z| < s} is a round annulus

contained in Ω of modulus m = (1/2π) log(r/s). There exists a simple closed curve

γ /∈ Γ0 that separates the two boundary components such that

L(γ)2 ≤ C1(m) · E (A).

Similarly, there exists a simple curve δ /∈ Γ0 that connects the two boundary compo-

nents with

L(δ)2 ≤ C2(m) · E (A).

The constants C1(m) and C2(m) are uniform as m ranges over a compact subset of

(0,∞). The curve γ can be taken to be a circle ∂B(p, ρ) with s < ρ < r while δ can

be taken to be a radial line segment [seiθ, reiθ].
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The above lemma allows us to surround NED sets by short multicurves:

Lemma 5.3. Let E ⊂ Ω be a compact NED set. For any ε > 0, one can find a finite

collection of smooth Jordan curves γ1, γ2, . . . , γn ⊂ Ω \ E such that:

(i) the domains Γi have disjoint closures and cover E,

(ii)
∑

i L(γi)
2 < ε.

(iii)
∑

i E (Γi) < ε.

If U is an open set containing E, we can choose the curves γi to lie in U .

Proof. Since NED sets have measure zero, by shrinking U if necessary, we may

assume that E (U) < ε. We then choose δ > 0 so that dist(E, ∂U) ≥ 4δ.

Let A be the collection of round annuli A(p; 2δ, 3δ) ⊂ U with p ∈ δZ2. For each

annulus A ∈ A, we can use Lemma 5.2 to select a simple curve ηA ⊂ A that separates

the two boundary components of A with L(ηA)2 ≤ C1 · E (A). Using Lemma 5.1 to

perturb the curves ηA if necessary, we may assume that they don’t pass through E.

Since a point is contained in a bounded number of annuli A ∈ A,∑
A∈A

L(ηA)2 ≤ C1

∑
A∈A

E (A) < C2ε.

Let {Γi} be the bounded complementary components of C \
⋃
A∈A ηA which contain

a point of E. Since E is a compact set, the collection {Γi} is finite. Let n be its

cardinality.

Since each γi = ∂Γi, i = 1, 2, . . . , n, is composed of arcs from a bounded number

of ηA,
n∑
i=1

L(γi)
2 < C3ε.

By shrinking the domains Γi slightly (and changing L(γi) and E (Γi) by an arbitrarily

small amount), we can make the γi smooth and Γi disjoint. For instance, one can

form the Riemann maps ϕi : D → Γi and replace γi with γi,r = ϕi(∂Dr) for some

r sufficiently close to 1. Indeed, as the curves {γi} are rectifiable, the associated

Riemann maps {ϕi} have derivative in the Hardy space H1 and the L(γi,r) converge

to L(γi).

To complete the proof, we replace ε by min
(
ε, ε/C3

)
to get (ii).
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5.4 An isoperimetric estimate

Let ω = 4dx∧dy
(1+|x|2+|y|2)2

denote the volume form on the sphere Ĉ. For a point p ∈ Ĉ, let

• Up be the hemisphere centered at p,

• p∗ be its diametrically opposite point.

Since Ĉ \ {p∗} is contractible, there is a 1-form βp on Ĉ \ {p∗} so that ω = dβp.

By subtracting a 1-form with constant coefficients from βp, we may assume that βp

vanishes at p, so that

‖βp(x)‖ ≤ Cp distĈ(p, x), x ∈ Up.

In particular, if η is a curve passing through p and is contained in Up, then∣∣∣∣∫
η

βp

∣∣∣∣ ≤ Cp · `Ĉ(η)2, (5.1)

where `Ĉ(η) is the length of η as measured in the spherical metric ρĈ = 2|dz|
1+|z|2 . If we

select the 1-forms {βp}p∈Ĉ in an SO(3)-invariant way, then the constant Cp in (5.1)

will be independent of p.

Lemma 5.4. Suppose Γ \
⋃n
i=1 Γi ⊂ C is a domain with smooth Jordan boundary

and F is a meromorphic function defined on a neighbourhood of Γ \
⋃n
i=1 Γi. Then,

dist
(
E
(
Γ \
⋃

Γi
)
, 4πZ

)
≤ C

(∑
L(γi)

2 + L(γ)2
)
,

where C > 0 is a universal constant.

In the proof below, we think of F (γ) and F (γi) as parametrized curves and

F
(
Γ \
⋃

Γi
)

as a parametrized surface immersed in the sphere.

Proof. We may assume that L(γ) and L(γi), i = 1, 2, . . . , n, are less than π/2,

otherwise there is nothing to prove. Pick arbitrary points p and pi on F (γ) and

F (γi) respectively. By construction, F (γ) and F (γi) are contained in hemispheres U

and Ui centered at p and pi respectively.
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Perturbing the curves γ and γi if necessary, we may assume that they do not

pass through the critical points of F , so that F (γ) and F (γi) are smooth immersed

curves.

Choose smooth immersed disks D ⊂ U with ∂D = F (γ) and Di ⊂ Ui with

∂Di = F (γi), i = 1, 2, . . . , n. Then,

S = F

(
Γ \

n⋃
i=1

Γi

)
∪ D ∪

n⋃
i=1

Di

is a closed immersed surface in the sphere. Since the homology class of S is an

integral multiple of the homology class of the sphere,∫
F (Γ\

⋃
Γi)

ω +

∫
D

ω +
n∑
i=1

∫
Di

ω = 4πk,

for some k ∈ Z. By Stokes theorem,

4πk − E

(
Γ \

n⋃
i=1

Γi

)
=

∫
F (γ)

β +
n∑
i=1

∫
F (γi)

βi. (5.2)

It remains to bound the terms on the right hand side of (5.2) using (5.1).

6 An energy estimate

In this section, we show the following estimate on the decay of energy:

Lemma 6.1. Let F ∈ F(Ω \ E) be a spherical Dirichlet function. If B(p, r) ⊂ Ω

and E (B(p, r)) ≤ 2π, then

E (B(p, s)) ≤ (s/r)α · E (B(p, r)), 0 < s < r, (6.1)

where α > 0 is a universal constant.

The proof of Lemma 6.1 uses the following isoperimetric bound:

Lemma 6.2. Suppose γ ⊂ Ω is a Jordan curve with E (Γ) < 2π. If γ /∈ Γ0 is not

exceptional, then E (Γ) . L(γ)2.
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Proof. By the Ntalampekos perturbation lemma, we may assume that γ ⊂ Ω\E is a

smooth Jordan curve. For any ε > 0, we can use Lemma 5.3 to produce a collection

of smooth Jordan domains {Γi} with disjoint closures such that

E ∩ Γ ⊂
n⋃
i=1

Γi ⊂ Γ,
n∑
i=1

E (Γi) < ε,

n∑
i=1

L(γi)
2 < ε.

By Lemma 5.4, we have

E

(
Γ \

n⋃
i=1

Γi

)
. L(γ)2 +

n∑
i=1

L(γi)
2 ≤ L(γ)2 + ε,

so that E (Γ) = E
(
Γ \
⋃n
i=1 Γi

)
+
∑n

i=1 E (Γi) . L(γ)2 + 2ε. The lemma follows since

ε > 0 was arbitrary.

Following [PW93], the proof of Lemma 6.1 runs as follows:

Proof of Lemma 6.1. Suppose 0 < ρ < r. By Lemma 6.2 and the Cauchy-Schwarz

inequality,

E (B(p, ρ)) .

(∫
∂B(p,ρ)\E

2|F ′(z)|
1 + |F (z)|2

|dz|
)2

≤ 2πρ

∫
∂B(p,ρ)\E

4|F ′(z)|2

(1 + |F (z)|2)2
|dz|

. ρ · dE (B(p, ρ))

dρ
,

provided that ∂B(p, ρ) /∈ Γ0 is not exceptional. Rearranging, we get

d

dρ
log E (B(p, ρ)) ≥ α

ρ
,

for some α > 0. Since almost every circle ∂B(p, ρ) is not exceptional, we can integrate

with respect to ρ to obtain (6.1).
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7 Continuity

As explained in Section 5.2, in order to show that NED sets are removable for

spherical Dirichlet functions (Theorem 1.2), it is enough to show:

Lemma 7.1. Suppose Ω ⊂ C is a domain in the plane and E ⊂ Ω is a compact

NED set. Any spherical Dirichlet function F ∈ F(Ω \ E) is continuous as a map

from Ω to the Riemann sphere.

In fact, the argument below will show that F is locally Hölder continuous with

exponent α/2, where α is the constant from Lemma 6.1.

Lemma 7.2. Given a point p ∈ Ω such that B(p, 2r) ⊂ Ω and E (B(p, 2r)) ≤ 2π,

one can find two families of curves {γ̂n}∞n=0 and {ˆ̀n}∞n=0 in B(p, r) \ E such that:

1. γ̂n is a Jordan curve contained in the annulus A(p; 0.9 r/2n, r/2n), and sepa-

rates its two boundary components.

2. ˆ̀
n is a Jordan arc which connects γ̂n and γ̂n+1, and except for its endpoints,

lies in the topological annulus bounded by these two curves.

3. L(γ̂n) . 2−αn/2 and L(ˆ̀
n) . 2−αn/2.

Proof. By Lemmas 5.2 and 6.1, there exists a sequence of nested concentric circles

γn = ∂B(p, rn), n = 0, 1, 2, . . . , with 0.9 r/2n < rn < r/2n such that

L(γn) .
√

E (B(p, r/2n−1)) . 2−αn/2,

as well as a sequence of line segments

`n =
[
p+ (0.9 r/2n+1)eiθn , p+ (r/2n)eiθn

]
with

L(`n) .
√

E (B(p, r/2n−1)) . 2−αn/2.

We first apply the Ntalampekos perturbation lemma to the circles γn to produce the

desired Jordan curves γ̂n ∈ A(p; 0.9 r/2n, r/2n) \E. We then apply the Ntalampekos

perturbation lemma to the line segments `n to obtain Jordan arcs ˜̀
n ∈ Ω \ E with

the same endpoints, and obeying the same estimate. Since the arc ˜̀
n runs from

∂B(p, r/2n) to ∂B(p, 0.9 r/2n+1), a sub-arc ˆ̀
n connects γ̂n and γ̂n+1.
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Proof of Lemma 7.1. Fix a ball B(q, r/2) ⊂ Ω with E
(
B(q, 5r/2)

)
≤ 2π. Suppose

p, p′ are two points in B(q, r/2) \ E. In order to estimate the spherical distance

between F (p) and F (p′), we connect F (p), F (p′) by a curve. To that end, we use

Lemma 7.2 to form four families of curves {γ̂n}∞n=0, {ˆ̀n}∞n=0, {γ̂′n}∞n=0 and {ˆ̀′n}∞n=0

associated to the pairs (p, r) and (p′, r).

Since the Euclidean distance s = |p− p′| between p and p′ is less than r, there is

a unique integer m ≥ 0 so that

r

2m+1
≤ |p− p′| < r

2m
.

It is easy to see the curves

γ̂m ⊂ A(p; 0.9 r/2m, r/2m) and γ̂′m ⊂ A(p′; 0.9 r/2m, r/2m)

intersect: they both enclose the midpoint of the line segment [p, p′] but neither

curve encloses the other. Pick an arbitrary point p′′ ∈ γ̂m ∩ γ̂′m in the intersection.

Concatenating pieces of curves from these four families (with indices ≥ m) produces

a curve γp↔p′ ⊂ Ω which joins p to p′ and passes through p′′ with L(γp↔p′) . (s/r)α/2.

The proof is complete.
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