
Critical values of inner functions

Oleg Ivrii and Uri Kreitner

June 14, 2024

Abstract

Let J be the space of inner functions of finite entropy endowed with the

topology of stable convergence. We prove that an inner function F ∈ J

possesses a radial limit (and in fact, a minimal fine limit) in the unit disk at

σ(F ′) a.e. point on the unit circle. We use this to show that the singular value

measure ν(F ) =
∑

c∈critF (1− |c|) · δF (c) + F∗(σ(F ′)) varies continuously in F .

Our analysis involves a surprising connection between Beurling-Carleson sets

and angular derivatives.

1 Introduction

Let D be the unit disk and ∂D be the unit circle. An inner function is a

holomorphic self-map of the unit disk such that for almost every θ ∈ [0, 2π),

the radial limit limr→1 F (reiθ) exists and has absolute value 1. In this paper,

we study the distribution of the critical values of inner functions.

1.1 A motivating example

We open the discussion with a motivating example. Consider the inner function

F (z) = exp

(
z − 1

z + 1

)
,

which is a universal covering map of the punctured disk. Since F has no critical

points in the unit disk in the traditional sense, it also has no critical values.
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Nevertheless, one can assign F “boundary critical structure” and a non-trivial

“singular value measure.”

For this purpose, we approximate F by a sequence of finite Blaschke prod-

ucts Fn which have a single critical point at cn = −1 + 1/n with multiplicity

n :

Fn(z) =

(
z − cn
1− cnz

)n+1

.

If we encode the set of critical points of Fn by the measure

µFn =
∑

c∈critFn

(1− |c|) · δc = δcn ,

then as n→∞, the critical structures µFn tend weakly to µ = δ−1. Similarly,

if one encodes the critical values of Fn using the measure

νFn =
∑

c∈critFn

(1− |c|) · δFn(c) = δ0,

then as n→∞, the critical value measures νFn converge weakly to ν = δ0.

1.2 Inner functions of finite entropy

In this paper, we assign singular value measures to inner functions of finite

entropy, i.e. to inner functions which satisfy∫
|z|=1

log |F ′|dm <∞. (1.1)

For the above definition to make sense, we require that F ′ has a non-tangential

limit at almost every point on the unit circle. The condition (1.1) says that

F ′ belongs to the Nevanlinna class N and therefore has a BSO decomposition

into a Blaschke factor, a singular factor and an outer factor. The astute

reader may recall that Nevanlinna functions have B(S1/S2)O decompositions;

however, the work of Ahern and Clark [AC74] rules out the need for using a

singular inner function in the denominator.

In this decomposition, the Blaschke factor B encodes the critical points of

F , while the singular factor S encodes the boundary critical structure. Putting

the B and the S together, we obtain the full critical structure InnF ′ = BS
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of F . Alternatively, we can encode the critical structure as a measure on the

closed unit disk:

µF =
∑

c∈critF

(1− |c|) · δc + σ(F ′).

Parametrization of inner functions by critical structures. The

main result from [Ivr19] states that up to post-compositions with Möbius trans-

formations in Aut(D), inner functions of finite entropy are uniquely determined

by their critical structures, and describes which critical structures occur:

Theorem A. The natural map

F → Inn(F ′) : J /Aut(D)→ Inn / S1

is injective. The image consists of all inner functions of the form BSσ where

B is a Blaschke product and Sσ is the singular factor associated to a measure

σ whose support is contained in a countable union of Beurling-Carleson sets.

Above, a Beurling-Carleson set E ⊂ ∂D is a closed subset of the unit circle

of zero Lebesgue measure whose complement is a union of arcs
⋃
k Ik with∑

|Ik| log
1

|Ik|
<∞. (1.2)

Topology of stable convergence. The space J of inner functions of

finite entropy is equipped with the topology of stable convergence where Fn →
F if Fn converges uniformly on compact subsets to F and the Nevanlinna

splitting

InnF ′n → InnF ′, OutF ′n → OutF ′

is preserved in the limit. As explained in [Ivr19, Section 4], for general se-

quences of inner functions, one may lose critical points, i.e.

lim inf
n→∞

µFn ≥ µF , (1.3)

as well as entropy:

lim inf
n→∞

∫
∂D

log |F ′n|dm ≥
∫
∂D

log |F ′|dm. (1.4)
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While the last equation resembles Fatou’s lemma from real analysis, the proof

is subtle since we are dealing with boundary values of analytic functions. The

rigorous argument involves Julia’s lemma [Mas12, Corollary 4.10]. The con-

vergence Fn → F is stable if and only if

lim
n→∞

µFn = µF ,

or equivalently, if

lim
n→∞

∫
∂D

log |F ′n|dm =

∫
∂D

log |F ′|dm.

In this topology, finite Blaschke products are dense in J . A particular stable

approximating sequence Fn → F is given in [Cra91, Theorem 5.4], see also

[Ivr19, Lemma 4.3].

1.3 Singular values

We may encode the critical values of a finite Blaschke product F using the

measure

νF :=
∑

c∈critF

(1− |c|) · δF (c).

For a general inner function F ∈ J of finite entropy, we approximate it by

a stable sequence of finite Blaschke products Fn and define νF as the limit

of νFn . Our main objective is to show that the singular value measure νF is

well-defined, i.e. does not depend on the stable approximating sequence Fn :

Theorem 1.1. For almost every point ζ ∈ ∂D with respect to the singular

measure σ(F ′), the radial limit limr→1 F (rζ) exists and lies in the open unit

disk. Let

νF = F∗(µF ) =
∑

c∈critF

(1− |c|) · δF (c) + F∗(σ(F ′)), (1.5)

where we take the pushforward with respect to the radial extension of F to the

unit circle. If Fn → F is Nevanlinna stable, then the measures νFn converge

weakly to νF .
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Theorem 1.1 is rather surprising since in complex analysis, one often deals

with the topology of uniform convergence on compact subsets. When the

singular measure σ(F ′) is non-trivial, some of the critical points of Fn must

escape to the unit circle. At first glance, it seems rather strange that we

are able to say anything about the locations of the critical values even if we

know the limiting distribution of the critical points. It turns out that stable

convergence is a lot stronger than uniform convergence on compact subsets,

see Appendix A.

We say that a simply-connected domain Ω ⊂ D is thick at ζ ∈ ∂Ω∩∂D if the

Riemann map ϕ : D→ Ω has a non-zero angular derivative at ζ. This condition

implies that Ω contains a truncated Stolz angle of any opening at ζ, but is

strictly stronger, see Section 2 for details. We say that a function F : D→ C
has thick limit L at ζ if for any δ > 0, the set

{
z ∈ D : |F (z) − L| < δ

}
has

a connected component Ωζ that is thick at ζ. Thick limits are also known as

minimal fine limits, e.g. see [AG01, Chapter 9.3] and [Bas95, Chapter V.5].

Theorem 1.2. For almost every point ζ ∈ ∂D with respect to the singular

measure σ(F ′), F has a thick limit at ζ.

Intuitively, our proof of continuity of the measure νF in Theorem 1.1 sug-

gests that thick approach regions act as “traps” for critical points.

1.4 Components

Central to our argument is the notion of a component of an inner function,

which was used by Pommerenke [Pom76] to study Green’s functions of Fuch-

sian groups. Suppose V is a Jordan domain compactly contained in the unit

disk and U is a connected component of the pre-image F−1(V ).

Lemma 1.3. Any connected component U of F−1(V ) is a Jordan domain.

By the above lemma, we can define

FU = FU→V := ψ−1 ◦ F ◦ ϕ,

where ϕ,ψ are Riemann maps from D to U and V respectively.

Lemma 1.4. The component function FU is an inner function.
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The proofs of Lemmas 1.3 and 1.4 will be given in Appendix B.

Lemma 1.5. If F ∈ J is an inner function of finite entropy, then any

component inner function FU ∈J also has finite entropy.

Proof. Since composing a function with Möbius transformations in Aut(D)

does not change whether its derivative is in the Nevanlinna class, we may

assume that (i) F (0) = 0, (ii) 0 ∈ U, V and (iii) ϕ(0) = ψ(0) = 0. With these

normalizations, we show that FU ∈J with µFU (D) ≤ µF (D).

We first consider the case when F is a finite Blaschke product. Since U is

a subset of the unit disk, FU can only have less critical points than F , and by

the Schwarz lemma, the critical points of FU are farther from the origin than

the corresponding critical points of F .

In the general case, we approximate F by a stable sequence of finite Blaschke

products Fn with Fn(0) = 0. Let Un be the connected component of F−1
n (V )

containing 0. As the domains Un converge in Carathéodory sense to U , the

maps Fn,Un → F converge uniformly on compact subsets of the disk. Hence,

µFU (D) ≤ lim inf
n→∞

µFn,Un (D) ≤ lim inf
n→∞

µFn(D) = µF (D)

as desired.

In light of the above lemma, we may compare the singular measures σ(F ′)

and σ(F ′U ). Since the measure σ(F ′U ) is supported on the set ϕ−1(∂U ∩ ∂D),

it is more natural to compare σ(F ′) with its pushfoward ϕ∗ σ(F ′U ), which is

supported on ∂U ∩ ∂D.

Theorem 1.6. Let (∂U ∩ ∂D)thick denote the set of points on the unit circle

where U is thick. Then,

ϕ∗ σ(F ′U ) = |(ϕ−1)′(ζ)| dσ(F ′)|(∂U∩∂D)thick , (1.6)

where |(ϕ−1)′(ζ)| is interpreted as the inverse of the angular derivative of ϕ at

ϕ−1(ζ) ∈ ∂D.
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1.5 Exceptional set of an inner function

It is not uncommon for inner functions to have radial limits in the unit disk.

A point a ∈ D is called an exceptional point for an inner function F if the

Frostman shift Fa(z) = F (z)−a
1−aF (z) has a non-trivial singular factor Sµa = SingFa.

As µa is supported on the set

Ra =
{
ζ ∈ ∂D : lim

r→1
F (rζ) = a

}
,

where F has radial limit a, the singular masses of different Frostman shifts Fa

are mutually singular.

A classical theorem of Frostman [Mas12, Theorem 2.5] says that the ex-

ceptional set E of an inner function has logarithmic capacity zero. Ahern and

Clark observed that in the case of inner functions of finite entropy, the excep-

tional set is at most countable: as SingFa divides F ′a, it also divides its inner

part InnF ′a = InnF ′, which shows the inequality

σ(F ′) ≥
∑
a∈E

σ(Fa). (1.7)

In particular, σ(F ′) records at least as much information as the collection of

Frostman shifts.

In a private communication, C. Bishop informed us that there is a non-

trivial inner function F ∈ J which has no critical points and possesses an

empty exceptional set, i.e. is indestructible. The construction is similar to the

one in [Bis93], but is less intricate. According to [Dya14], InnF ′ = Sµ for some

non-zero measure µ on the unit circle. This example shows that the inequality

(1.7) could be strict.

In view of Theorem 1.1, F has lots of interesting radial limits in the unit

disk, not seen by the exceptional Frostman shifts. Lemma 1.7 below suggests

that σ(F ′) sees the full collection of radial limits of F in the unit disk.

Remark. Incidentally, Bishop’s construction gives an example of an indestruc-

tible Blaschke product which is not maximal, answering a question posed in

[KR13].

7



1.6 Island structure

Following [Hei62, Section 25], we say that F is of island type over V if ev-

ery connected component of F−1(V ) is compactly contained in the unit disk.

We say that F−1(V ) consists of simple islands if in addition, F maps each

connected component U ⊂ F−1(V ) conformally onto V .

Lemma 1.7. Suppose F ∈ J is an inner function of finite entropy. If V

is a Jordan domain compactly contained in the unit disk which has positive

distance to the support of νF , then F−1(V ) consists of simple islands.

Proof. Let U be a connected component of F−1(V ). Clearly, U does not

contain any critical points of F . Theorem 1.1 tells us that σ(F ′U ) = 0, so that

InnF ′U is trivial. By [Dya14], FU is a Möbius transformation, which means

that F maps U conformally onto V .

Can ∂U touch the unit circle at a point ζ ∈ ∂D? Since U is a Jordan

domain, by Carathéodory’s theorem, F |U extends continuously to U and maps

ζ to a point in ∂V . Let V ′ be a slightly larger Jordan domain, which compactly

contains V , but still has positive distance to supp ν, and U ′ be the connected

component of F−1(V ′) which contains U . The above reasoning implies that

F |U ′ extends continuously to U ′ and maps ζ to a point in ∂V ′, which is a

contradiction.

2 Background on angular derivatives

Suppose Ω ⊂ D is a domain in the unit disk bounded by a Jordan curve. We

say that Ω has an inner tangent at a point p ∈ ∂Ω ∩ ∂D if for any 0 < θ < π,

Ω contains a truncated Stolz angle of opening θ with vertex at p.

In terms of the conformal map ϕ : D→ Ω, the domain Ω possesses an inner

tangent at p if and only if

lim
z→q

arg
ϕ(z)− ϕ(q)

z − q

exists, where q = ϕ−1(p). Geometrically, this says that the image of a non-

tangential ray ending at q is asymptotic to a non-tangential ray ending at p
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and that angles between different non-tangential rays are preserved. In the lit-

erature, this property is known as boundary conformality or semi-conformality.

We say that ϕ has a (non-zero) angular derivative at q = ϕ−1(p) if the

non-tangential limit

lim
z→q
|ϕ′(z)| = A,

for some real number A > 0. One can avoid dealing with the point q by

saying that the inverse conformal map ψ : Ω → D has angular derivative

|ψ′(p)| = A−1.

While the numberA depends on the choice of Riemann map ϕ, the existence

of the angular derivative does not. In other words, possessing an angular

derivative is an intrinsic property of (Ω, p), which we record by saying that Ω

is thick at p.

We summarize some basic properties of angular derivatives:

1. If ϕ has an angular derivative at p, then Ω possesses an inner tangent at

p.

2. Thickness is a local property: modifying Ω away from p does not change

whether Ω is thick at p.

3. Suppose Ω1 ⊂ Ω2 ⊂ D. If Ω1 is thick at p, then so is Ω2.

In this section, we describe an if and only if condition for Ω to be thick

at a boundary point p ∈ ∂Ω ∩ ∂D due to Rodin and Warschawski. As the

Rodin-Warshawksi condition involves moduli of curve families, it is not easy

to verify directly. To rectify this, we also provide a geometric characterization

for the existence of an angular derivative.

For a discussion of inner tangents and angular derivatives in a more general

setting, we refer the reader to [GM05, Theorem V.5.7] or [BK22].

2.1 Angular derivatives in the strip

It is convenient to analyze the above notions in an infinite strip

S = {−1/2 < Im z < 1/2}

of width 1. Let U ⊂ S be a Jordan domain with 0 ∈ U and +∞ ∈ ∂U and

φ : S → U be a conformal map which takes 0→ 0 and +∞→ +∞.
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• The inner tangent condition at +∞ says that for any δ > 0, there exists

an xIT = xIT(δ) ∈ R such that

[xIT,∞)× (−1/2 + δ, 1/2− δ) ⊂ U . (2.1)

We refer to a function xIT(δ) for which (2.1) holds as a modulus of inner

tangency for U . Equivalently,

Imφ(x+ iy)− y → 0, as x→ +∞.

• The map φ has an angular derivative at +∞ if and only if

lim
x→+∞

x− φ(x) = C,

as x tends to +∞ along the real axis. We may think of C as the angular

derivative in the strip model.

By the Schwarz lemma, the hyperbolic distance dS(0, φ(x)) ≤ dS(0, x),

which implies that C ≥ 0. In fact, the constant C measures how much

φ(x) lags behind x :

C =
1

π
· lim
x→+∞

(
dS(0, x)− dS(0, φ(x))

)
. (2.2)

Note that the quantity dS(0, x)− dS(0, φ(x)) is non-decreasing in x. If φ

does not possess an angular derivative, then the limit in (2.2) is infinite.

In order to state the Rodin-Warschawksi condition for the existence of

angular derivative, we make serveral definitions. We denote the vertical line

segments that foliate S by S(x) = S ∩ {Re z = x} and write S(x1, x2) =

S ∩ {x1 < Re z < x2} for the rectangle bounded by S(x1) and S(x2). For

x > 0, let U(x) denote the connected component of U ∩ S(x) which separates

0 from +∞. Define U(x1, x2) ⊂ U as the subdomain bounded by U(x1) and

U(x2). Note that U(x1, x2) may stick out of S(x1, x2). We view U(x1, x2)

as a conformal rectangle whose vertical sides are U(x1) and U(x2), with the

remainder of ∂U(x1, x2) forming the horizontal sides.

Theorem 2.1 (Rodin-Warschawksi). The conformal map φ : S → U possesses

an angular derivative at +∞ if and only if

Mod U(x1, x2)−Mod S(x1, x2) = Mod U(x1, x2)− (x2 − x1) → 0, (2.3)

as x1, x2 → +∞.
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For a proof, see [GM05, Theorem V.5.7].

Remark. When we discuss moduli of conformal rectangles, we refer to the

moduli of the vertical curve families which connect the horizontal sides.

2.2 A geometric characterization of thickness

Let U ⊂ S be a simply-connected domain which contains the middle strip

R×(−1/3, 1/3) of width 2/3. To estimate the moduli of the sections U(x1, x2),

we define a family of auxiliary domains Uk, parameterized by 1/2 ≤ k ≤ 2,

although we will only use U− = U1/2 and U+ = U2.

For a point (x, y) = (x,−1/2 + h) ∈ R× (−1/2,−1/3), set

Q(x, y, k) =

[
x− kh

2
, x+

kh

2

]
×
[
−1

2
, −1

2
+ kh

]
,

while for (x, y) = (x, 1/2− h) ∈ R× (1/3, 1/2), we define

Q(x, y, k) =

[
x− kh

2
, x+

kh

2

]
×
[

1

2
− kh, 1

2

]
.

Thus, Q(x, y, k) is a square with side length kh which rests either on the top

or the bottom side of S. The auxiliary domains are given by

Uk := S \
⋃

x+iy∈∂U
Q(x, y, k).

Theorem 2.2. A simply-connected domain U ⊂ S which contains the strip

R× (−1/3, 1/3) has an angular derivative at +∞ if and only if the Euclidean

areas

|S(x1, x2) \ U+(x1, x2)| → 0, as x1, x2 → +∞. (2.4)

A similar result was obtained by Rohde and Wong [RW14] for the half-plane

capacity, where the authors considered a number of other auxiliary regions

such as the unit hyperbolic neighbourhood of U in S and the largest domain

contained in U bounded by Lipschitz graphs with slope at most 1.

Lemma 2.3. Let

Ũk(x1, x2) := S(x1, x2) \
⋃

x+iy∈∂U
x1<x<x2

Q(x, y, k).
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(i) For 1/2 ≤ k ≤ 2, the areas |S(x1, x2) \ Ũk(x1, x2)| are comparable.

(ii) One has

|S(x1, x2) \ Uk(x1, x2)| → 0, as x1, x2 → +∞,

if and only if

|S(x1, x2) \ Ũk(x1, x2)| → 0, as x1, x2 → +∞.

Proof. A quick way to see (i) is to use the fact that the Hardy-Littlewood

maximal function of an L1 function lies in weak-L1, which tells us that the

area of a union of squares Q(x, y, 1/2) controls the area of the union of the

larger squares Q(x, y, 2).

The “⇒” direction in (ii) is trivial since

Ũk(x1, x2) ⊇ Uk(x1, x2),

as less squares Q(x, y, k) are removed from S(x1, x2). Since all the squares

that appear in the construction of the domains Uk(x1, x2) and Ũk(x1, x2) have

sidelengths less than 1/3,

|S(x1, x2) \ Uk(x1, x2)| ≤ |S(x1 − 1, x2 + 1) \ Ũk(x1 − 1, x2 + 1)|,

which shows the “⇐” direction.

Remark. The Euclidean areas of

S(x1, x2) \ Uk(x1, x2), k ∈ [1/2, 2],

may not be comparable. For instance, if

U = S \
(
{x2 + ε} × [−1/2,−1/2 + 2ε]

)
,

then |S(x1, x2) \ U−(x1, x2)| = 0 but |S(x1, x2) \ U+(x1, x2)| > 0.

Lemma 2.4. For any 1/2 ≤ k ≤ 2,

Mod U(x1, x2)− (x2 − x1) � |S(x1, x2) \ Ũk(x1, x2)|.
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Proof. Lower bound. Since the metric

ρ1(z) =
1

x2 − x1
· χS(x1,x2)∩Ũ−(x1,x2)

,

is admissible for the horizontal path family Γ↔
(
U(x1, x2)

)
, we have

Mod U(x1, x2) ≥ 1/A(ρ1).

A short computation shows

A(ρ1) ≤ 1

(x2 − x1)2
· |S(x1, x2) ∩ Ũ−(x1, x2)|

=
1

(x2 − x1)2
·
[
(x2 − x1)− |S(x1, x2) \ Ũ−(x1, x2)|

]
=

1

(x2 − x1)
·
[
1− 1

x2 − x1
· |S(x1, x2) \ Ũ−(x1, x2)|

]
so that

1

A(ρ1)
. (x2 − x1) ·

[
1 +

1

x2 − x1
· |S(x1, x2) \ Ũ−(x1, x2)|

]
,

as desired.

Upper bound. To see the upper bound, it is enough to check that the metric

ρ2(z) = χS(x1,x2) ·

1, z ∈ Ũ+(x1, x2),

2, z ∈ U(x1, x2) \ Ũ+(x1, x2),

is admissible for the vertical path family Γl
(
U(x1, x2)

)
. Suppose a path γ ∈

Γl
(
U(x1, x2)

)
connects P = (ξ1,−1/2+η1) and Q = (ξ2, 1/2−η2) in U(x1, x2).

As the vertical distance between P and Q is 1−η1−η2, it is clear that `ρ2(γ) ≥
1−η1−η2. The deficit is made up by the fact that γ∩ (U(x1, x2)\ Ũ+(x1, x2))

has length at least η1 + η2.

Putting Lemmas 2.3 and 2.4 together, we get Theorem 2.2.

2.3 Some special cases

For continuous functions h1, h2 : R→ [0, 1/6), consider the strip domain

U = Uh1,h2 =
{

(x, y) : −1/2 + h1(x) ≤ y ≤ 1/2− h2(x)
}
.
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In this case, the auxiliary domain U+ is also a strip domain:

U+ = Uh+1 ,h+2 = S \
⋃
x0∈R

[
x0 − h1(x0), x0 + h1(x0)

]
×
[
−1/2,−1/2 + 2h1(x0)

]
\
⋃
x0∈R

[
x0 − h2(x0), x0 + h2(x0)

]
×
[
1/2− 2h2(x0), 1/2

]
.

As a consequence of Theorem 2.2, we have:

Corollary 2.5. The finiteness of the integral∫ ∞
0

[h1(x) + h2(x)]dx <∞ (2.5)

is necessary for U(h1, h2) to have an angular derivative at +∞. If the functions

hi, i = 1, 2 satisfy the doubling condition

hi(x) ≥ c · hi(x0), |x− x0| < c · hi(x0), (2.6)

for some c > 0, then it is also sufficient.

The following theorem is an analogue of Corollary 2.5 in the unit disk

setting:

Theorem 2.6. Suppose Ω =
{
rζ : ζ ∈ ∂D, 0 ≤ r < 1 − h(ζ)

}
, where h :

∂D → [0, 1/2] is a continuous function. Assume that h satisfies the doubling

condition

h(ζ1) ≥ c · h(ζ2), whenever |ζ2 − ζ1| < c · h(ζ1),

for some c > 0. Then, Ω is thick at p ∈ ∂Ω ∩ ∂D if and only if∫
∂D

h(ζ)

|ζ − p|2
|dζ| <∞. (2.7)

3 Stability of angular derivatives

The following two lemmas are instances of the following principle: the angular

derivative does not change much if we do not significantly alter the global

shape of Ω or the local geometry of ∂Ω near ζ :
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Lemma 3.1. Suppose Ω ⊂ D is a Jordan domain and ζ ∈ ∂Ω∩∂D. For δ > 0,

let Ωδ = fill
(
Ω ∪ (B(ζ, δ) ∩ D)

)
. Let ϕδ : D → Ωδ be a sequence of conformal

mappings which converge uniformly on compact sets to a conformal mapping

ϕ : D→ Ω. Then, the angular derivatives |(ϕ−1
δ )′(ζ)| converge to |(ϕ−1)′(ζ)|.

In the lemma above, the filling of a planar set A ⊂ C refers to the union of

A and the bounded connected components of C \A. Taking the filling ensures

that the domain Ωδ is simply-connected, so that the conformal mapping ϕδ is

well-defined.

Lemma 3.2. Suppose Ωn is an increasing sequence of domains in the unit

disk, whose union is Ω. Let ϕn : D→ Ωn be a sequence of conformal mappings

which converge uniformly on compact sets to a conformal mapping ϕ : D→ Ω.

If Ω1 is thick at ζ ∈ ∂D, then

|(ϕ−1
n )′(ζ)| → |(ϕ−1)′(ζ)|.

We deduce Lemmas 3.1 and 3.2 from the following technical lemma which

follows from the proof of the Rodin-Warschawski criterion (Theorem 2.3) pre-

sented in [GM05]:

Lemma 3.3. If U ⊂ S possesses an inner tangent at +∞ then the pre-images

φ−1(U(x)) are asymptotically vertical line segments. More precisely, for any

ε > 0, if x ≥ xosc(ε) is sufficiently large then φ−1(U(x)) lies within ε of

S(Reφ−1(x)).

Remark. (i) The function xosc(ε) can be chosen uniformly over all domains

with the same modulus of inner tangency xIT(δ). In particular, xosc(ε) can be

chosen uniformly over the collection of Jordan domains in S which contain a

particular domain U that has an inner tangent at +∞.

(ii) Since ∂U can be complicated, the images of the vertical segments S(x)

could be rather wiggly.

Proof of Lemma 3.1. Converting to the horizontal strip S as in Section 2.1,

we are given a domain U ⊂ S with 0 ∈ U and +∞ ∈ ∂U , as well as a conformal

map φ : S → U which fixes 0 and +∞. For each n ≥ 1, we define the domain

Un = fill
(
U ∪ {z ∈ S : Re z > n}

)
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and form an analogous conformal map φ : S → Un which fixes 0 and +∞.

By the Schwarz lemma, the angular derivatives Cn = limx→+∞ x − φn(x)

form an increasing sequence of positive numbers. We first consider the case

when φ has an angular derivative at +∞, i.e. C = limx→+∞ x − φ(x) < ∞.

Given an ε > 0, there exists x′0 > 0 sufficiently large so that

(x2 − x1)−Mod U(x1, x2) < ε, for any x1, x2 ≥ x′0. (3.1)

As Un ⊃ U , the modulus estimate (3.1) a fortiori holds for each Un in place of

U . Now, by Lemma 3.3, we may pick an x′′0 > 0 sufficiently large so that for

any x ≥ x′′0,

• φ−1(U(x)) lies within ε of S(φ−1(x)) and

• φ−1
n (U(x)) lies within ε of S(φ−1

n (x)), n ≥ 1.

Set x0 = max(x′0, x
′′
0). Taking x1 = x0 and x2 large in (3.1) shows that

• φ−1(U(x0)) lies within 3ε of S(x0 − C) and

• φ−1
n (U(x0)) lies within 3ε of S(x0 − Cn), n ≥ 1.

From the convergence φ−1
n (x0)→ φ−1(x0), we see that Cn → C as desired.

We now consider the case when φ does not possess an angular derivative

at infinity. As limx→+∞ x−φ(x) =∞, for any C∗ > 0, one can find an x∗ > 0

so that Re {x∗ − φ(x∗)} > C∗. Since φn → φ converge uniformly on compact

subsets of S, Cn > Re {x∗ − φn(x∗)} > C∗ − 1 for all n sufficiently large. In

other words, Cn →∞.

The proof of Lemma 3.2 is similar.

4 Continuity of angular derivatives

Lemma 4.1. Let ϕ : D → Ω be a conformal map onto a Jordan domain

Ω ⊂ D. The function |(ϕ−1)′(ζ)| is upper semi-continuous on ∂D, where we

use the convention that |(ϕ−1)′(ζ)| = 0 if ζ ∈ (∂Ω ∩ ∂D)thin or ζ /∈ ∂Ω.

The above lemma says that for any M > 0, the set of points AM where

the angular derivative of ϕ is at most M is closed.
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Proof. For ζ ∈ ∂D and c > 0, the set

Hc(ζ) =

{
z ∈ D : Re

ζ + z

ζ − z
> c

}
is a horoball in the unit disk which rests on ζ ∈ ∂D. In this representation,

the radius of the horoball decreases as c increases. According to Julia’s lemma

[Mas12, Lemma 4.7], a point ζ ∈ ∂D belongs to AM if and only if

ϕ
(
Hc(ζ)

)
⊂ Hc/M

(
ϕ(ζ)

)
, ∀c > 0. (4.1)

As ϕ is a conformal map to a Jordan domain, it is continuous up to the

boundary. Since the mapping property (4.1) is preserved under limits, the set

AM is closed, which is what we wanted to show.

The same proof shows:

Lemma 4.2. Let ϕn : D→ Ωn be a sequence of conformal maps which converge

to a conformal map ϕ : D→ Ω. If ζn ∈ ∂D are points on the unit circle which

converge to ζ ∈ ∂D, then lim supn→∞ |(ϕ−1
n )′(ζn)| ≤ |(ϕ−1)′(ζ)|.

One can also prove Lemmas 4.1 and 4.2 using Aleksandrov-Clark measures.

For the definition and basic properties of Aleksandrov-Clark measures, we refer

the reader to the surveys [PS06, Sak07].

5 Green’s functions

Let Ω ⊂ ∂D be a Jordan domain in the unit disk. Fix a basepoint p ∈ Ω and

suppose ϕ : D→ Ω is a conformal map which fixes p. In this section, we give

an interpretation of the angular derivative in terms of the ratios of the Green’s

functions GΩ(p, z) and GD(p, z) of Ω and D respectively:

Lemma 5.1. Suppose cn ∈ Ω is a sequence of points that escape to ζ ∈ ∂Ω∩∂D.

(a) If ζ ∈ ∂Ω ∩ ∂D is a point of thickness of Ω then

lim sup
n→∞

GΩ(p, cn)

GD(p, cn)
≤ |(ϕ−1)′(ζ)|.

Equality holds if each cn → ζ non-tangentially.

(b) If ζ ∈ ∂Ω ∩ ∂D is not a point of thickness of Ω then

lim sup
n→∞

GΩ(p, cn)

GD(p, cn)
= 0.
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Proof. Let ζ ∈ ∂Ω ∩ ∂D be a point of thickness of ∂Ω. Fix δ > 0. Since

cn → ζ, for n large, the points cn are contained in B(ζ, δ). Since by increasing

the domain, one increases the Green’s function, we have

GΩ(p, cn) ≤ GΩδ(p, cn), (5.1)

where Ωδ = fill
(
Ω ∪ (B(ζ, δ) ∩ D)

)
as in Section 3.

Let ϕδ denote the Riemann map from D to Ωδ which fixes the point p. As

the Green’s function is conformally invariant, for any fixed δ > 0,

GΩδ(p, cn) = GD
(
p, ϕ−1

δ (cn)
)

= GD(p, cn) ·
(
|(ϕ−1

δ )′(ζ)|+ o(1)
)
,

as n→∞. In view of Lemma 4.2, when n > n0(ζ, δ) is large, we have

GΩ(p, cn) ≤ GD(p, cn) ·
(
|(ϕ−1)′(ζ)|+ oδ(1)

)
,

where the term oδ(1) can be made arbitrarily small by choosing δ > 0 small.

Part (b) is similar.

An analogue of Lemma 5.1 holds for sequences:

Lemma 5.2. Suppose (Ωn, p) → (Ω, p) is a sequence of domains in the unit

disk converging in the Carathéodory sense and cn ∈ Ωn is a sequence of points

that escape to ζ ∈ ∂D.

(a) If ζ ∈ ∂Ω ∩ ∂D is a point of thickness of Ω then

lim sup
n→∞

GΩn(p, cn)

GD(p, cn)
≤ |(ϕ−1)′(ζ)|.

(b) If ζ ∈ ∂Ω ∩ ∂D is not a point of thickness of Ω, then

lim sup
n→∞

GΩn(p, cn)

GD(p, cn)
= 0.

The proof is essentially the same. While we are on the subject of Green’s

functions, we mention the following well-known lemma:

Lemma 5.3. Let p, q ∈ D and ζ ∈ ∂D. For any sequence of points cn ∈ D
converging to ζ,

lim
n→∞

GD(p, cn)

GD(q, cn)
=
Pp(ζ)

Pq(ζ)
.
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6 Composition operator on measures

Suppose Ω ⊂ D is a Jordan domain. By Carathéodory’s theorem, any confor-

mal map ϕ : D → Ω extends continuously to the closed unit disk D. For a

positive measure µ ≥ 0 on the unit circle, we can form its Poisson extension

Pµ(z) to the unit disk. Since Pµ(ϕ(z)) is a positive harmonic function, it can

be represented as the Poisson extension of some finite measure ν ≥ 0.

By decomposing µ = µ+−µ− into positive and negative parts, the mapping

µ → ν naturally extends to signed measures. We refer to the correspondence

µ → ν as the composition operator on measures Cϕ : M(∂D) → M(∂D).

When µ = δx is a delta mass, νx := Cϕδx is known as the Aleksandrov-Clark

measure at x. It is easy to see that Cϕ is a continuous linear operator when

M(∂D) is equipped with the weak topology on measures.

In this section, we recall an explicit formula for Cϕµ from [BBC84]. Below,

we write m = |dz|/2π for the normalized Lebesgue measure on the unit circle

and dωΩ,w for the harmonic measure on ∂Ω as viewed from w ∈ Ω.

Theorem 6.1. If µ is a finite meaure on the unit circle and ν = Cϕµ, then

ϕ∗ν|(∂Ω∩D) = Pµ(z) dωΩ,ϕ(0)(z), ϕ∗ν|(∂Ω∩∂D) = |(ϕ−1)′(x)| dµ(x).

For the convenience of a reader, we provide a proof:

Proof. Step 1. In this step, we prove the theorem when µ = δx is a delta mass.

To this end, we consider two cases:

Case I. If x /∈ ∂Ω ∩ ∂D, then Pδx(ϕ(z)) extends continuously to the unit

circle and νx = Pδx(ϕ(z))dm.

Case II. Otherwise, x = ϕ(y) for some point y ∈ ∂D. Since Pδx(ϕ(z))

extends continuously to ∂D \ {y}, we have

νx|ϕ−1(∂Ω∩D) = Pδx(ϕ(z))dm, supp νx|ϕ−1(∂Ω∩∂D) ⊆ {y}.

To evaluate νx({y}), we consider two sub-cases:

a. Suppose first that x ∈ (∂Ω ∩ ∂D)thick. Since ϕ has an angular derivative

at y = ϕ−1(x),

Pδx(ϕ(ry)) ∼ |(ϕ−1)′(x)| · 2

1− r
, as r → 1,

which tells us that νx({y}) = |(ϕ−1)′(x)|.

19



b. On the other hand, when x ∈ (∂Ω ∩ ∂D)thin,

Pδx(ϕ(ry)) = o

(
1

1− r

)
, as r → 1,

which implies that νx({y}) = 0.

In all cases, νx matches with the expression in the statement of theorem.

Step 2. To deduce the general case from that of a delta mass, we expand

the expression for

Pµ(ϕ(z)) =

∫
∂D
Pνx(z)dµ(x),

which is naturally a sum of two terms: A+B, corresponding to the absolutely

continuous and singular parts of ν respectively. To simplify the expression for

the first term, we use Fubini’s theorem:

A =
1

2π

∫
∂D

{∫
∂D

Re
ζ + z

ζ − z
·
[
Pδx(ϕ(ζ))dm(ζ)

]}
dµ(x)

=
1

2π

∫
∂D

Re
ζ + z

ζ − z
·
[
Pµ(ϕ(ζ))dm(ζ)

]
,

while for the second term, we make a change of variables:

B =
1

2π

∫
(∂Ω∩∂D)thick

{∫
∂D

Re
ζ + z

ζ − z
·
[
|(ϕ−1)′(x)| δy(ζ)

]}
dµ(x)

=
1

2π

∫
(∂Ω∩∂D)thick

Re
y + z

y − z
· |(ϕ−1)′(x)| dµ(x),

=
1

2π

∫
ϕ−1((∂Ω∩∂D)thick)

Re
y + z

y − z
· dϕ∗

[
|(ϕ−1)′(x)| dµ(x)

]
(y).

As the expressions for A and B above match the expressions in the statement

of the theorem, the proof is complete.

7 Radon-Nikodym derivative

Let F ∈ J be an inner function of finite entropy. Suppose V is a Jordan

domain compactly contained in the unit disk. Let U be a connected component

of F−1(V ) and FU = ψ−1 ◦F ◦ϕ be the associated component inner function.
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In this section, we prove Theorem 1.6 which relates the singular parts of F ′

and F ′U .

We say that a Jordain Ω ⊂ C is a Nevanlinna domain if the derivative of

any conformal map R : D→ Ω is an outer function. In the literature, there is a

similar notion of a Smirnov domain which also requires ∂Ω to be a rectifiable.

It is easy to see that any smooth domain is a Nevanlinna domain. In fact, any

chord-arc curve is a Smirnov domain and hence a Nevanlinna domain, e.g. see

[GM05, Theorem VII.4.6]. As a byproduct of our investigation, we will obtain

the following theorem:

Theorem 7.1. Suppose F ∈ J is an inner function of finite entropy. If V

is a Nevanlinna domain, then so is any connected component U of F−1(V ).

7.1 Upper bound

Let Fn → F be a stable approximation by finite Blaschke products. For each

n = 1, 2, . . . , we select a connected component Un ⊂ F−1
n (V ) so that the Un

converge to U in the Carathéodory topology.

Choose an arbitrary basepoint p ∈ U . By dropping finitely terms from

the sequence, we may assume that p ∈ Un for all n. For each n = 1, 2, . . . ,

we form a conformal map ϕn : D → Un with ϕn(p) = p and ϕ′n(p) > 0. By

construction, the limit ϕ : D → U will be a conformal map which also fixes

p. With the above normalization, the associated component inner functions

Fn,Un converge uniformly on compact subsets to FU .

By the Hurwitz theorem, for any critical point ci ∈ critF , one can find

a sequence of critical points cn,i ∈ critFn such that cn,i → ci. For each

n = 1, 2, . . . , we designate a subset of the critical points of Fn as converging

so that ∑
c∈critFn

converging

(1− |c|) · δc →
∑

c∈critF

(1− |c|) · δc.

We refer to the remaining critical points of Fn as escaping .

Proof of Theorem 1.6: Upper bound. Since Fn → F is stable, the measures∑
c∈critF
escaping

GD(0, c) · δc → σ(F ′).
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Applying Lemmas 5.3 and 5.2 respectively, we get∑
c∈critF
escaping

GD(p, c) · δc → Pp(ζ) dσ(F ′)

and

lim sup
n→∞

∑
c∈critFn∩Un

escaping

GUn(p, c) · δc ≤ |(ϕ−1)′(ζ)|Pp(ζ) dσ(F ′)|(∂U∩∂D)thick .

As Fn,Un → FU converge uniformly on compact subsets of the unit disk, we

have

σ(F ′U ) ≤ lim inf
n→∞

∑
ĉ∈critFn,Un

escaping

GD(0, ĉ) · δĉ

= lim inf
n→∞

∑
ĉ∈critFn,Un

escaping

GD(p, ĉ) · Pp(ζ)−1 · δĉ.

Since one has a correspondence between critical points c ∈ critFn ∩ Un and

ĉ = ϕ−1
n (c) ∈ critFn,Un , the conformal invariance of the Green’s function

shows:

ϕ∗ σ(F ′U ) ≤ lim inf
n→∞

∑
c∈critFn∩Un

escaping

GUn(p, c) · Pp(ζ)−1 · δc

≤ |(ϕ−1)′(ζ)| dσ(F ′)|(∂U∩∂D)thick .

The proof is complete.

7.2 Singular parts

We now investigate the singular part of ϕ′ and prove Theorem 7.1.

Lemma 7.2. If f ∈ N and ϕ is a holomorphic self-mapping of the unit disk,

then f ◦ ϕ ∈ N .

The lemma follows from the description of Nevanlinna class in terms of

quotients of bounded analytic functions.
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Corollary 7.3. Let V be any simply-connected domain compactly contained

in the unit disk. If ψ′ ∈ N , then ϕ′ ∈ N .

Proof. By the chain rule,

F ′U (z) = (ψ−1)′
(
F (ϕ(z))

)
· F ′(ϕ(z)) · ϕ′(z) (7.1)

= ψ′(FU (z))−1 · F ′(ϕ(z)) · ϕ′(z). (7.2)

Since F ′U (z), ψ′(FU (z)) and F ′(ϕ(z)) ∈ N , we must have ϕ′ ∈ N as well.

Lemma 7.4. Suppose f = (Sµ1/Sµ2)O, where the measures µ1 and µ2 are

mutually singular and O is an outer function. The radial limits

lim
r→1

f(rζ) = 0, µ1-a.e. ζ ∈ ∂D,

lim
r→1

f(rζ) =∞, µ2-a.e. ζ ∈ ∂D.

The proof is essentially the same as that of [Mas12, Theorem 1.4].

Lemma 7.5. Suppose U ⊂ D is a simply-connected domain and ϕ : D→ U is

a conformal map.

(a) The singular part of ϕ(z) is trivial.

(b) The singular part of B(ϕ(z)) is trivial for any Blaschke product B.

Proof. (a) In view of Lemma 7.4, the lemma is trivial if 0 /∈ ∂U . When 0 ∈ ∂U ,

Beurling’s estimate for harmonic measure, e.g. see [GM05, Corollary III.9.3],

tells us that

m
(
{θ : |ϕ(reiθ)| < t}

)
< Ct1/2, 1/2 < r < 1,

which implies that the functions θ → log |ϕ(reiθ)| with 1/2 < r < 1 are

uniformly integrable. In particular,∫
|z|=r

log |ϕ(z)|dm→
∫
|z|=1

log |ϕ(z)|dm, as r → 1.

By [Ivr19, Lemma 3.1], we have σ(ϕ) = 0 in this case as well.

(b) WriteB as a product of Möbius transformations and notice that ϕm(z) =

m(ϕ(z)) has no singular part for any m ∈ Aut(D) by part (a).
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Corollary 7.6. The singular part of F ′(ϕ(z)) is given by

σ(F ′ ◦ ϕ) = ϕ∗
[
|(ϕ−1)′(ζ)| · dσ(F ′)|(∂U∩∂D)thick

]
.

Proof. As F ∈ J is an inner function of finite entropy, we may decompose

F ′ = BSO into a Blaschke factor, a singular factor and an outer factor. If

µ = log |F ′|dm− σ(F ′) then

F ′(z) = B(z)S(z)O(z) = B(z) exp

(∫
∂D

ζ + z

ζ − z
dµ(ζ)

)
.

In view of the definition of the composition operator on measures from Section

6, we have

F ′(ϕ(z)) = B(ϕ(z)) exp

(∫
∂D

ζ + z

ζ − z
dµU (ζ)

)
, (7.3)

where µU = Cϕµ. The result follows after taking singular parts and using

Theorem 6.1 and Lemma 7.5.

Lemma 7.7. Suppose h ∈ L1(∂D) and Ph is its Poisson extension to the unit

disk. If F is an inner function, then h ◦ F ∈ L1(∂D) and Ph ◦ F = Ph◦F .

Proof. By composing with Möbius transformations, we may assume that F (0) =

0 so that F preserves Lebesgue measure on the unit circle, i.e. F−1(E) = E

for any measurable set E ⊂ ∂D.

For N > 0, form the truncation

hN (ζ) =


N, h(ζ) ≥ N,

h(ζ), −N ≤ h(ζ) ≤ N,

−N, h(ζ) ≤ −N.

Since bounded harmonic functions are Poisson extensions of their boundary

values, PhN ◦F = PhN◦F . Since hN → h in L1(∂D) as N →∞, it is clear that

PhN → Ph and PhN ◦ F → Ph ◦ F . The invariance of the Lebesgue measure

implies that hN ◦ F → h ◦ F in L1(∂D) and PhN◦F → Ph◦F .

Corollary 7.8. If ψ′ is an outer function, then so is ψ′(FU (z)).
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Proof. Since ψ′ is an outer function, log |ψ′(z)| is the harmonic extension

of its boundary values on the unit circle. By Lemma 7.7, this implies that

log |ψ′(FU (z))| is also the harmonic extension of its boundary values on the

unit circle, i.e. ψ′(FU (z)) is an outer function.

Having computed the necessary singular parts, the proof Theorem 7.1 runs

as follows:

Proof of Theorem 7.1. Taking singular parts in (7.1) and using Corollary 7.8,

we get

σ(F ′U ) = σ(F ′ ◦ ϕ) + σ(ϕ′). (7.4)

From the upper bound in Theorem 1.6, which we have proved in Section 7.1,

we know that 0 ≤ σ(F ′U ) ≤ σ(F ′ ◦ ϕ), which tells us that σ(ϕ′) ≤ 0. Since

σ(F ′ ◦ ϕ) is supported on ϕ−1(∂U ∩ ∂D)thick, so must σ(F ′U ) and σ(ϕ′).

In view of Lemma 7.4, σ(ϕ′) cannot charge ϕ−1(∂U ∩ ∂D)thick as ϕ′ has

a finite non-zero radial limit at any point in this set. Hence, σ(ϕ′) = 0 as

desired.

The above proof shows that when V is a Nevanlinna domain, σ(F ′U ) =

σ(F ′ ◦ ϕ), which was computed in Corollary 7.6. Consequently, Theorem 1.6

holds for Nevanlinna domains.

7.3 Lower bound

In order to establish Theorem 1.6 for general Jordan domains, we approximate

V by smooth Jordan domains from below:

Lemma 7.9. Let V be a Jordan domain compactly contained in the unit disk

and U be a connected component of F−1(V ). There is a sequence of smooth

Jordan domains Vn which increase to V such that the conformal maps ϕn :

D → Un converge to the conformal map ϕ : D → U uniformly on the closed

unit disk.

The following criterion for uniform convergence on the closed unit disk

follows from the discussion in [War50, p. 347].
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Lemma 7.10. Suppose {Ωn}∞n=1 is an increasing sequence of Jordan domains

whose union Ω is also a Jordan domain and p ∈ Ω1 be a basepoint. For each

n = 1, 2, . . . , let ϕn : D → Ωn be the conformal map with ϕn(0) = p and

ϕ′n(0) > 0. Similarly, let ϕ : D → Ω be the conformal map with ϕ(0) = p and

ϕ′(0) > 0. The following statements are equivalent:

1. The conformal maps ϕn converge uniformly on the closed unit disk D.

2. The domains {Ωn} have a common structural modulus of continuity.

3. There exists a sequence of homeomorphisms hn : ∂D → ∂Ωn which con-

verge uniformly to a homeomorphism h : ∂D→ ∂Ω.

4. The curves ∂Ωn converge to ∂Ω in the Hausdorff topology without back-

tracking.

We now explain the terms in the lemma above. A crosscut of a planar

domain Ω is a Jordan arc γ : (0, 1)→ Ω such that limt→0 γ(t) and limt→1 γ(t)

exist and belong to ∂Ω. Assuming that γ does not pass through the basepoint

p, we can define Γ to be the connected component of Ω \ γ which does not

contain p. In other words, Γ is the domain cut off by γ. Let η : [0,∞)→ [0,∞)

be a non-decreasing function with η(0) = 0. We say that Ω has structural

modulus of continuity η if

diam Γ ≤ η(diam γ),

for any crosscut γ of Ω.

We now describe the “no backtracking” condition. As is standard in com-

plex analysis, we orient the boundaries of the domains ∂Ωn, n = 1, 2, . . . and

∂Ω counterclockwise. We say that the curves ∂Ωn converge to ∂Ω with back-

tracking if after passing to a subsequence, there exist two sets of oriented arcs

α1
n, α

2
n : [0, 1] → ∂Ωn which converge in the Hausdorff topology to the same

arc α = [a, b] ⊂ ∂Ω so that

α1
n(0)→ a, α1

n(1)→ b,

α2
n(0)→ b, α2

n(1)→ a.

In other words, the arc α1
n passes by α in one direction, while α2

n passes by α

in the other direction.
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Proof of Lemma 7.9. One particular sequence of domains that works is

Vn = ψ(B(0, 1− 1/n)), n = 1, 2, . . .

Since the conformal maps ψn(z) = ψ((1 − 1/n)z) converge uniformly on the

closed unit disk to ψ(z), Lemma 7.10 tells us that ∂Vn → ∂V without back-

tracking. We claim that ∂Un → ∂U also converges without backtracking.

For the sake of contradiction, suppose that there were sequences of arcs

α1
n, α

2
n ⊂ ∂Un, which were an instance of backtracking for ∂Un → ∂U . Since

∂U ∩ ∂D has zero Lebesgue measure, the Hausdorff limit α = limn→∞ α
1
n =

limn→∞ α
2
n ⊂ ∂U passes through a point z0 ∈ D. As F has at most countably

many critical points, we may assume that z0 /∈ critF . Pick a small ball

B = B(z0, r) ⊂ D on which F is injective. By truncating the arcs α1
n, α

2
n and

dropping finitely many αin with small indices, we may assume that α1
n, α

2
n ⊂

B(z0, r/2) for all n. The image curves F (α1
n), F (α2

n) ⊂ ∂Vn provide an instance

of backtracking for ∂Vn → ∂V , contradicting the choice of the approximating

domains Vn.

Proof of Theorem 1.6: Lower bound. Suppose V is a general Jordan domain

compactly contained in the unit disk. Let V1 ⊂ V2 ⊂ . . . be an increasing

sequence of smooth Jordan domains whose union is V , given by Lemma 7.9.

We choose connected components Un ⊂ F−1(Vn) so that U1 ⊂ U2 ⊂ . . .

increase to U . By the theorem applied to the FUn , we have

(ϕUn)∗ σ(F ′Un) = |(ϕ−1
Un

)′(ζ)| · dσ(F ′)|(∂Un∩∂D)thick . (7.5)

In view of the Schwarz lemma, the measures on the right side of (7.5) increase

with n. Consequently, the component inner functions FUn converge to FU in

the stable topology and we may use Lemma 7.10 to conclude that

(ϕU )∗ σ(F ′U ) = |(ϕ−1
U )′(ζ)| · dσ(F ′)|(∂U∩∂D)thick . (7.6)

The proof is complete.

Remark. The above proof shows that the measure (ϕU )∗ σ(F ′U ) is supported

on the set of points ζ ∈ ∂U∩∂D for which the radial boundary value F (ζ) ∈ V .

(A priori, the radial boundary value could be in V .) In particular, ∂U is thin

at σ(F ′) a.e. boundary point ζ ∈ ∂U ∩ ∂D with F (ζ) ∈ ∂V .
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8 Background on inner functions

In this section, we gather some estimates on inner functions of finite entropy.

Let λD = 2
1−|z|2 be the hyperbolic metric on the unit disk. A holomorphic

self-map F of the unit disk naturally defines the conformal metric

λF = F ∗λD =
2|F ′(z)|

1− |F (z)|2
.

With the above definition, if γ ⊂ D is a rectifiable curve, then the hyperbolic

length of F (γ) is
∫
γ λF .

We begin by recalling [Ivr19, Lemma 2.3] which says that λF is the minimal

conformal pseudometric of curvature −1 that lies above | InnF ′|λD. To state

the lemma in a more pedestrian way, we write BC for the Blaschke product

with zero set C.

Lemma 8.1 (Fundamental lemma). For any inner function F ∈J ,

λF ≥ | InnF ′|λD. (8.1)

Suppose F1, F2 ∈ J are two inner functions with InnF ′1 = BC1Sµ1 and

InnF ′2 = BC2Sµ2. If C1 ⊆ C2 and µ1 ≤ µ2 then

λF1 ≥ λF2 . (8.2)

In Lemmas 8.2–8.5 below, µ will be a measure supported on a Beurling-

Carleson set E. We write Fµ ∈ J for the inner function with InnF ′µ = Sµ,

Fµ(0) = 0 and F ′µ(0) > 0, given by Theorem A. The following coarse estimate

can be found in [Ivr20, Corollary 3.4]:

Lemma 8.2. The inner function Fµ extends analytically past any arc I ⊂ ∂D
which does not meet the support of µ. The derivative of Fµ on the unit circle

is bounded by

|F ′µ(ζ)| ≤ C
(
µ(∂D)

)
· dist(ζ, E)−4, ζ ∈ ∂D, (8.3)

where C(t) is a positive increasing function defined on (0,∞).

The above estimate will suffice to study radial limits of Fµ. For thick limits,

we require a more refined estimate:
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Lemma 8.3. Let ζ ∈ ∂D\E be a point on the unit circle, not contained in E.

Consider the point z = (1− δ)ζ where δ = dist(ζ, E). If δ < 1 and Pµ(z) ≥ 1

then

|F ′µ(ζ)| ≤ C · Pµ(z)

δ
, (8.4)

for some universal constant C > 0.

To show Lemma 8.3, we will use the following lemma:

Lemma 8.4. Let F be a holomorphic self-map of the disk, ζ ∈ ∂D be a point

on the unit circle and 0 < ρ < 1. There exists a universal constant ε0 > 0 so

that the inequality

λF > (1− ε0)λD, on B(ζ, ρ) ∩ D,

implies that F is injective on B(ζ, ρ).

Proof. Step 1. We first show that the assumption implies that at any point

z ∈ B(ζ, ρ)∩D, the 2-jet of F matches the 2-jet of a hyperbolic isometry with

an error of O(ε0).

Composing with Möbius transformations, one may assume that z = 0,

F (0) = 0 and 0 ≤ F ′(0) < 1. With this normalization, the assumption says

that F ′(0) > 1 − ε0. We need to show that |F ′′(0)| = O(ε0). Applying the

Schwarz lemma to F (w)/w shows that the hyperbolic distance

dD
(
F (w)/w, F ′(0)

)
= O(1), for w ∈ B(0, 1/2).

Taking note of the location of F ′(0) ∈ D, this implies that |F (w)−w| = O(ε0)

for w ∈ B(0, 1/2). Cauchy’s integral formula now gives the estimate for the

second derivative.

Step 2. As a result, when ε0 > 0 is sufficiently small, the image of a

hyperbolic geodesic γ contained in B(ζ, ρ) ∩ D will have hyperbolic geodesic

curvature less than 1 (the curvature of a horocycle). Since such a curve cannot

cross itself, F is injective on γ.

Step 3. As B(ζ, ρ) ∩ D is convex in the hyperbolic metric, this shows that

F is injective on B(ζ, ρ) ∩ D. Taking advantage of the fact that F is an inner

function, one may use the aforementioned injectivity together with [Mas12,
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Theorem 2.6] to see that F extends analytically across B(ζ, ρ) ∩ ∂D. By the

Schwarz reflection principle, F extends to a meromorphic function on B(ζ, ρ).

Finally, as F is symmetric with respect to the unit circle, F is injective on the

whole ball B(ζ, ρ).

Remark. Steps 1 and 2 of the above proof are taken from [McM09, Corollary

10.7 and Proposition 10.9].

Proof of Lemma 8.3. Consider the ball

B = B(ζ, ρ), ρ =
c1 · δ
Pµ(z)

, 0 < c1 < 1.

From the assumption, it follows that 0 < ρ < δ, so that B(ζ, ρ) ∩ suppµ = ∅.
In particular, Fµ extends meromorphically to B(ζ, ρ) by Schwarz reflection

and Lemma 8.2. By requesting c1 > 0 to be sufficiently small, we can make

Pµ(z) to be as small as we wish on B(ζ, ρ). Since |Sµ(z)| = exp(−Pµ(z)), we

can choose c1 > 0 so that |Sµ(z)| > 1− ε0 on B(ζ, ρ), where ε0 is the constant

from Lemma 8.4.

The estimate (8.1) and Lemma 8.4 guarantee that Fµ is injective on B(ζ, ρ).

A compactness argument shows that∣∣∣∣F ′µ(z)

F ′µ(ζ)
− 1

∣∣∣∣ < 0.1, z ∈ B(ζ, c2 · ρ),

where 0 < c2 < 1 is a universal constant. If the desired estimate (8.4) were

false, then Fµ((1 − c2ρ)ζ) /∈ D, which would contradict that Fµ is an inner

function.

To estimate the derivative of Fµ in the unit disk, we will use a Jensen-type

formula for Nevanlinna functions, e.g. see [Ivr19, Lemma 3.1]:

Lemma 8.5. For z ∈ D, we have:

log |F ′µ(z)| =
∫
∂D

log |F ′µ(ζ)|dωz(ζ)−
∫
∂D
Pz(ζ)dµ(ζ), (8.5)

where ωz denotes the harmonic measure on the unit circle as viewed from z.
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The normalization Fµ(0) = 0 guarantees that |F ′µ(ζ)| ≥ 1 on the unit circle,

e.g. see [Mas12, Theorem 4.15]. In particular, the first term in (8.5) is positive,

while the second term is negative.

We now give a short glimpse of how the above techniques will be used to

show the abundance of radial and thick limits in Sections 11 and 12. In order

for the estimates of Lemmas 8.2, 8.3 and 8.5 to be effective, the point z ∈ D
must be far away from the support of µ. To obtain estimates near the support

of µ, we use the Fundamental Lemma (Lemma 8.1) to remove the part of the

support of µ which obstructs the vision of z. However, we do not want to

remove too much mass from µ as to retain enough hyperbolic contraction of

Fµ. These conflicting demands make the arguments below somewhat delicate.

9 Background on measures

In this section, we discuss several facts about measures that are supported on

Beurling-Carleson sets.

We begin by introducing some notation. For a point x ∈ ∂D and 0 < ε < π,

we let I(x, ε) = (e−iεx, eiεx) denote the arc of the unit circle centered at x of

length 2ε. We denote the left and right arcs by IL(x, ε) = (e−iεx, x] and

IR(x, ε) = [x, eiεx) respectively. For a measure µ on the unit circle, we write

µ(x, ε) = µ(I(x, ε)). The quantities µL(x, ε) and µR(x, ε) are defined similarly.

9.1 Non-centered maximal function

We consider an analogue of the Hardy-Littlewood maximal function for mea-

sures. For two measures µ, ν on ∂D, the non-centered maximal function is

given by

Hµν(x) = lim inf
x∈I, |I|→0

µ(I)

ν(I)
. (9.1)

Lemma 9.1. Let µ, ν be finite measures on ∂D such that ν is outer regular

and ν(suppµ) = 0. For a.e. x with respect to µ,

Hµν(x) =∞.
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Proof. For N > 0, consider the set

AN :=
{
x ∈ suppµ : Hµν(x) < N

}
.

For every point x ∈ AN , there is a sequence of arcs {Ixn}∞n=1 such that x ∈ Ixn ,

|Ixn | → 0 as n→∞ and µ(Ixn) < Nν(Ixn).

As AN is contained in the support of µ, we have ν(AN ) = 0 by assumption.

Since ν is outer regular, for any ε > 0, there exists an open set Cε ⊃ AN with

ν(Cε) < ε. Let

AN,ε :=
{
Ixn ⊆ Cε : x ∈ AN , n ≥ 1

}
.

Clearly, the arcs in AN,ε cover the set AN . As explained in [Ald92], one can

find a disjoint sub-collection of arcs Γ ⊂ AN,ε such that

µ(∪AN,ε) ≤ 3µ(∪Γ),

where ∪AN,ε and ∪Γ denote the union of arcs in AN,ε and Γ respectively.

Therefore,

µ(AN ) ≤ µ(∪AN,ε) ≤ 3µ(∪Γ) ≤ 3N · ν(∪Γ) ≤ 3Nε.

Taking ε→ 0, we see that µ(AN ) = 0, from which the result follows.

To a Beurling-Carleson set E, we associate the auxiliary measure

νE = log+ 1

d(ζ, E)
dm (9.2)

on the unit circle. The summability condition (1.2) ensures that νE is a finite

outer regular measure. It is not difficult to see that

νE(I) ≥ C|I| log
1

|I|
, I ⊂ ∂D, I ∩ E 6= ∅, (9.3)

where C is a universal constant, independent of E. More precisely, we may

write I \ E =
⋃
Jk as a countable union of complementary arcs. Since each

complementary arc Jk has at least one endpoint in E,

νE(Jk) ≥ C|Jk| log
1

|Jk|
≥ C|Jk| log

1

|I|
.

From here, (9.3) follows after summing over k. Applying Lemma 9.1 with

ν = νE shows the following corollary:
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Corollary 9.2. Let µ be a finite measure supported on Beurling-Carleson set.

For µ a.e. x ∈ ∂D,

lim
ε→0

µR(x, ε)

νR(x, ε)
=∞ and lim

ε→0

µR(x, ε)

ε log 1
ε

=∞.

Similar statements hold for left intervals and centered intervals.

9.2 A rearrangement inequality

Lemma 9.3. Suppose µ, ν are two measures on ∂D and x ∈ ∂D is a point. If

µ(I(x, ε)) ≥ ν(I(x, ε)), 0 < ε ≤ π,

then their Poisson extensions satisfy

Pµ(rx) ≥ Pν(rx),

for any 0 < r < 1.

9.3 Local behaviour

Theorem 9.4. Suppose µ is a singular measure supported on a Beurling-

Carleson set. For µ a.e. x ∈ ∂D, the integral∫ 1

0
µ(x, ε)−1dε (9.4)

is finite.

Proof. Since µ is a singular measure, for µ-a.e. x ∈ ∂D, limε→0
µ(x,ε)
ε =∞. To

prove the lemma, we will show that the double integral∫
E

∫ 1

0
µ(x, ε)−1 dεdµ(x) <∞.

For a point x ∈ ∂D, we write S(x) for the Stolz angle of opening π/2 with

vertex at x and KE for the union of the Stolz angles emanating from points

x ∈ E. It is not difficult to see that

1 +
∑
I

|I| log+ 1

|I|
�
∫
KE

dA(z)

1− |z|
,
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where I ranges over the complementary arcs in ∂D \ E. We subdivide the

above integral over the individual Stolz angles:∫
KE

dA(z)

1− |z|
=

∫
E

∫
S(ζ)

η(z) · dA(z)

1− |z|
dµ(ζ),

where the function η(z) = µ(Iz)
−1 measures how many Stolz angles cover z.

Here, Iz is the arc of the unit circle that consists of points ζ for which z ∈ S(ζ).

From ∫
S(ζ)∩{1−|z|=ε}

η(z) · |dz|
1− |z|

≥ min
z∈S(ζ)∩{1−|z|=ε}

µ(Iz)
−1

≥ µ(ζ, 3ε)−1,

we deduce that ∫
E

∫ 1

0
µ(ζ, 3ε)−1dεdµ(ζ) . 1 +

∑
I

|I| log+ 1

|I|

as desired.

Remark. Curiously enough, the integral (9.4) also appears in the study of

harmonically weighted Dirichlet spaces, see [EEK19, EEL22].

10 Some thick regions

In this section, we prefer to work with domains defined in the upper half-plane

H. For a continuous function f : R→ [0,∞) with f(0) = 0 and f(x) ≤ |x|/4,

we define an approach region Uf ⊂ H by

Uf =
{
x+ iy ∈ H : y > f(x)

}
.

One may then investigate the thickness of Uf at 0 ∈ ∂Uf ∩ ∂H using the

auxiliary regions

Uf+ = H \
⋃
x0∈R

[
x0 − f(x0), x0 + f(x0)

]
×
[
0, 2f(x0)

]
and

Uf− = H \
⋃
x0∈R

[
x0 −

f(x0)

4
, x0 +

f(x0)

4

]
×
[
0,
f(x0)

2

]
.
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While the above regions are slightly different from the ones obtained by tak-

ing logarithms, forming the analogous regions in S and exponentiating back to

H, the difference is not essential as f(x) ≤ |x|/4. The assumption f(x) ≤ |x|/4
does not cost us anything since thickness is a local property, while possessing

an inner tangent at 0 necessitates that limx→0+ f(x)/x = 0.

Theorem 10.1. Suppose µ is a finite measure on the real line R such that∫ 1

0
µ(0, x)−1 dx <∞, (10.1)

where µ(0, r) = µ(B(0, r)). For any c > 0, the symmetric region Uf with

f(±x) = c · x2

µ(0, x)
, x > 0,

is thick at 0.

Proof. Without loss of generality, we may assume that f(x) ≤ |x|/4. Crude

estimates show

f+(x) ≤ max
x0∈[x/2,2x]

2f(x0) ≤ 2c · (2x)2

µ(0, x/2)
, x > 0,

and ∫ 1

0

f+(x)

x2
dx .

∫ 1

0
µ(0, x/2)−1 dx < ∞.

Consequently, the symmetric approach region Uf is thick at 0 by the upper

half-plane analogue of Theorem 2.2.

Corollary 10.2. If µ is a finite measure on the real line R which satisfies

(10.1), then for any η > 0, the region

Ωη = {z ∈ D : Pµ(z) > η}

is thick at 0. (If Ωη is disconnected, then we take the connected component

which has an inner tangent at 0.)

To see the corollary, notice that Ωη contains the symmetric region Uf from

Theorem 10.1 for some c = c(η) > 0.
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11 Abundance of radial limits

Given a point x ∈ ∂D, the diameter that passes through x divides ∂D into

a left arc IL and a right arc IR. Even though IL and IR depend on x, we

will suppress x from the notation. For a measure µ, we set µL = µ|IL and

µR = µ|IR . We view IL and IR as closed arcs, so that µ({x}) and µ({−x})
appear in both µL and µR.

Lemma 11.1. Suppose µ is a singular measure supported on a Beurling-

Carleson set E and Fµ ∈ J is an inner function of finite entropy such that

InnF ′µ = Sµ. For a.e. x ∈ ∂D with respect to µ and any real number N ≥ 1,

λF
µL

(
(1− ε)x

)
. εN , λF

µR

(
(1− ε)x

)
. εN , (11.1)

for all 0 < ε < ε0(x,N) sufficiently small.

Proof of Lemma 11.1. Step 0. For brevity, we write z = (1 − ε)x. Without

loss of generality, we work with the measure µL to the left of x. Form the

auxiliary measure

νL = log+ 1

d(ζ, E ∩ IL)
dm.

As the measures µL, νL satisfy the conditions of Corollary 9.2, for µ a.e. x ∈ ∂D
and any real constants C1, C2 > 0 (to be chosen), there exists an ε0 > 0 so

that
µL(x, ε)

νL(x, ε)
> C1 and

µL(x, ε)

ε log 1
ε

> C2,

for all 0 < ε < ε0.

Step 1. By Lemma 8.5 and the estimate (8.3), we have

log |F ′µL(z)| =
∫
∂D

log |F ′µL(ζ)|dωz(ζ)−
∫
∂D
Pz(ζ)dµL(ζ)

≤ C + 4

∫
∂D

log+ 1

d(ζ, E ∩ IL)
dωz(ζ)−

∫
∂D
Pz(ζ)dµL(ζ)

= C + 4

∫
∂D
Pz(ζ)dνL(ζ)−

∫
∂D
Pz(ζ)dµL(ζ)

≤ C +

∫
IL
Pz(ζ)(4dνL(ζ)− dµL(ζ)) + 4

∫
IR
Pz(ζ)dνL(ζ).
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Since z belongs to the line segment [0, x],

log |F ′µL(z)| ≤ C +

∫
IL
Pz(ζ)(8 dνL(ζ)− dµL(ζ)).

If C1 > 16, then Lemma 9.3 tells us that

log |F ′µL(z)| ≤ C ′ − 1

2

∫
IL(x,ε)

Pz(ζ)dµL(ζ). (11.2)

Step 2. From (11.2), it is readily seen that if the constant C2 > 0 from

Step 0 is sufficiently large, then

log |F ′µL(z)| ≤ −(N + 1) · log
1

ε
=⇒ |F ′µL(z)| ≤ εN+1.

By the Schwarz lemma,

λF
µR

(z) =
2|F ′

µL
(z)|

1− |FµL(z)|2
≤

2|F ′
µL

(z)|
1− |z|2

. εN

as desired.

Proof of Theorem 1.1: Radial limits. Let F ∈J be an inner function of finite

entropy. Suppose that InnF ′ = BSµ. We need to show that for a.e. x with

respect to µ, the radial limit limr→1 F (rx) exists and lies inside the unit disk.

By Theorem A, we may write

µ =
∞∑
i=1

µi,

where each measure µi is supported on a Beurling-Carleson set. In view of

Lemmas 8.1 and 11.1, for a.e. x with respect to µi, we have

λF (rx) ≤ λF
µL
i

(rx) ≤ C(x)(1− r), as r → 0.

The last statement implies that the hyperbolic length of F ([0, x]) is finite. In

particular, the radial limit F (x) := limr→1 F (rx) exists and is contained in D.

The proof is complete.

Remark. The above argument can be easily adapted to show the abundance

of non-tangential limits.
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12 Abundance of thick limits

Without loss of generality, we may investigate the behaviour of Fµ ∈ J to

the right of x ∈ ∂D, as the behaviour of Fµ to the left of x can be examined

in an analogous manner.

For a point x ∈ ∂D and ε > 0, we write xε = eiεx and zε,h = eiε(1 − h)x.

For a singular measure µ, we set µε = µ|IL∪IR(x,ε) and hε = ε/Pµε(z3ε,ε). By

Lemma 8.3 and Harnack’s inequality, we have:

Lemma 12.1. Suppose µ is a singular measure supported on a Beurling-

Carleson set E. For a.e. x ∈ ∂D with respect to µ,

|F ′µε(ζ)| . Pµε(z3ε,ε)

ε
=

1

hε
, ζ ∈ I(x3ε, ε), (12.1)

for any 0 < ε < ε0(x) sufficiently small.

An argument involving Lemmas 8.5 and 9.3 shows:

Corollary 12.2. Suppose µ is a singular measure supported on a Beurling-

Carleson set E. For a.e. x ∈ ∂D with respect to µ there exists ε0 > 0 such

that

|F ′µε(z3ε,h)| ≤ K

hε
· e−

h
8hε ,

for any 0 < Chε < h < ε < ε0. In particular,∫ ε

C·hε
|F ′µε(z3ε,h)| dh ≤ 8K · e−

C
8 . (12.2)

We follow the same strategy as in the proof of Lemma 11.1. In the proof

below, we will frequently re-use the constants C,C ′,K > 0.

Proof. Step 0. Form the auxiliary measures

νL = log+ 1

d(ζ, E ∩ IL)
dm, νR = log+ 1

d(ζ, E ∩ IR)
dm

and

νε = log+ 1

d
(
ζ, E ∩ (IL ∪ IR(x, ε))

) dm.
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As the pairs of measures (µL, νL) and (µR, νR) satisfy the conditions of Corol-

lary 9.2, for µ a.e. x ∈ ∂D and any real constants C1, C2 > 0 (to be chosen),

there exists an ε0 > 0 so that

µL(x, ε)

νL(x, ε)
> C1,

µR(x, ε)

νR(x, ε)
> C1,

µL(x, ε)

ε log 1
ε

> C2,
µR(x, ε)

ε log 1
ε

> C2,

for all 0 < ε < ε0.

Step 1. By Lemma 8.5, we have

log |F ′µε(z3ε,h)| =
∫
∂D

log |F ′µε(ζ)|dωz3ε,h(ζ)−
∫
IL∪IR(x,ε)

Pz3ε,h(ζ)dµε(ζ).

(12.3)

We split the first integral in the above equation over four arcs:

• I1 = IL ∪ IR(x, ε),

• I2 = (xε, x2ε),

• I3 = (x2ε, x4ε),

• I4 = IR \ (x, x4ε).

Since the second integral in (12.3) is supported only on I1, we leave it as it is.

Step 2. By Lemma 8.2, the contribution of the arc I1 to the right side of

(12.3) is bounded above by

C +

∫
IL∪IR(x,ε)

Pz3ε,h(ζ)(4dνε(ζ)− dµε(ζ)).

We claim that this expression is

≤ C ′ − 1

2

∫
IL∪IR(x,ε)

Pz3ε,h(ζ)dµε(ζ) = C ′ − 1

2
· Pµε(z3ε,h),

provided that 0 < ε < ε0 is sufficiently small.

The bound on IL follows from Lemma 9.3 if C1 > 8. To see the corre-

sponding bound on IR(x, ε), one only needs to take C1 sufficiently large and

use the fact that the Poisson kernel is pinched:

1/K ≤
Pz3ε,h(ζ1)

Pz3ε,h(ζ2)
≤ K, ζ1, ζ2 ∈ IR(x, ε).
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Step 3. We also use the coarse bound from Lemma 8.2 to estimate the

integrals over the arcs I2 and I4:∫
I2∪I4

log |F ′µε(ζ)|dωz3ε,h(ζ) ≤ C + 4

∫
I2∪I4

log+ 1

d(ζ, xε)
Pz3ε,h(ζ)dm(ζ)

≤ C +
Kh

ε
log

1

ε
,

while we estimate the integral over I3 using the refined estimate from Lemma

12.1: ∫
I3

log |F ′µε(ζ)|dωz3ε,h(ζ) ≤ log
K

hε
= C + log

1

hε
.

Step 4. Putting the estimates from Steps 2 and Steps 3 together, we arrive

at

log |F ′µε(z3ε,h)| ≤ C + log
1

hε
+
Kh

ε
log

1

ε
− 1

2
· Pµε(z3ε,h). (12.4)

To clean up the right hand side of the above equation, we choose the constant

C2 from Step 0 sufficiently large so that

µR(x, ε)

ε log 1
ε

> C2 > 40K,

in which case,

1

4
· Pµε(z3ε,h) ≥ 1

4
· µ

R(x, ε)h

10 ε2
≥ Kh

ε
log

1

ε
.

Since
h

8hε
=

h

8ε
· Pµε(z3ε,ε) ≤

1

4
· Pµε(z3ε,h),

(12.4) simplifies to

log |F ′µε(z3ε,h)| ≤ C + log
1

hε
− h

8hε
.

The corollary follows after exponentiating both sides.

With the above estimate at our disposal, we can prove Theorem 1.2:
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Proof of Theorem 1.2. Suppose F ∈ J is an inner function of finite entropy

with InnF ′ = BSµ. By Theorem A, we may write

µ =
∞∑
i=1

µi,

where each measure µi is supported on a Beurling-Carleson set. Fix an integer

i ≥ 1. We want to show that for a.e. x with respect to µi, F has a thick limit

at x. By the elementary bound

hε =
ε

Pµε(z3ε,ε)
.

ε2

µ(I(x, ε))

and Theorems 9.4 and 10.1, for any C > 0,{
z3ε,h : 0 < ε ≤ ε0, Chε ≤ h ≤ ε

}
describes the right part of a thick approach region, minus a Stolz angle, at µi

a.e. x. By the remark at the end of Section 11, we may assume that F has

a non-tangential limit at x ∈ ∂D which lies in the open unit disk. In order

to estimate |F (z3ε,h) − F (x)| from above, we connect z3ε,h and x by a union

of two line segments: [z3ε,h, z3ε,ε] ∪ [z3ε,ε, x] and give an upper bound for the

hyperbolic length of Fµ
(
[z3ε,h, z3ε,ε] ∪ [z3ε,ε, x]

)
.

Fix a positive real number η > 0. We claim that for µi a.e. x, we can

choose the parameter C = C(x, η) so that for any sufficiently small ε > 0, the

hyperbolic length of

Fµi,ε
(
[z3ε,Chε , z3ε,ε] ∪ [z3ε,ε, x]

)
is less than η. From Lemma 8.1, we know that λF ≤ λFµi,ε for any i ≥ 1 and

ε > 0. Thus a fortiori, the hyperbolic length of F
(
[z3ε,h, z3ε,ε] ∪ [z3ε,ε, x]

)
is

also less than η. Therefore, once we prove the claim, we obtain the abundance

of right parts of thick approach regions. An analogous argument will then

show the abundance of left parts of thick approach regions, thereby proving

the theorem.

It remains to prove the claim. The hyperbolic length of Fµi,ε([z3ε,ε, x]) can

be estimated analogously to the radial approach, and so is less than η/2 when

ε > 0 is small. Since µi,ε ≥ µLi = µi|IL for any ε > 0, the radial limit Fµi,ε(x)
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lies in a compact subset of the unit disk. A brief inspection of (12.2) shows that

by selecting the constant C = C(x, η) to be large, we can make the Euclidean

length of Fµi,ε([z3ε,Chε , z3ε,ε]) to be as small as we wish. Consequently, we

can choose C > 0 sufficiently large to ensure that the hyperbolic length of

Fµi,ε([z3ε,Chε , z3ε,ε]) is also less than η/2. The proof is complete.

13 Continuity of critical values

In this section, we show that the singular value measures

νF =
∑

c∈critF

(1− |c|) · δF (c) + F∗(σ(F ′))︸ ︷︷ ︸
νF

vary continuously in F ∈ J , thereby completing the proof of Theorem 1.1.

More precisely, we show that if a sequence of inner functions Fn ∈J converges

stably to F ∈J , then the measures νFn → νF converge weakly. It is enough

to consider the case when the Fn are finite Blaschke products as the general

case follows after a diagonal argument.

Let V ⊂ D be a round disk compactly contained in D and U be the set

of connected components of F−1(V ). For each Uk ∈ U , choose a basepoint

pk ∈ Uk. Let ϕk : D → Uk be the conformal map with ϕk(pk) = pk and

ϕ′k(pk) > 0.

After passing to a subsequence, for each Uk ∈ U , we can find connected com-

ponents Un,k of F−1
n (V ) such that (Un,k, pk)→ (Uk, pk) in Carathéodory sense.

If we normalize the conformal maps ϕn,Un,k : D→ Un,k so that ϕn,Un,k(pk) = pk

and ϕ′n,Un,k(pk) > 0, then Fn,Un,k → FUk converge uniformly on compact sub-

sets of D. Due to the discrepancy between Carathéodory and Hausdorff limits,

the same connected component Un,k may appear in more than one sequence.

Proof of Theorem Theorem 1.1: Continuity. As a point on the unit circle can

be thick for at most one domain Uk ∈ U , the measures σ(F ′)|(∂Uk∩∂D)thick are

supported on disjoint sets. Given an ε > 0, choose finitely many disjoint closed

subsets

Ek ⊂ (∂Uk ∩ ∂D)thick, k = 1, 2, . . . , N,

such that
∥∥∑∞

k=1 σ(F ′)|(∂Uk∩∂D)thick −
∑N

k=1 σ(F ′)|Ek
∥∥
M < ε.
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Since Fn,Un,k → FUk converges uniformly on compact sets, we have

lim inf
n→∞

∑
ĉ∈critFn,Un,k

escaping

GD(0, ĉ) · δĉ ≥ σ(F ′Uk),

in the sense of measures. An application of Lemma 5.3 gives

lim inf
n→∞

∑
ĉ∈critFn,Un,k

escaping

GD(pk, ĉ) · δĉ ≥ Ppk(ζ) · dσ(F ′Uk).

Using the conformal invariance of the Green’s function and Theorem 1.6, we

get

lim inf
n→∞

∑
c∈critFn∩Un,k
escaping toEk

GUn,k(pk, c) · δc ≥ |(ϕ−1
k )′(ζ)| · Ppk(ζ) · dσ(F ′)|Ek .

Applying Lemmas 5.2 and 5.3 respectively shows

lim inf
n→∞

∑
c∈critFn∩Un,k
escaping toEk

GD(pk, c) · δc ≥ Ppk(ζ) · dσ(F ′)|Ek

and

lim inf
n→∞

∑
c∈critFn∩Un,k
escaping toEk

GD(0, c) · δc ≥ σ(F ′)|Ek . (13.1)

In the above computation, we have used that |(ϕ−1
k )′(ζ)| > 0 on Ek to avoid

dividing by 0. Summing (13.1) over the connected components of F−1
n (V ), we

obtain

lim inf
n→∞

∑
c∈ critFn ∩F−1

n (V )
escaping

GD(0, c) ≥
N∑
k=1

σ(F ′)(Ek)

≥
∞∑
k=1

σ(F ′)
(
(∂Uk ∩ ∂D)thick

)
− ε

≥ νF (V )− ε,

where in the last step, we have crucially used Theorem 1.2. As ε > 0 was

arbitrary, we see that

lim inf
n→∞

∑
c∈ critFn ∩F−1

n (V )
escaping

GD(0, c) ≥ νF (V ). (13.2)
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Since (13.2) holds for any round disk V compactly contained in D, any sub-

sequential limit of the measures νFn is at least νF . However, as the sequence

Fn → F is stable, νFn(D)→ νF (D), which implies that νFn → νF weakly. The

proof is complete.

A Compactness

It is well known that the closure of the finite Blaschke products in the topology

of uniform convergence on compact subsets is the unit ball in H∞, e.g. see

[MR18]. If we only use finite Blaschke products that vanish at the origin, then

the closure consists of functions in the H∞ unit ball that vanish at the origin.

The following lemma says that if the entropy is bounded above, then the

limit is necessarily an inner function:

Lemma A.1. Suppose that Fn ∈J is a sequence of inner functions of finite

entropy with Fn(0) = 0, converging uniformly on compact subsets of the unit

disk to F . If

sup

∫
|z|=1

log |F ′n(z)|dm <∞, (A.1)

then the limit function F ∈J .

Proof. According to the fundamental lemma [Ivr19, Lemma 2.3],

λFn ≥ | InnF ′n|λD,

where λFn = 2|F ′n|
1−|Fn|2 and λD = 2

1−|z|2 . Taking n → ∞ and passing to a

subsequence if necessary, we get

λF ≥ |H|λD,

where H = limn→∞ InnF ′n is a bounded holomorphic function. In view of

Jensen’s formula, the assumption (A.1) holds if and only if

supµFn(D) <∞,

which rules out the possibility that H is identically zero. The lemma now

follows from [Ivr19, Lemma 3.6].
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B Basic properties of components

Let F : D → D be an inner function, V ⊂ D be a Jordan domain compactly

contained in the disk and U ⊂ F−1(V ) be a connected component of the pre-

image. In this appendix, we show Lemmas 1.3 and 1.4 from the introduction.

We begin by studying the topological properties of U .

Lemma B.1. The domains U and C \ U have the same boundary.

Proof. The inclusion ∂(C \ U) ⊆ ∂U is true for any open set U as

∂(C \ U) = (C \ U) \ (C \ U) = (C \ U) ∩ U ⊂ U.

We therefore need to show the other inclusion ∂U ⊆ ∂(C \ U). It is clear that

if z ∈ ∂U ∩ ∂D, then z ∈ ∂(C \U). Suppose instead that z ∈ ∂U ∩D. Since F

is an open mapping, F (z) ∈ ∂V and the image of any ball B(z, ε) intersects

D \ V , which also implies that z ∈ ∂(C \ U).

Lemma B.2. Let f : D→ C be a non-constant bounded analytic function and

K be a compact subset of the plane with connected complement. Suppose that

outside a measure zero subset E ⊂ ∂D, the radial boundary values

f(ζ) := lim
r→1

f(rζ)

are contained in K. Then, f(D) ⊂ IntK.

Proof. Let b ∈ C \ K. By Runge’s theorem, there is a polynomial p with

p(K) ⊂ D and |p(b)| > 1. Since p ◦ f is a bounded analytic function on the

unit disk whose radial boundary values are at most 1 a.e., ‖p◦f‖H∞ ≤ 1. This

prevents b from being in the image of f . In other words, f(D) ⊂ K. As f is

an open mapping, f(D) ⊂ IntK.

Corollary B.3. Suppose W ⊂ D is a simply connected domain whose bound-

ary intersects ∂D in a set of measure 0. If F (∂W ∩D) ⊂ ∂V , then F (W ) ⊂ V .

Proof. Let R : D → W be a conformal map. Since W ⊂ D, by Loewner’s

lemma, R−1(∂W ∩ ∂D) ⊂ ∂D has measure zero. (One can see this by using

the interpretation of harmonic measure as the hitting distribution of Brownian

motion.) The corollary follows after applying Lemma B.2 with f = F ◦R.
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We now recall some well-known facts from topology:

1. If E ⊂ Ĉ is a closed connected subset of the sphere, then every connected

component of Ĉ \ E is simply-connected. See [Ahl79, p. 139].

2. Suppose now that E ⊂ C is a compact set with connected interior. A

bounded connected component of C \ E is called a hole of E. If E has

no holes, IntE is simply-connected and ∂(IntE) is connected.

Lemma B.4. The domains U and Ĉ \ U are simply-connected, while ∂U is

connected.

Proof. By Corollary B.3, U has no holes, so that Ĉ \ U consists only of the

unbounded connected component, which is simply connected. Furthermore,

by Lemma B.1, U = IntU . By the second fact above, U is simply connected

and ∂U is connected.

Lemma B.5. The boundary of U is locally connected.

Before giving the proof, recall that a topological space X is locally con-

nected if every point x ∈ X admits a neighbourhood basis consisting of open,

connected sets. A topological space X is weakly locally connected if for every

point x ∈ X and open set U containing x, one can find a connected set A ⊂ U
which contains a neighbourhood V of ζ. As weak local connectivity is equiva-

lent to local connectivity by [Mun00, p. 162], it is enough to show that ∂U is

weakly locally connected.

Proof of Lemma B.5. It is not difficult to check the weak local connectivity of

∂U near a point z ∈ ∂U ∩ D. Indeed, if z ∈ ∂U ∩ D is not a critical point,

then F is a homeomorphism in a neighbourhood of z. On the other hand, if

z ∈ ∂U ∩ D is a critical point of order m ≥ 1, then by Lemma B.3, only one

of the m wedges of angle 2π
m around z may be present in U , on which F acts

homeomorphically.

It remains to verify the weak local connectivity of ∂U at a point ζ ∈
∂U ∩ ∂D. Pick 0 < r0 = r0(ζ) < 1/3 so that ∂U is not entirely contained

in B(ζ, r0). Consider the circular arcs Cr = ∂B(ζ, r) ∩ D centered at ζ, with

0 < r < r0. As Cr approaches the unit circle non-tangentially and F is an
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inner function, for a.e. 0 < r < r0, the intersection of Cr and ∂U is compactly

contained in the unit disk.

Consider two such radii r1, r2 for which the intersections of Cr and ∂U do

not go off the unit circle. By the local connectivity of ∂U inside the unit disk,

∂U can cross finitely many times from Cr1 to Cr2 . By a crossing , we mean

a connected subset of ∂U which lies between Cr1 and Cr2 and intersects both

arcs. Indeed, if there were infinitely such crossings, then a Hausdorff limit

would contradict the local connectivity of ∂U inside the unit disk.

Given an 0 < r < r0, take two good radii 0 < r1 < r2 < r as above.

Since ∂U is connected, every connected component of ∂U ∩ B(ζ, r2) must

contain a crossing from Cr1 to Cr2 . We may therefore enumerate the connected

components of ∂U ∩ B(ζ, r2) as A1, A2, . . . , An, with A1 being the connected

component which contains which contains ζ. Since A2, A3, . . . , An are closed

sets and don’t contain ζ, they are located at definite distance from ζ. Hence,

A1 contains an open neighborhood of ζ in ∂U . In other words, ∂U is weakly

locally connected at ζ.

To check that ∂U is a Jordan domain, we use the following criterion from

[FI74, Theorem 1] which may be viewed as a converse to the Jordan curve

theorem:

Lemma B.6. Let C be a compact set in the plane. If the complement of C

has two components, and every point of C is an accessible boundary point of

both components, then C is a Jordan curve.

In the lemma above, a boundary point p ∈ ∂Ω is said to be accessible from

Ω if Ω ∪ {p} is path-connected.

Proof of Lemma 1.3. In Lemmas B.1, B.4 and B.5, we have seen that U and

Ĉ \ U are simply connected domains with ∂U = ∂(Ĉ \ U) locally connected.

By a theorem of Carathéodory, every point of ∂U = ∂(Ĉ\U) is accessible from

both U and Ĉ \ U . Since C = (C \ U) ∪ ∂U ∪ U , Lemma B.6 tells us that ∂U

is a Jordan curve.

Having examined the topological properties of U , we turn to studying the

component function FU .
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Proof of Lemma 1.4. We claim that for a.e. ζ ∈ ∂D, the radial boundary value

ϕ(ζ) := limr→1 ϕ(rζ) exists and belongs to the open unit disk. Once we prove

the claim, we are done since at such a point ζ,

lim
r→1

(ψ−1 ◦ F ◦ ϕ)(rζ)

exists and has absolute value 1.

Let E ⊂ ∂D be the set of points ζ on the unit circle at which ϕ and F ◦ ϕ
have radial limits with ϕ(ζ) ∈ ∂D. The above claim reduces to showing that

E has measure zero.

If ζ ∈ E, then F has a limit along the path ϕ([0, ζ)). In other words, F

has an asymptotic value at ϕ(ζ). As F is a bounded analytic function, this

asymptotic value (which lies in V ) must be the same as its radial boundary

value [CL66, Theorem 2.2]. Since V is compactly contained in the unit disk

and F is an inner function, ϕ(ζ) is confined to a measure zero subset of ∂D.

In other words, ϕ(E) has measure zero. Loewner’s lemma implies that E itself

has measure zero.
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