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Finite Blaschke products

A finite Blaschke product can be described as a holomorphic map

from D→ D, which extends to a continuous dynamical system on

the unit circle.

F (z) = e iα
d∏

i=1

z − ai
1− aiz

, ai ∈ D.

Let m = dθ/2π be the Lebesgue measure on the unit circle. If

F (0) = 0, then m is F -invariant, i.e.

m(E ) = m
(
F−1(E )

)
, E ⊂ S1.



Entropy of finite Blaschke products

Assume F ′(0) 6= 0 for simplicity.

The measure-theoretic entropy of m can be computed by Jensen’s

formula: ∫
|z|=1

log |F ′(z)|dm =
∑
crit

log
1

|ci |
+ log |F ′(0)|

=
∑
crit

log
1

|ci |
−
∑
zeros

log
1

|ai |
,

where in the sum over the zeros of F , we omit the trivial zero at

the origin.



Entropy of inner functions

An inner function is a holomorphic map from D→ D such that for

almost every θ ∈ [0, 2π), the radial limit

lim
r→1

F (re iθ)

exists and is unimodular (has absolute value 1).

Let P ⊂ D \ {0} be a finite set. Consider the universal covering

map UP : D→ D \ P, normalized so that UP(0) = 0 and

U ′P(0) > 0.

Question. What is its entropy?
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Can’t we just apply Jensen’s formula?

If we could apply Jensen’s formula on the unit circle, the entropy∫
|z|=1

log |U ′P(z)|dm = −
∑
zeros

log
1

|zi |

would be negative.
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BS decomposition

An inner function can be represented as a (possibly infinite)

Blaschke product × singular inner function:

B(z) = e iα
∏
i

− ai
|ai |
· z − ai

1− aiz
, ai ∈ D,

∑
i

(1− |ai |) <∞.

S(z) = exp

(
−
∫
|ζ|=1

ζ + z

ζ − z
dσζ

)
, σ ⊥ m, σ ≥ 0.

Here, B records the zero set, while S records the boundary zero

structure.



Nevanlinna and Smirnov classes

The Nevanlinna class N consists of all holomorphic functions

f : D→ C which satisfy

lim
r→1

∫
|z|=r

log+ |f (z)|dm <∞.

One has the following factorizations

N = B(S1/S2)O, N+ = BSO,

where the outer function has the form

O(z) = exp

(∫
|ζ|=1

ζ + z

ζ − z
h(ζ)dmζ

)
.



Inner functions of finite entropy

Theorem. (M. Craizer, 1991) Let F be an inner function with

F (0) = 0. Then, F ′ ∈ N if and only if the Lebesgue measure m

has finite entropy.

We use the symbol J to denote the collection of inner functions

of finite entropy.

In 1974, P. Ahern and D. Clark showed that F ′ admits a BSO

decomposition, allowing us to define InnF ′ := BS , where B records

the critical set of F and S records the boundary critical structure.
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Can’t we just apply Jensen’s formula? (Part II)

If f ∈ N is in Nevanlinna class, it may happen that∫
|z|=1

log |f (z)|dm 6= lim
r→1

∫
|z|=r

log |f (z)|dm.

In fact, the difference∫
|z|=1

log |f (z)|dm − lim
r→1

{∫
|z|=r

log |f (z)|dm
}

is just σ(f )(S1).



Frostman Shifts

Let F be an inner function. The Frostman shift at x ∈ D is defined

as

Fx(z) := (mx ◦ F )(z) =
F (z)− x

1− xF (z)
.

Lemma. If F ∈J , then

InnF ′x = InnF ′, x ∈ D.

Theorem. σ(F ′) ≥
∑

x∈D σ(Fx).

Proof. For any x ∈ D, S(Fx)
∣∣ InnF ′x , but the singular measures

σ(Fx) are supported on different sets.
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My favourite formula as a graduate student

Lemma. Let F be a finite Blaschke product with F (0) = 0. For

any x ∈ D \ {0},

log
1

|x |
=

∑
F (y)=x

log
1

|y |
.

More generally, if F is an inner function, then

log
1

|x |
=

∑
F (y)=x

log
1

|y |
+ σ(Fx)(S1).



Entropy of universal covering maps

Theorem. (Pommerenke, 1976 & I, 2018)∫
|z|=1

log |U ′P(z)|dm =
∑

punctures

log
1

|pi |
−
∑
zeros

log
1

|zi |
.

Intuitively, P is the set of critical values of UP .

To make this intuition rigorous, one approximates UP by finite

Blaschke products Fn with critical values ⊆ P.

[ For simplicity, I will write F = UP . ]



Upper bound

Since the entropy can only decrease after taking limits, we have

∫
|z|=1

log |F ′(z)|dm ≤ lim inf
n→∞

∫
|z|=1

log |F ′n(z)|dm,

= lim inf
n→∞

{
log |F ′n(0)|+

∑
crit(Fn)

log
1

|ci |

}
,

≤ log |F ′(0)|+
k∑

i=1

log
1

|pi |
.



Lower bound

The other direction is automatic:

∫
|z|=1

log |F ′(z)|dm = lim
r→1

∫
|z|=r

log |F ′(z)|dm + σ(F ′)(S1),

≥ log |F ′(0)|+
k∑

i=1

σ(Fpi )(S1),

= log |F ′(0)|+
k∑

i=1

log
1

|pi |
.



Construction of UP : D→ D \ {p1, p2, . . . , pk}.

Define a tile or sheet to be the shape

D \ ∪ki=1γi ,

where γi are disjoint real-analytic arcs that join pi to the unit circle.

An ∞-stack over γi is a countable collection of tiles {Tj}j∈Z,

where the lower side of γi in Tj is identified with the upper side of

γi in Tj+1.

Similarly, by an n-stack, we mean a set of n tiles with the above

identifications made modulo n.



Construction of UP : D→ D \ {p1, p2, . . . , pk}.

0. Start with the base tile Te
∼= D \ ∪ki=1γi .

1. At each slit γi ⊂ Te , we glue an ∞-stack.

2. To each of the k − 1 unglued slits in each tile of generation 1,

we glue a further ∞-stacks.

∞. Repeating this construction infinitely many times gives a

Riemann surface S with a natural projection to D.

Since S is simply-connected, S ∼= D. Since all slits get glued up,

we get an inner function. It is easy to see that it is precisely UP .

For the finite approximations, glue in n-stacks and stop at

generation n.



Dyakonov’s question

Question. To what extent is an inner function in J determined by

its critical structure? What are the possible critical structures of

inner functions?

Theorem. (I, 2017) An inner function in J is uniquely determined

by its critical structure up to post-composition with a Möbius

transformation.

An inner function BSσ can be represented as InnF ′ for some

F ∈J if and only if σ is sufficiently concentrated (lives on a

countable union of Beurling-Carleson sets).
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Stable topology on inner functions

Definition. A Beurling-Carleson set E is a closed subset of the unit

circle which has measure 0 such that
∑
|Ij | · log 1

|Ij | <∞, where

{Ij} are the complementary intervals.

We say that Fn → F converges in the stable topology if

I The convergence is uniform on compact subsets of the disk,

I InnF ′n → InnF ′ ⇐⇒ OutF ′n → OutF ′.

Theorem. (I, 2018) This happens if and only if the critical

structures of the Fn are uniformly concentrated in

Beurling-Carleson sense.
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Thank you for your attention!


