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Abstract

A celebrated theorem of M. Heins says that up to post-composition with a

Möbius transformation, a finite Blaschke product is uniquely determined by its

critical points. K. Dyakonov suggested that it may interesting to extend this

result to infinite degree, however, one needs to be careful since different inner

functions may have identical critical sets. In this work, we try parametrizing

inner functions by 1-generated invariant subspaces of the weighted Bergman

space A2
1. Our technique is based on the Liouville correspondence which pro-

vides a bridge between complex analysis and non-linear elliptic PDE.

1 Introduction

A finite Blaschke product F (z) is a holomorphic self-map of the unit disk D which

extends to a continuous dynamical system on the unit circle S1 = ∂D. The most

common way to study Blaschke products is by examining their zero sets. It is not

difficult to show that a finite Blaschke product F (z) is uniquely determined by its

zero set up to a rotation:

F (z) = eiθ
d∏
i=1

z − ai
1− aiz

, a1, a2, . . . , ad ∈ D,

where d ≥ 1 is the degree of F . This approach allows one to factor zeros of bounded

analytic functions and leads to Beurling’s invariant subspace theorem, which is one

of the cornerstones of modern complex analysis and function theory.
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In this work, we follow a less traveled path of examining the critical sets of

Blaschke products, initiated by M. Heins [4] in 1962.

Theorem 1.1 (Heins). A finite Blaschke product is uniquely determined by the set of

its critical points up to post-composition with a Möbius transformation m ∈ Aut(D),

and furthermore, any set of d− 1 points in the unit disk arises as the critical set of

some Blaschke product of degree d.

Loosely speaking, an inner function is a holomorphic self-map of the unit disk

which extends to a measure-theoretic dynamical system of the unit circle. More

precisely, we want the radial boundary values to exist almost everywhere and have

absolute value one.

If one wants to generalize Heins’ result to the set Inn of inner functions, one is

confronted with the following obstacle: different inner functions can have the same

critical set. For example,

F1(z) = z, F2(z) = exp

(
z + 1

z − 1

)
have no critical points. In order to distinguish F1 and F2, one must record some

additional information. In [5], the author explained how to parametrize inner func-

tions of finite entropy (with derivative in the Nevanlinna class), answering a question

posed by K. Dyakonov [1, 2]:

Theorem 1.2. Let J be the set of inner functions whose derivative lies in the

Nevanlinna class. The natural map

F → Inn(F ′) : J /Aut(D)→ Inn / S1

is injective. The image consists of all inner functions of the form BSµ where B is

a Blaschke product and Sµ is the singular factor associated to a measure µ whose

support is contained in a countable union of Beurling-Carleson sets.

By definition, a Beurling-Carleson set E ⊂ ∂D is a closed subset of the unit circle

of zero Lebesgue measure whose complement is a union of arcs
⋃
k Ik with

κ(E) =
∑
|Ik| log

1

|Ik|
< ∞.
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1.1 Beurling’s theorem

It would be desirable to parametrize all inner functions by their critical structure,

not just the relatively small subset J . To understand how this might be done, let

us see how one can parametrize zero structures of inner functions. The following

statement expresses the fact that zero sets of functions in the Hardy space H2 are

Blaschke sequences:

BP / S1 = {zero-based subspaces of H2}.

By definition, a (closed) subspaceX ⊂ H2 is zero-based if it is defined as the collection

of functions in H2 that vanish at a prescribed set of points. Taking the “closure” of

the above statement, we arrive at the famous theorem of Beurling:

Theorem 1.3 (A. Beurling, 1949).

Inn /S1 = {zero-based subspaces of H2}
= {invariant subspaces of H2}.

The collection of closed subspaces of a Banach space carries a natural topology

where Xn → X if for any convergent sequence xn → x with xn ∈ Xn, the limit

x ∈ X, and conversely, any x ∈ X can be approximated by a convergent sequence

xn → x with xn ∈ Xn. The process of taking closure has been given the beautiful

name approximate spectral synthesis by N. K. Nikol’skii [10, p. 34].

1.2 Critical structures of inner functions

Let (H2)′ denote the space of derivatives ofH2 functions. According to the Littlewood-

Paley identity,

‖f‖2H2 = |f(0)|2 +
1

2π

∫
D
|f ′(z)|2 log

1

|z|
|dz|2, (1.1)

one can identify (H2)′ with the weighted Bergman space A2
1 which is the collection

of all holomorphic function on the unit disk that satisfy

‖f‖A2
1

=

(
2

π

∫
D
|f(z)|2(1− |z|2)|dz|2

)1/2

<∞.
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The starting point for our discussion is a beautiful result of Kraus [6] which says

that critical sets of Blaschke products coincide with critical sets of H2 functions:

MBP / Aut(D) = {zero-based subspaces of A2
1}.

The exact definition of the class MBP of maximal Blaschke products will be given

later. At this moment, we only need to know that maximal Blaschke products enjoy

the following three properties:

1. If C is a critical set of some Blaschke product, then it is the critical set of some

maximal Blaschke product.

2. A maximal Blaschke product is uniquely determined by its critical set up to

post-composition with a Möbius transformation in Aut(D).

3. Maximal Blaschke products are indestructible: if F ∈ MBP, then m◦F ∈ MBP

for any m ∈ Aut(D).

For a function H ∈ A2
1, the subspace generated by H is defined as the minimal

closed subspace of A2
1 which contains H and is invariant under multiplication by z:

[H] = {Hp : p polynomial}.

In the papers [12, 13], S. Shimorin showed that the closure of the zero-based subspaces

in A2
1 consists of subspaces that can be generated by a single function. In light of

Shimorin’s result, we can try to write down the “closure” of Kraus’ theorem:

Conjecture 1.4. If an invariant subspace of A2
1 can be generated by a single function,

it can be generated by the derivative of an essentially unique inner function.

While we are not able to fully resolve this conjecture, we can show that any 1-

generated invariant subspace of A2
1 can be generated by the derivative of a bounded

function. Previously, it was known that the generator could be chosen to be the

derivative of a BMO function, see [3, Theorem 3.3].
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1.3 Liouville’s theorem

Given a conformal pseudometric λ(z)|dz| on the unit disk with an upper semicon-

tinuous density, its Gaussian curvature is given by

kλ = −∆ log λ

λ2
,

where the Laplacian is taken in the sense of distributions. It is well known that

the Poincaré metric λD(z) = 2
1−|z|2 has constant curvature −1, the Euclidean metric

λC(z) = 1 is flat, while the spherical metric λĈ(z) = 2
1+|z|2 has constant curvature +1.

For a holomorphic self-map of the unit disk F ∈ Hol(D,D), consider the pullback

λF := F ∗λD =
2|F ′|

1− |F |2
.

Since curvature is a conformal invariant, kλF = −1 on D \ crit(F ) where crit(F )

denotes the critical set of F . However, on the critical set, λF = 0 while its curvature

has δ-masses. Introducing the change of variables uF = log λF , we naturally arrive

at the PDE

∆u = e2u + 2πν, ν ≥ 0, (1.2)

where ν =
∑

c∈crit(F ) δc is an integral sum of point masses.

A theorem of Liouville [7, Theorem 5.1] states that the correspondence F → uF

is a bijection between

Hol(D,D) /Aut(D) ⇐⇒
{

solutions of (1.2) with ν integral
}
.

Liouville’s theorem allows one to interpret properties of holomorphic self-maps of the

disk as properties of solutions of the Gauss curvature equation. For example, Heins

theorem states that a “finite Blaschke product” is a holomorphic self-map of the disk

for which “uF → ∞ as |z| → 1” while Theorem 1.2 states that an “inner function

of finite entropy” corresponds to a “nearly-maximal solution of the Gauss curvature

equation” for which

lim sup
r→1

∫
|z|=r

(uD − u)dθ <∞. (1.3)
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1.4 Weighted Gauss Curvature Equation

In the present work, we will be mostly working with the weighted Gauss curvature

equation

∆u = |H|2e2u (GCEH)

where H ∈ A2
1(D), introduced by Kraus [6]. At first glance, it seems that little is

gained by working with GCEH since it is equivalent to the usual Gauss curvature

equation: u is a solution of ∆u = |H|2e2u if and only if v = u+ log |H| is a solution

of

∆v = e2v + 2π
∑

c∈Z(H)

δc, (1.4)

where Z(H) denotes the zero set of H counted with multiplicity. Nevertheless, it

turns out that GCEH is easier to work with than (1.4) since it features a holomorphic

function instead of a measure.

We now give a brief summary of the argument in [6] that the zero set of a function

H ∈ A2
1(D) is a critical set of some Blaschke product (the other direction is trivial).

Kraus first noticed that GCEH has at least one solution, see Theorem 2.1 below. In

this case, GCEH has a maximal solution uH,max which dominates all other solutions

pointwise. Liouville’s theorem implies that

uH,max(z) = log
1

|H(z)|
· 2|F ′(z)|

1− |F (z)|2

for some holomorphic function F : D → D, whose critical set contains the zero set

of H. We can decompose F = BSO into a product of a Blaschke factor, a singular

inner factor and an outer factor. In [6], Kraus gave a very elegant argument that

uses the maximality of uH,max to rule out the existence of non-trivial singular and

outer factors. Incidentally, F is the maximal Blaschke product with critical set C

alluded to earlier.

In this paper, we initiate the study of canonical solutions of GCEH . The advan-

tage of the canonical solution over the maximal solution is that its Liouville map IH

records more information about H than its zero set. As the reader may guess, IH

is an inner function whose derivative has the same zero set as H and I ′H ∈ [H]. In

fact, IH only depends on the invariant subspace generated by H.
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2 Background in PDE

In this section, we study the weighted Gaussian curvature equation (GCEH){
∆u = |H|2e2u in D,
u = h, on ∂D,

(2.1)

for H ∈ A2
1(D) \ {0}. For a function u to be considered a solution, we require:

1. For any φ ∈ C∞c (D), ∫
D
u∆φ |dz|2 =

∫
D
|H|2e2uφ |dz|2. (2.2)

2. As r → 1, the measures u(reiθ)dθ → h dθ converge in the weak-∗ topology.

(Unless otherwise specified, we interpret boundary values in this way.)

By analogy with subharmonic functions, we say that u is a subsolution if ∆u ≥
|H|2e2u in the sense of distributions and a supersolution if ∆u ≤ |H|2e2u.

Theorem 2.1. For H ∈ A2
1(D), (2.1) admits a unique solution for any h ∈ L∞(∂D).

The solution is increasing in h: if h1 ≤ h2, then u1 ≤ u2.

Uniqueness and monotonicity follow from Kato’s inequality [11, Proposition 6.9]

which states that if u ∈ L1
loc and ∆u ≥ f in the sense of distributions with f ∈ L1

loc,

then ∆u+ ≥ f · χu>0. As usual, u+ = max(u, 0) denotes the positive part of u.

Proof of Theorem 2.1: uniqueness and monotonicity. By Kato’s inequality,

∆(u1 − u2)+ ≥ |H|2(e2u1 − e2u2) · χ{u1>u2} ≥ 0

is a subharmonic function. The inequality h1 ≤ h2 implies that (u1 − u2)+ has zero

boundary values. The maximum principle shows that (u1 − u2)+ ≤ 0 or u1 ≤ u2.

The same argument also proves uniqueness.

Existence is a standard application of Schauder’s fixed point theorem, although

for the convenience of the reader, we spell out the details. As usual, G(z, ζ) =

log
∣∣1−zζ
z−ζ

∣∣ denotes the Green’s function of the unit disk. We say that a measure µ on

the unit disk is a Blaschke measure if (1−|z|)dµ(z) is a finite measure. The following

lemma is well-known:

7



Lemma 2.2. If µ is a Blaschke measure on the unit disk, then

Gµ(z) =
1

2π

∫
D
G(z, ζ)dµ(ζ)

satisfies

‖Gµ(z)‖W 1,1
0 (D) ≤ C

∫
D
(1− |z|)dµ(z),

and solves the linear Dirichlet problem{
∆u = −µ, in D,
u = 0, on ∂D,

(2.3)

where the boundary condition is understood in terms of weak limits.

For a proof using Stampacchia’s truncation method, see [11, Chapter 5].

Proof of Theorem 2.1: existence. Let Ph denote the harmonic extension of h to the

unit disk. Since h : ∂D→ R is bounded above by assumption, Ph is bounded above

on the unit disk. Consider the closed convex set

Kh =
{
v ∈ L1(D, |dz|2), v ≤ Ph

}
⊂ L1(D, |dz|2)

and the operator

(Tv)(z) = Ph(z)− 1

2π

∫
D
e2v(ζ)|H(ζ)|2G(z, ζ)|dζ|2. (2.4)

The condition H ∈ A2
1(D) tells us that dµv(ζ) = e2v(ζ)|H(ζ)|2|dζ|2 is a Blaschke

measure. Lemma 2.2 tells us that the integral in (2.4) lies in W 1,1
0 (D). Since W 1,1

0 (D)

sits compactly inside L1(D), the operator T is compact and maps Kh into itself. By

Schauder’s fixed point theorem, T has a fixed point. Applying Lemma 2.2 again, we

see that any fixed point of T solves GCEH . The proof is complete.

In the course of the previous proof, we saw:

Lemma 2.3. If u is a solution of (2.1) with h ∈ L∞(∂D), then

u(z) = Tu(z) = Ph(z)− 1

2π

∫
D
e2u(ζ)|H(ζ)|2G(z, ζ)|dζ|2.

Conversely, if u satisfies the above formula, then u solves (2.1).
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The following lemma says that the solution of GCEH varies continuously in H:

Lemma 2.4. Let h ∈ L∞(∂D) be a bounded function on the unit circle. Suppose

Hk → H in A2
1(D). For each k = 1, 2, . . . , let uk be the solution of GCEHk

with

boundary data h. Then, uk → u pointwise a.e., where u is the solution of GCEH

with boundary data h.

Proof. According to Lemma 2.3,

uk(z)− Ph(z) = − 1

2π

∫
D
e2uk(ζ)|Hk(ζ)|2G(z, ζ)|dζ|2.

By Lemma 2.2, the functions uk(z) − Ph(z) are uniformly bounded in W 1,1
0 . By

Sobolev compactness, one can pass to a subsequence which converges in L1, and

then to another subsequence which converges pointwise a.e. to some function u(z).

As the functions uk are bounded above by ‖h‖L∞(∂D), the dominated convergence

theorem tells us that

u(z)− Ph(z) = − 1

2π

∫
D
e2u(ζ)|H(ζ)|2G(z, ζ)|dζ|2.

In other words, any subsequential limit of the functions uk is a solution of GCEH

with boundary data h. Since the solution of GCEH with boundary data h is unique,

uk → u.

For future reference, we also record:

Lemma 2.5 (Comparison principle). Suppose u is a subsolution and v is a superso-

lution. If u ≤ v on the boundary, then u ≤ v in the interior.

3 Canonical solutions

Given a non-zero function H ∈ A2
1(D), let uH,n be the solution of the boundary value

problem {
∆u = |H|2e2u, in D,
u = n, on ∂D.

(3.1)
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By Liouville’s theorem,

uH,n = log
1

|H|
2|I ′n|

1− |In|2

for some holomorphic self-map In of the unit disk. From the monotonicity of solu-

tions, we know that the functions uH,n are increasing in n and are clearly bounded

above. Taking n→∞, we obtain the canonical solution

uH,∞ := lim
n→∞

uH,n = log
1

|H|
2|I ′|

1− |I|2
. (3.2)

From the above construction, it is clear that the canonical solution is the minimal

solution which dominates all solutions with finite boundary data.

Our main theorem states:

Theorem 3.1. Let H ∈ A2
1(D). The function I = IH is an inner function. The

invariant subspace [H] is generated by I ′n for any n ∈ R and contains I ′.

Remark. It is well-known that GCEH has a maximal solution, which dominates any

other solution pointwise. It may come as a surprise to the reader that the canonical

and maximal solutions may be different. For instance, if H has no zeros in the disk

but generates a non-trivial invariant subspace in A2
1(D), then the maximal solution

uH,max = log 1
|H|

2
1−|z|2 has the Liouville function IH,max(z) = z but I ′H,max = 1 /∈ [H].

For the convenience of the reader, we have split up the proof of Theorem 3.1 into

a long sequence of lemmas. In order to verify Conjecture 1.4, one would also need

to show that I ′ generates [H]. In Section 3.4, we will reduce Conjecture 1.4 to a

statement in PDE, which we hope is more tractable.

3.1 Why is I ′ ∈ [H]?

Lemma 3.2. If a solution u = log 1
|H|

2|F ′|
1−|F |2 is bounded above, then F ′ ∈ [H].

Proof. Since u is subharmonic,

uH,n ≤ supu on D =⇒ |F ′/H| ≤ esupu/2 =⇒ F ′ ∈ [H],

where we used that invariant subspaces of A2
1(D) are closed under multiplication by

bounded holomorphic functions.
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Lemma 3.3. Suppose {Fn} ⊂ Hol(D,D) converges uniformly on compact subsets to

F ∈ Hol(D,D). If each F ′n ∈ [H], then F ′ ∈ [H].

Proof. While the Fn may not converge to F in A2
1(D), the Littlewood-Paley identity

(1.1) tells us that the norms

‖F ′n‖A2
1
. ‖Fn‖H2 ≤ 1

are uniformly bounded. This allows us to pass to a subsequence that converges

weakly. Since the Fn converge uniformly on compact subsets to F , the weak limit

must also be F . It remains to use the following fact from functional analysis: in a

Banach space, a subspace is closed if and only if it is weakly closed.

Corollary 3.4. The Liouville map IH associated to the canonical solution uH,∞

satisfies I ′H ∈ [H].

3.2 Why is I an inner function?

Lemma 3.5. When H = I ′ is the derivative of an inner function, we can write down

the canonical solution explicitly:

uI′,n = log
1

|I ′|
2|rI ′|

1− |rI|2
= log

2r

1− |rI|2
,

2r

1− r2
= en.

uI′,∞ = log
1

|I ′|
2|I ′|

1− |I|2
= log

2

1− |I|2
.

Lemma 3.6. The Liouville map IH associated to a canonical solution uH,∞ is an

inner function.

Proof. Since I ′ ∈ [H], there exists a sequence of polynomials pk such that Hpk → I ′

in A2
1(D). Replacing pk(z) by pk(rz) if necessary, we may assume that the pk have

no zeros on the unit circle. By the comparison principle,

uHpk,n ≤ log
1

|Hpk|
· 2|I ′|

1− |I|2
, (3.3)
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for any n ∈ R. Note that if pk has zeros inside the disk, then the RHS will be a

supersolution of GCEHpk rather than a solution, which makes it easier for (3.3) to

hold. Taking k →∞ in (3.3), we get

uI′,n ≤ log
2

1− |I|2
.

Since this is true for any n ∈ R, uI′,∞ ≤ log 2
1−|I|2 , which forces I to be inner.

Lemma 3.7. The canonical solution uH,∞ depends only on the invariant subspace

generated by H in A2
1(D).

Proof. The proof of Lemma 3.6 shows that if [H1] ⊂ [H2], then

|I ′H1
|

1− |IH1|2
≤

|I ′H2
|

1− |IH2|2
.

In particular, if H1 and H2 generate the same invariant subspace, then

|I ′H1
|

1− |IH1|2
=

|I ′H2
|

1− |IH2|2
.

By Liouville’s theorem, IH1 = IH2 up to post-composition with an element of Aut(D).

The proof is complete.

3.3 Why does I ′n generate [H]?

In the proof below, we will use the following fact: the minimal harmonic majorant of

a subharmonic function u : D→ [−∞,∞) is zero if and only if u has zero boundary

data in the sense of weak limits of measures. This follows from the description of

the minimal harmonic majorant of u as the limit of the Poisson extensions Pu|∂Dr as

r → 1−.

Proof of Theorem 3.1. For concreteness, we will show that I ′0 generates [H] as the

general case is similar. Since the subharmonic function u = log 1
|H|

2|I′0|
1−|I0|2 has zero

boundary data, its minimal harmonic majorant is 0. For 0 < r < 1, define

ur = log
1

|Hr|
2|rI ′0|

1− |rI0|2
,
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where

Hr :=
2r

φr
· I ′0 ∈ [I ′0], φr(z) := Out1−|rI0|2(z).

Here, φr is the outer function with absolute value 1−|rI0|2 on the unit circle. As φr is

bounded away from zero, Hr is a product of I ′0 with a bounded holomorphic function,

and hence it belongs to the invariant subspace generated by I ′0. By construction, the

minimal harmonic majorant of ur is also 0.

Since the |Hr| increase to |H|, after passing to a subsequence, the functions

Hr → eiθH converge in A2
1(D) for some θ ∈ [0, 2π). It follows that H ∈ [I ′0] and

therefore, [H] = [I ′0].

3.4 Does I ′ generate [H]?

We now show that Conjecture 1.4 would follow from the following statement in PDE:

Conjecture 3.8. Any solution of ∆u = |I ′|2e2u that is ≤ uI′,∞ can be approximated

uniformly on compact subsets by solutions uk that are bounded above.

Proof that Conjecture 3.8 implies Conjecture 1.4. Let H ∈ A2
1(D) and I0 and I be

the Liouville functions of uH,0 and uH,∞ respectively. Taking Conjecture 3.8 for

granted, we can approximate

uk = log
1

|I ′|
2|F ′k|

1− |Fk|2
→ log

1

|I ′|
2|I ′0|

1− |I0|2
.

Since the solutions uk are bounded above, each F ′k ∈ [I ′] by Lemma 3.2. By Lemma

3.3, I ′0 ∈ [I ′]. Therefore, [I ′] = [H] as desired.

Remark. Conjecture 3.8 is easy to believe since one can approximate a harmonic

function by bounded harmonic functions. However, it turns out to be quite difficult

and we can only verify it in special cases, for instance, when I ′ lies in the Nevanlinna

class.
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3.5 When are canonical solutions maximal?

Since solutions of GCEH are in bijection with solutions of (1.4),

uH,max = log
1

|H|
2|F ′Z(H)|

1− |FZ(H)|2
,

where FZ(H) is a maximal Blaschke product whose critical set is the zero set of H.

Lemma 3.9. Let H ∈ A2
1(D) and IH be the Liouville map of the canonical solution

associated to H. The canonical and maximal solutions of GCEH coincide if and only

if IH ∈ MBP.

Proof. The canonical solution uH,∞ = log 1
|H|

2|I′H |
1−|IH |2

is equal to the maximal solution

if and only if
|I ′H |

1− |IH |2
=

|F ′Z(H)|
1− |FZ(H)|2

.

By Liouville’s theorem, this happens precisely when IH and FZ(H) are related by an

element of Aut(D). The theorem follows from the fact that the class of maximal

Blaschke products is invariant under post-compositions by automorphisms of the

disk.

3.6 Boundary behaviour of canonical solutions

In [14], C. Sundberg showed that the Bergman canonical divisor with zero set C ⊂ D
extends analytically past any open arc J ⊂ ∂D that does not meet the closure of

C. In a similar spirit, D. Kraus and O. Roth [8] showed that a maximal Blaschke

product with critical set C also extends analytically past any open arc J ⊂ ∂D that

does not meet the closure of C. We establish an analogous result for Liouville maps

of canonical solutions:

Theorem 3.10. If H ∈ A2
1(D) extends analytically past an open arc J ⊂ ∂D, then

the Liouville map I = IH extends analytically though J .

Proof. We prove the theorem under the additional assumption that H does not

vanish on J , this assumption can be removed by Lemma 3.11 below. By Lemma 2.3,

un(z) ≥ n− e2n

2π

∫
D
|H(ζ)|2G(z, ζ)|dζ|2.
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From this representation, it follows that for any ζ ∈ J ,

lim inf
z→ζ

uH,n(z) ≥ n.

Since the uH,n are increasing in n,

lim
z→ζ

uH,∞(z) =∞.

Since H is bounded away from zero near ζ,

log
|I ′(z)|

1− |I(z)|2

tends to +∞ as z → ζ. According to [9, Theorem 1.1], I extends analytically past

the arc J . The proof is complete.

Lemma 3.11. Suppose H ∈ A2
1(D) and ζ ∈ ∂D. Then, [H(z)] = [H(z)(z − ζ)].

Proof. The inclusion [H(z)] ⊇ [H(z)(z−ζ)] is obvious. To prove the other inclusion,

we notice that

H(z)(zn − ζn) ∈ [H(z)(z − ζ)].

Taking n → ∞, we get H(z)ζn ∈ [H(z)(z − ζ)]. Multiplying by ζ−n, we see that

H(z) ∈ [H(z)(z − ζ)] as desired.

4 Further remarks and open problems

We conclude with some remarks and open problems:

1. In the theory of Bergman spaces, one learns that any 1-generated invariant

subspace X ⊂ A2
1 can be generated by a Bergman inner function ϕ = ϕX ,

which solves a certain extremal problem. According to [3, Theorem 3.3], ϕ is

the derivative of a BMO function. Since one expects ϕ to be the smoothest

function in X, it is natural to wonder if ϕ is actually the derivative of a bounded

function.
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2. Let X ⊂ A2
1 be a 1-generated invariant subspace and Xn → X be an ap-

proximate spectral synthesis by finite zero-based subspaces. Is it true that the

canonical inner functions IXn tend to IX?

3. Can one give an alternative proof of Shimorin’s result on the approximate

spectral synthesis [12] in A2
1 using the methods of this paper? That is, to

show that one can approximate any 1-generated invariant subspace X ⊂ A2
1 by

zero-based ones.
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