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Abstract

Let J be the set of inner functions whose derivative lies in the Nevanlinna

class. We show that up to a post-composition with a Möbius transformation,

an inner function F ∈ J is uniquely determined by the inner part of its

derivative. We also characterize inner functions which can be represented as

InnF ′ for some F ∈ J in terms of the associated singular measure, namely,

it must live on a countable union of Beurling-Carleson sets. This answers a

question raised by K. Dyakonov.

1 Introduction

Let D = {z ∈ C : |z| < 1} be the unit disk and S1 = {z ∈ C : |z| = 1} be the

unit circle. It is possible to define a finite Blaschke product as a proper holomorphic

self-map of the unit disk. It is well known that a finite Blaschke product F (z) is

uniquely determined by its zero set up to a rotation:

F (z) = eiψ
d∏
i=1

z − ai
1− aiz

, a1, a2, . . . , ad ∈ D.

The number d ≥ 1 is called the degree of F . Topological considerations show that

F has d − 1 critical points (that is, zeros of F ′) lying in the unit disk. It is a

1



classical result of M. Heins [11, Section 29] that a finite Blaschke product is uniquely

determined by the set of its critical points up to post-composition with a Möbius

transformation m ∈ Aut(D), and furthermore, any set of d − 1 points in the unit

disk arises as the critical set of some Blaschke product of degree d.

We can give an alternative interpretation of Heins’ result in terms of the following

curious differentiation procedure: to a Blaschke product F of degree d ≥ 2, we assign

a Blaschke product B of degree d−1 whose zeros are located at the critical points of

F lying in the unit disk. Heins’ theorem says that this correspondence is a bijection

(between Blaschke products of degree d and Blaschke products of d − 1), provided

one considers F modulo post-composition with Möbius transformations (as not to

change its critical set) and B up to rotations (which preserve the zero set).

In this paper, we discuss an analogue of the above differentiation procedure in

infinite degree considered by K. Dyakonov [8, 9]. We need some definitions. An

inner function is a holomorphic self-map F of the unit disk such that for almost

every θ ∈ [0, 2π), the radial limit limr→1 F (reiθ) exists and has absolute value 1.

Let Inn denote the space of all inner functions. Consider the subspace J of inner

functions whose derivative lies in the Nevanlinna class N , i.e. which satisfy

lim
r→1

1

2π

∫ 2π

0

log+ |F ′(reiθ)|dθ <∞. (1.1)

According to the work of Ahern and Clark [1], F ′ admits an “inner-outer” decompo-

sition F ′ = InnF ′ ·OutF ′, see Lemma 3.2 below. Intuitively, InnF ′ = BS describes

the “critical structure” of the map F – the Blaschke factor records the locations of

the critical points of F in the unit disk, while the singular inner factor describes the

“boundary critical structure.”

The mapping F → InnF ′ from J /Aut(D) to Inn /S1 clearly generalizes the

construction outlined for finite Blaschke products above. The presence of the singular

factor allows us to distinguish different inner functions with the same critical set, for

instance, it differentiates the universal covering map z → exp
(
z+1
z−1

)
of the punctured

disk D \ {0} from the identity mapping.

We show that up to post-composition with a Möbius transformation, an inner

function in J is uniquely determined by its critical structure and describe all possible

critical structures of inner functions:
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Theorem 1.1. Let J be the set of inner functions whose derivative lies in the

Nevanlinna class. The natural map

F → Inn(F ′) : J /Aut(D)→ Inn / S1

is injective. The image consists of all inner functions of the form BSµ where B is

a Blaschke product and Sµ is the singular factor associated to a measure µ whose

support is contained in a countable union of Beurling-Carleson sets.

Here, a Beurling-Carleson set is a closed subset of the unit circle of zero Lebesgue

measure whose complement is a union of arcs
⋃
k Ik with

∑
|Ik| log 1

|Ik|
<∞.

In [8], Dyakonov showed that InnF ′ is trivial if and only if F is a Möbius trans-

formation. After reading Dyakonov’s work, the author realized that a theorem of

D. Kraus can be alternatively formulated as “F → InnF ′ is a bijection from Maximal

Blaschke Products in J to the space of all Blaschke Products.” The main focus of

this paper will be to understand the role of singular factors.

We spend a moment to check that the map in Theorem 1.1 is well-defined:

Lemma 1.2. If F ∈ J is an inner function, then for any Möbius transformation

T ∈ Aut(D), the Frostman shift T ◦ F ∈J and Inn(T ◦ F )′ = InnF ′.

Proof. From the chain rule, we have (T ◦ F )′(z) = T ′(F (z)) · F ′(z). Since log |T ′|
is bounded, T ◦ F ∈ J . The equality also tells us that the inner part Inn(T ◦ F )′

is divisible by InnF ′. Using T−1 in place of T , we see that InnF ′ is divisible by

Inn(T ◦ F )′. Hence, Inn(T ◦ F )′ = InnF ′ agree (up to a unimodular constant).

1.1 Gauss curvature equation

Even though our problem originates in complex analysis, the techniques of this paper

are essentially that of non-linear elliptic PDE. The connection between the two fields

comes from Liouville’s theorem which says that up to post-composition with Möbius

transformations in Aut(D), holomorphic self-maps of the unit disk without critical

points are in bijection with conformal metrics of constant curvature −4.
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Let λD = 1
1−|z|2 denote the Poincaré metric on the unit disk. It is not difficult to

check that λD is a solution of the Gauss curvature equation

kλ := −∆ log λ

λ2
= −4, (1.2)

which may be alternatively written as

∆u = 4e2u, u : D→ R, (1.3)

after the change of variables u = log λ. Given a holomorphic self-map of the disk

F : D→ D, set

λF := F ∗λD =
|F ′|

1− |F |2
, uF := log λF .

Since the Gaussian curvature is a conformal invariant, λF also has curvature −4.

Liouville’s theorem says that all solutions of (1.2) arise in this way. We also note

that by the Schwarz lemma, λD is the maximal solution of (1.2), in the sense that if

λ is any other solution, then λ < λD pointwise.

We have the following correspondence:

Theorem 1.3. The mapping F → uF is a bijection between locally univalent inner

functions in J /Aut(D) and nearly-maximal solutions of (1.3) satisfying

lim sup
r→1

∫
|z|=r

(uD − u)dθ <∞. (1.4)

For each 0 < r < 1, we may view (uD−u)dθ as a positive measure on the circle of

radius r. Subharmonicity guarantees the existence of a weak limit as r → 1, which

we denote µ[u]. (The reader may take the boundary measure of the least harmonic

majorant of uD − u.)

Theorem 1.4. The mapping u → µ[u] is injective. Its image consists of all finite

measures whose support is contained in a countable union of Beurling-Carleson sets.

If u = uF , the singular measure σ(F ′) = µ(uF ).

The reader interested in exploring connections with nonlinear elliptic PDEs with

measure boundary values may examine the beautiful papers [10, 19].
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1.2 Strategy

We now state several propositions which will be used to show Theorem 1.1. These

will be proved in Sections 5 and 6 after we develop the necessary tools.

Lemma 1.5 (Decomposition rule). An inner function BCSµ lies in the image of

F → InnF ′ if and only if its singular part Sµ does.

Therefore, to describe the image of our mapping, it suffices to determine which

singular inner functions Sµ can be represented as Sµ = InnF ′µ with Fµ ∈ J . If

such an Fµ can be found (which is necessarily unique), we say that the measure µ is

constructible.

Lemma 1.6 (Product rule). Suppose measures µj, j = 1, 2, . . . are constructible. If

their sum µ =
∑∞

j=1 µj is finite, then µ is also constructible.

Lemma 1.7 (Division rule). If a measure µ is constructible, then any ν ≤ µ is also

constructible.

To obtain a large supply of constructible measures, we use the following result of

Cullen [4]:

Lemma 1.8. Suppose that the support of µ is contained in a Beurling-Carleson set.

Then S ′µ ∈ N .

Since Sµ divides S ′µ, the division rule implies that any measure µ supported on a

Beurling-Carleson set is constructible. By the product rule, any measure supported

on a countable union of Beurling-Carleson sets is also constructible. According to

Theorem 1.1, any constructible measure is of this form. As a consequence, we see

that Cullen’s theorem is essentially sharp:

Corollary 1.9. Suppose µ is a measure on the unit circle with S ′µ ∈ N . Then, the

support of µ is contained in a countable union of Beurling-Carleson sets.

On the other side of the spectrum, we have invisible measures. We say that a

finite positive singular measure µ is invisible if for any measure 0 < ν ≤ µ, there

does not exist a function Fν ∈ J with InnF ′ν = Sν . In Section 5, we will show
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that any singular measure on the unit circle µ can be uniquely decomposed into a

constructible part and an invisible part: µ = µcon + µinv. To complete the proof of

Theorem 1.1, we give a criterion for a measure to be invisible:

Theorem 1.10. Suppose µ is a measure on the unit circle which does not charge

Beurling-Carleson sets. Then, it is invisible.

In the late 1970s, Korenblum [12] and Roberts [22] independently showed that

{Sµ | µ does not charge Beurling-Carleson sets} is the collection of inner functions

which are cyclic in Bergman space. To prove Theorem 1.10, we first show that any

measure µ with modulus of continuity ωµ(t) ≤ Ct log(1/t) is invisible. To obtain the

full result, we adapt the argument from Roberts [22] to our setting. This involves an

iterative procedure based on the decomposition of a measure that does not charge

Beurling-Carleson sets into “t log 1/t”-pieces. We do not know if there is a direct

connection between the two problems even if the solutions share the same motif.

1.3 Notation

Let m denote the Lebesgue measure on S1, normalized to have unit mass. Given a

Blaschke sequence C in the unit disk, let BC be the Blaschke product with zero set

C. In order for BC to be uniquely defined, we may use the normalization BC(1) = 1.

The symbol FC will be reserved for the maximal Blaschke product with critical set

C. For a singular measure µ on the unit circle, we let Sµ be the associated singular

inner function.

2 Background on conformal metrics

Given an at most countable set C in the unit disk (counted with multiplicity), the

machinery of Kraus and Roth [13]–[17] seeks to construct a Blaschke product with

critical set C. If such a Blaschke product does not exist, then the machinery does not

produce anything. If there are Blaschke products with critical set C, the machinery

produces the optimal or maximal Blaschke product FC . Instead of constructing FC

directly, Kraus and Roth construct the conformal pseudometric λFC = F ∗CλD, the
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pullback of the Poincaré metric on the disk. To explain their construction, we need

several concepts:

(i) SK-metrics. We will say that a conformal pseudometric λ on a domain U has

“constant curvature −4” if it vanishes on a discrete set of points C ⊂ U (which may

be empty) and satisfies

kλ = −∆ log λ

λ2
= −4, λ ∈ C2, on U \ C.

More generally, if kλ ≤ −4 on U \C, then following Heins, we say that λ(z) is a (reg-

ular) SK-metric. In reality, this is a slight abuse of notation since the distributional

Laplacian may have point masses at points of C.

(ii) Perron families. According to [11, Section 13] or [16, Definition 4.11], a

collection Φ of SK-metrics is a Perron family if it is closed under modifications and

taking maxima. The first condition says that given a round disk D ⊂ U and a metric

λ ∈ Φ, the unique SK-metric MDλ which agrees with λ on U \D, is non-vanishing

and has constant curvature −4 in D lies in Φ; while the second condition says that

for any λ1, λ2 ∈ Φ, their pointwise maximum max(λ1, λ2) is also in Φ. Heins proved

that if a Perron family is non-empty, then the supremum of all metrics in Φ is a

non-vanishing conformal metric of curvature −4.

(iii) Liouville’s theorem. Suppose λ is a conformal pseudometric defined on a

simply-connected domain U . We say that λ vanishes at ci ∈ C with multiplicity mi

if

lim
z→ci

λ(z)

|z − ci|mi
= Li, for some 0 < Li <∞.

Liouville’s theorem [15, Theorem C] says that if λ has constant curvature −4 and all

its zeros have integral multiplicities, then λF = F ∗λD for some holomorphic function

F : U → D. Furthermore, the function F is unique up to post-composition with a

Möbius transformation.

For a set C in the unit disk, let ΦC be the collection of all SK-metrics on D which

vanish on C. It clearly verifies the two axioms of being a Perron family on the domain

D \ C. Provided ΦC is non-empty, one obtains a metric of constant curvature −4

and a holomorphic function FC : D → D which vanishes on C to the correct order.
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Leveraging the maximality of the metric λFC , Kraus [13] proved that the outer and

singular inner factors of FC are trivial. In other words, FC is a Blaschke product.

In the case when the critical set C is a Blaschke sequence, Kraus made the

fundamental observation that |BC |λD is an SK-metric which guarantees that the

Perron family ΦC is non-empty. (More generally, given a holomorphic function H

with ‖H‖∞ ≤ 1 and a metric λ of curvature −4, |H| · λ is an SK-metric.)

Further exploiting the lower bound λFC ≥ |BC |λD, Kraus obtained the following

remarkable result [13, Theorem 4.4]:

Theorem 2.1 (Kraus). Suppose C is a Blaschke sequence in the disk and λ is

a metric of constant curvature −4 which vanishes precisely at C with the correct

multiplicity. Then λ = λFC if and only if

lim
r→1

∫
|z|=r

log
λ

λD
dθ = 0. (2.1)

In Section 3, we will use ideas of Ahern and Clark to show that the above theorem

can be alternatively phrased as:

Corollary 2.2. Suppose C is a Blaschke sequence in the disk. An infinite Blaschke

product F ∈ J is the maximal Blaschke product associated to C if and only if the

singular factor of InnF ′ is trivial, i.e. if InnF ′ = BC.

In order to generalize the arguments of Kraus and Roth to allow for singular

factors, we will need:

Lemma 2.3 (Fundamental Lemma). For any inner function F ∈J ,

λF ≥ | InnF ′|λD. (2.2)

In fact, λF is the smallest metric of constant curvature −4 with this property.

Note that the minimality of the metric λF implies that the map F → InnF ′

from Theorem 1.1 is injective. Using the factorization F ′ = InnF ′ ·OutF ′, one can

rewrite (2.2) as
1− |F (z)|2

1− |z|2
≤ |OutF ′(z)|, (2.3)
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which was proved by Dyakonov in [6, Theorem 2.1] using Julia’s lemma. The reader

may also consult [7, Corollary 2.1] for additional remarks. We may therefore view

the fundamental lemma as a refinement of Dyakonov’s theorem.

The proof of minimality will be given in Section 3.3. In Section 4, we will give an

alternative proof of (2.2) by carefully approximating F by finite Blaschke products

(finite Blaschke products are maximal by [11, Section 29]).

2.1 Hulls and wedges

We conclude this section with two natural constructions of conformal metrics which

will play an important role in this work:

Wedge of two metrics. Given two inner functions F,G ∈J , consider the family

ΦF,G of SK-metrics that are pointwise less than min(λF , λG). This family is not

empty: the metric | InnF ′| · | InnG′| · λD is in it, as Lemma 2.3 shows. Taking the

supremum of conformal metrics in ΦF,G, we get a regular conformal metric of constant

curvature −4. By Liouville’s theorem, it is the pullback of λD by a holomorphic

function which we denote F ∧G. By Lemma 3.6 below, F ∧G ∈J .

Hull of a conformal metric. For an SK-metric κ, let Ψκ be the collection of all

metrics of constant curvature −4 which are greater than κ and Φκ be the collection

of all SK-metrics that are less than all metrics in Ψκ. Since Φκ is a Perron family,

its supremum is a metric κ̂ of curvature −4. We call κ̂ the hull of κ. From the

definition, it is clear that κ̂ is the smallest metric of curvature −4 which exceeds κ.

In this terminology, Lemma 2.3 says that λF is the hull of | InnF ′|λD.

3 Gap of a Nevanlinna function

By definition, the Nevanlinna class N consists of holomorphic functions on the unit

disk for which

sup
0<r<1

1

2π

∫
|z|=r

log+ |f(z)|dθ <∞, z = reiθ. (3.1)
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It is well known that (unless f is identically zero) this condition is equivalent to the

boundedness of

sup
0<r<1

1

2π

∫
|z|=r

∣∣log |f(z)|
∣∣dθ.

Since log |f(z)| is a subharmonic function, limr→1
1

2π

∫
|z|=r log |f(z)|dθ exists and is

finite. However, unlike the Hardy norms, it need not be the case that

lim
r→1

1

2π

∫
|z|=r

log |f(z)|dθ =
1

2π

∫
|z|=1

log |f(z)|dθ,

where in the integral in the right hand side, we consider the radial boundary values

of f which are known to exist a.e. To understand the cause of the discrepancy, we

consider the canonical decomposition of f = B(S/S1)O into a Blaschke product, a

quotient of singular inner functions and an outer function:

B(z) =
∏
i

− ai
|ai|
· z − ai

1− aiz
,

(S/S1)(z) = exp

(
−
∫
S1

ζ + z

ζ − z
dσζ

)
, σ ⊥ m,

O(z) = exp

(∫
S1

ζ + z

ζ − z
log |f(ζ)|dmζ

)
,

see for instance [5]. Given an interval I on the unit circle, let rI denote its radial

projection onto the circle Sr = {z : |z| = r}.

Lemma 3.1.

gap(f) :=
1

2π

∫
|z|=1

log |f(z)|dθ − lim
r→1

{
1

2π

∫
|z|=r

log |f(z)|dθ
}

= σ(S1).

More generally, if I is an interval on the unit circle,

gapI(f) :=
1

2π

∫
I

log |f(z)|dθ − lim
r→1

{
1

2π

∫
rI

log |f(z)|dθ
}

= σ(I),

provided the endpoints of I do not charge σ.

Proof. As above, we decompose f = B(S/S1)O. It suffices to analyze the three

components separately. We begin with the Blaschke factor. We claim that

1

2π

∫
|z|=r

log |B(z)|dθ → 0, as r → 1.
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Factoring out zm, we may assume that B(0) 6= 0. Let a1, a2, . . . be an enumeration of

the zeros of B in the unit disk. By Jensen’s formula and the fact that |B(0)| =
∏
|ai|,

1

2π

∫
|z|=r

log |B(reiθ)|dθ =
∑
|ai|<r

log
r

|ai|
−
∑
|ai|<1

log
1

|ai|
,

which tends to zero as r → 1. This proves the claim. Since log |B(z)| < 0 is

negative, we a fortiori have 1
2π

∫
rI

log |B(z)|dθ → 0 for any interval I ⊂ S1. Clearly,
1

2π

∫
I

log |B(z)|dθ = 0 as well.

Since log |O(z)| is a harmonic function on the unit disk which is the Poisson

extension of its radial boundary values,

1

2π

∫
rI

log |O(z)|dθ → 1

2π

∫
I

log |O(z)|dθ.

In other words, the outer factor also behaves as expected.

The singular factor exhibits the most interesting behaviour. Since log |(S/S1)(z)|
is the Poisson extension of the singular measure σ,

1

2π

∫
rI

log |(S/S1)(z)|dθ → σ(I),

if the endpoints of I do not charge σ. On the other hand,

1

2π

∫
I

log |(S/S1)(z)|dθ = 0

as the radial boundary values of log |(S/S1)(z)| are zero a.e. on the unit circle.

Putting the Blaschke, singular and outer parts together gives the statement of the

lemma.

3.1 Applications to inner functions

We now apply Lemma 3.1 to study inner functions with derivative in the Nevanlinna

class. We first give a slightly different perspective on a classical theorem due to

Ahern and Clark:

Lemma 3.2 (Ahern-Clark). For an inner function F ∈J , its derivative admits a

BSO decomposition. In other words, the singular measure σ(F ′) ≥ 0.
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Proof. By Lemma 1.2, it suffices to consider the case when F (0) = 0. Then |F ′(x)| ≥
1 on the unit circle, e.g. see [20, Theorem 4.15]. In view of the fundamental inequality

|F ′(rx)| ≤ 4|F ′(x)|, x ∈ S1, 0 < r < 1,

of Ahern and Clark [1], the dominated convergence theorem shows∫
I

log+ |F ′(z)|dm− lim
r→1

∫
rI

log+ |F ′(z)|dm = 0,

for any interval I ⊂ S1. However, by Fatou’s lemma, the negative part of the

logarithm can only dissipate and therefore

gapI(F
′) =

∫
I

log |F ′(z)|dm− lim
r→1

∫
rI

log |F ′(z)|dm ≥ 0.

This completes the proof.

The following lemma says that as r → 1, the measures log λD
λF

(reiθ) dm converge

weakly to σ(F ′) :

Lemma 3.3. Let I ⊂ S1 be an interval. If F ∈J then

1

2π

∫
I

log |F ′(z)|dθ = lim
r→1

1

2π

∫
rI

log
1− |F (z)|2

1− |z|2
dθ. (3.2)

Proof. From the contraction of the hyperbolic distance dD(F (0), F (z)) ≤ dD(0, z), it

follows that the quotient 1−|F (z)|2
1−|z|2 ≥ cF (0) is bounded below by a positive constant.

By the Schwarz lemma,

1

2π

∫
rI

max
(
log |F ′(z)|, log cF (0)

)
dθ ≤ 1

2π

∫
rI

log
1− |F (z)|2

1− |z|2
dθ.

Applying the dominated convergence theorem like in the proof of Lemma 3.2 gives

the ≤ inequality in (3.2). For the ≥ direction, we average Dyakonov’s inequality

(2.3) over z ∈ rI :

1

2π

∫
rI

log |OutF ′(z)|dθ ≥ 1

2π

∫
rI

log
1− |F (z)|2

1− |z|2
dθ.

The lemma follows after taking r → 1 since log |OutF ′(z)| is the harmonic extension

of log |F ′(z)| considered as a function on the unit circle.
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The reader may compare the above lemma with [2, Theorem 3]. If F is a locally

univalent inner function (without critical points), then

F ′ ∈ N ⇐⇒ lim
r→1

∫
|z|=r

log
1− |F (z)|2

1− |z|2
dθ <∞,

⇐⇒ lim
r→1

∫
|z|=r

log
λD
λF

dθ <∞,

which is the statement of Theorem 1.3. For the second equivalence, one uses that

lim
r→1

1

2π

∫
|z|=r

log |F ′(z)|dθ = log |F ′(0)|

is necessarily finite.

3.2 Applications to conformal metrics

Lemma 3.4. Suppose F ∈J is an inner function for which

λF ≥ |BCSµ| · λD. (3.3)

Then, the singular measure σ(F ′) ≤ µ.

Proof. Let I ⊂ S1 be an interval. From the definition of λF ,∫
rI

log
λF

|BCSµ|λD
dm =

∫
rI

log

(
|F ′|(1− |z|2)

1− |F |2

)
dm−

∫
rI

log |BCSµ|dm.

By Lemma 3.1 and the easy part of Lemma 3.3, as r → 1, this tends to

0 ≤ −σ(F ′)(I) + σ(Sµ)(I),

at least if I is generic (there are extra terms if the endpoints of I charge any of these

singular measures).

Remark. The same conclusion holds under the seemingly weaker assumption λF ≥
|BCSµOh| where

Oh(z) = exp

(∫
S1

ζ + z

ζ − z
h(ζ)dmζ

)
, h : S1 → R,

is an arbitrary outer function: the above computation results in σ(F ′) ≤ µ − h dm.

Since σ(F ′) ⊥ h dm are mutually singular, we have σ(F ′) ≤ µ and h ≤ 0.
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Similar considerations show:

Lemma 3.5. For any F,G ∈J and interval I ⊂ S1,

lim
r→1

∫
|z|=r

log(λF/λG)dm = −σ(F ′)(I) + σ(G′)(I). (3.4)

In particular, if λF ≥ λG then σ(F ′) ≤ σ(G′).

Combining the above lemma with Theorem 2.1 gives Corollary 2.2.

Lemma 3.6. If λG is a metric of curvature −4 such that λG ≥ |H|λD for some

bounded holomorphic function H 6≡ 0, then G ∈J .

Proof. Since H is a bounded holomorphic function, γ1 = limr→1

∫
rS1 log |H|dm is

finite. The condition λG ≥ |H|λD implies that the zeros of G′ form a Blaschke

sequence, which in turn implies that the integral γ2 = limr→1

∫
rS1 log |G′|dm is also

finite. An inspection of the inequality

0 ≤ lim inf
r→1

∫
rS1

log
λG
|H|λD

dm ≤ −γ1 + γ2 − lim sup
r→1

∫
rS1

log+ |G′|dm

then shows that G′ satisfies the Nevanlinna condition (3.1). It remains to prove that

the outer part of G is trivial, so that G is an inner function. If this were not the case,

then for a positive measure set of directions θ ∈ [0, 2π), lim supr→1 λG(reiθ) would

be finite. However, this contradicts the assumption λG ≥ |H|λD, since by the Lusin-

Privalov theorem, the radial limit of H(reiθ) is non-zero almost everywhere.

3.3 Injectivity and Minimality

With the above preparations, we can show the injectivity statement of Theorem 1.1.

If there were two functions F,G ∈J with InnF ′ = InnG′ = BCSµ, then

λF ≥ λF∧G ≥ |BCSµ| · λD. (3.5)

Lemmas 3.4 and 3.5 imply that (F ∧ G)′ has the same inner part as F ′. From the

definition of curvature, ∆ log(λF/λF∧G) = 4(λ2
F − λ2

F∧G). Hence log(λF/λF∧G) is

subharmonic and non-negative, yet

lim
r→1

∫
|z|=r

log(λF/λF∧G)dθ → 0, (3.6)

14



which forces log(λF/λF∧G) = 0. We deduce that λF = λF∧G = λG and therefore

F = G up to post-composition with a Möbius transformation by Liouville’s theorem.

Given an inner function F ∈J , we now show that λF is the smallest metric of

constant curvature −4 that exceeds | InnF ′|λD. Following Section 2.1, we consider

the hull λ of the metric | InnF ′|λD. The inequalities

λF ≥ λ ≥ | InnF ′|λD (3.7)

reveal that λ has exactly the same zero set as λF (counted with multiplicity). In

particular, all the zeros of λ have integral multiplicities. Proceeding like in the proof

of injectivity, we obtain limr→1

∫
|z|=r log(λF/λ)dθ → 0 and λ = λF as desired.

4 Stable approximations

In this section, we study convergent sequences of inner functions. We are particularly

interested in stable approximations where the inner-outer decomposition is preserved

in the limit:

Definition. Suppose {Fn} ⊂ J is a sequence of inner finctions which converge

uniformly on compact subsets of the disk to an inner function F . We say that Fn is

a (Nevanlinna) stable approximation of F if

InnF ′ = lim
n→∞

InnF ′n, OutF ′ = lim
n→∞

OutF ′n. (4.1)

In general, we have inequalities in one direction:

Theorem 4.1. Suppose {Fn} ⊂J is a sequence of inner functions which converge

uniformly on compact subsets of the disk to a holomorphic function F : D→ D. Also

assume that the In = InnF ′n converge to an inner function I. Then F ∈J and the

following inequalities hold:

σ(F ′) ≤ σ(I), (4.2)

| InnF ′| ≥ |I|, (4.3)∫
S1

log |F ′|dm ≤ lim
n→∞

∫
S1

log |F ′n|dm. (4.4)

Furthermore, either all of the above inequalities are equalities or none of them are.
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Proof. Taking n→∞ in λFn ≥ |In|λD gives λF ≥ |I|λD. Lemma 3.4 then proves the

first inequality (4.2).

Clearly, InnF ′ and I = lim(InnF ′n) have the same zeros in the unit disk but

may have different singular factors. However, it is easy to see that for singular inner

functions, one has the inequality S1 ≤ S2 if and only if σ(S1) ≥ σ(S2). The “if”

direction is obvious, while the “only if” direction follows from the identity

0 ≤ lim
r→1

∫
rE

log |S2/S1|dm = −σ(S2)(E) + σ(S1)(E),

valid for any generic interval E ⊂ S1 whose endpoints do not charge the measures

σ(S1) and σ(S2). This proves (4.3) and shows that the equality cases in (4.2) and

(4.3) coincide.

Since F ′n → F ′ uniformly on compact subsets of the disk, (4.3) is equivalent to

the inequality |OutF ′(z)| ≤
∣∣limn→∞OutF ′n(z)

∣∣. Setting z = 0 and taking loga-

rithms gives (4.4). However, if (4.4) is an equality, then by the maximum modulus

principle applied to OutF ′(z)/
(
limn→∞OutF ′n(z)

)
, we must have |OutF ′(z)| =∣∣limn→∞OutF ′n(z)

∣∣ for all z ∈ D. This completes the proof.

For some applications, we need a slightly more general version of the above the-

orem:

Theorem 4.2. In the context of Theorem 4.1, suppose instead that the In converge

to a non-zero holomorphic function H : D → D with the inner-outer decomposition

H = I · O. Then, the inequalities (4.2)–(4.4) still hold. The equality case in (4.4)

implies that {Fn} is a stable sequence, in particular, the outer factor O = 1 is trivial

and the Bn converge to an inner function.

The proof of Theorem 4.2 is nearly identical to that of Theorem 4.1, so we only

sketch the details. Since ‖H‖∞ ≤ 1, we have |O(z)| ≤ 1 and |I(z)| ≥ |H(z)| for

z ∈ D. Following the proof of Theorem 4.1, we obtain the inequality λF ≥ |I ·O|λD.

We may still use Lemma 3.6 to conclude that F ∈ J . The remark after Lemma

3.4 allows us to conclude (4.2) and (4.3) in this more general case as well. We may

weaken (4.3) to | InnF ′| ≥ |H|, which is equivalent to (4.4). This time, the equality

case in (4.4) forces I = H and O = 1.
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Remark. In view of Lemma 3.6, if a sequence of inner functions Fn converges to a

function F with F ′ 6∈ N , then H = lim(InnF ′n) must be 0.

Craizer’s argument from [3, Lemma 5.4] shows:

Lemma 4.3. Any inner function F ∈ J admits a stable approximation by finite

Blaschke products.

Proof. According to a theorem of Frostman, e.g. see [20, Theorem 2.5], if ξ ∈ D
avoids a set of zero logarithmic capacity, then the Frostman shift Tξ ◦F is a Blaschke

product, where Tξ = z−ξ
1−ξz . If ξ is not an exceptional point, we may choose a sequence

Fn,ξ of finite Blaschke products converging to F so that Tξ ◦ Fn,ξ is a sequence of

partial products of Tξ ◦ F . By [20, Corollary 4.13], we have

|(Tξ ◦ Fn,ξ)′(x)| ≤ |(Tξ ◦ F )′(x)|, x ∈ S1.

It follows that

|(Fn,ξ)′(x)| ≤
[

1 + |ξ|
1− |ξ|

]2

|F ′(x)|,

which leads to the estimate∫
S1

log |F ′n,ξ(x)|dm ≤ 2 log
1 + |ξ|
1− |ξ|

+

∫
S1

log |F ′(x)|dm.

Since we can choose ξ arbitrarily close to 0, we can diagonalize to find a sequence

Fn of finite Blaschke products converging to F for which

lim sup
n→∞

∫
S1

log |F ′n(x)|dm ≤
∫
S1

log |F ′(x)|dm.

However, by Theorem 4.2, the lower bound is automatic and the sequence {Fn} is

stable.

Suppose F ∈ J is an inner function. The above lemma provides a Nevanlinna

stable approximation Fn → F by finite Blaschke products. Since finite Blaschke

products are maximal, we have λFn ≥ | InnF ′n|λD for any n ≥ 1. Taking n → ∞
gives λF ≥ | InnF ′|λD. Note that there is no circular reasoning since the proof of

Theorem 4.2 only relied on the easy part of Lemma 3.3.
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Remark. We can endow the space of analytic functions E = {f : f ′ ∈ N} with the

stable topology by specifying that fn → f if the fn converge uniformly on compact

sets to f and log |f ′n|dm→ log |f ′|dm weakly. Lemma 4.3 shows that finite Blaschke

products are dense in J while Theorem 4.2 implies that the subset J ⊂ E is closed.

4.1 Example of an unstable approximation

We now give an example of a sequence of finite Blaschke products which is not

Nevanlinna stable. Let Fn be the Blaschke product of degree n + 1 with zeros at

the origin and at zj = ej(2πi/n) · (1 − 1/n2), j = 1, 2, . . . , n. With the normalization

F ′n(0) > 0, the maps Fn converge to the identity since
∑n

j=1(1−|zj|)→ 0 as n→∞.

Recall that for x ∈ S1, one has the formula |F ′n(x)| = 1 +
∑n

j=1 Pzj(x), where Pz is

the Poisson kernel as viewed from z ∈ D, e.g. see [20, Theorem 4.15]. Computations

show ∫
Ij

log |F ′n|dm ≥
∫
Ij

log |1 + Pzj |dm & 1/n

where Ij consists of the points on the unit circle for which the closest zero is zj.

Hence, |OutF ′n(0)| = exp
∫
S1 log |F ′n|dm > c > 1 for some constant c independent

of n ≥ 1. Since the outer parts OutF ′n do not converge to the constant function 1,

neither can the inner parts InnF ′n.

A modification of this construction can be used to show the existence of a sequence

of finite Blaschke products Fn → z for which InnF ′n → Sδ1 and OutF ′n → 1/Sδ1 .

5 Understanding the image

In this section, we discuss the image of the map F → InnF ′ and prove the decom-

position, product and division rules from the introduction. We also show that the

map F → InnF ′ is not surjective by exhibiting a large class of invisible measures. A

complete description of the image will be given in the next section.

18



5.1 Wedging Fµ with FC

Theorem 5.1. (i) Suppose Fµ ∈ J is an inner function with InnF ′µ = Sµ. Let

Fµ,C = Fµ ∧ FC where C is a Blaschke sequence. Then, InnF ′µ,C = BCSµ.

(ii) Conversely, if Fµ,C ∈ J is an inner function with InnF ′µ,C = BCSµ, then

there exists an inner function Fµ with InnF ′µ = Sµ.

Proof. (i) Since λFC ≥ λFµ,C ≥ |BC |λFµ , the critical set of Fµ,C is precisely C with

the correct multiplicity; while the inequalities λFµ ≥ λFµ,C ≥ |BC |λFµ show that

σ(F ′µ,C) = µ (one divides by λFµ , integrates over {z : |z| = r}, tends r → 1 and

applies Lemma 3.5). Hence InnF ′µ,C = BCSµ as desired.

(ii) Suppose Fµ,C ∈ J is an inner function with InnF ′µ,C = BCSµ. Let Fn

be a sequence of finite Blaschke products which converges to Fµ,C (stability is not

required in this proof). For any 0 < r < 1, we can form the sequence of finite

Blaschke products Fn,r by removing the critical points from Fn that lie in the ball

{z : |z| < r}, and considering the maximal Blaschke product with the remaining

critical points (with the normalization Fn,r(0) = 0 and F ′n,r(0) > 0). For each r, we

pick a subsequential limit Fr of Fn,r. We may then extract a further subsequential

limit F by taking r → 1. By construction, we have

|BC |λF ≤ λFµ,C ≤ λF .

Since the limit F cannot be constant, by Hurwitz’ theorem, F has no critical points.

The above inequalities imply σ(F ′) = Sµ and therefore InnF ′ = Sµ.

5.2 Division and product rules

In the next lemma, we show that any sequence “dominated” by a stable sequence is

also stable:

Lemma 5.2. Suppose that FCn → Fµ1+µ2 is a stable sequence, and C1,n ⊂ Cn is a

subset such that BC1,n converges to Sµ1. Then, FC1,n → Fµ1.

Proof. Write Cn = C1,n∪C2,n. From the assumptions, BC1,n → Sµ1 and BC2,n → Sµ2 .

After passing to a subsequence, we can ensure convergence:

FC1,n → Fν1 , ν1 ≤ µ1,
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FC2,n → Fν2 , ν2 ≤ µ2.

The monotonicity of measures follows from Theorem 4.1. For each n, we have λFCn ≥
|B1,n|λFC2,n

and therefore, after taking n→∞, we see that

λFµ1+µ2 ≥ |Sµ1|λFν2 .

As is now standard, we may deduce

µ1 + µ2 ≤ µ1 + ν2

by examining the inequality

0 ≤ lim
r→1

∫
rI

log
λFµ1+µ2
|Sµ1|λFν2

dm, I ⊂ S1.

Hence ν2 = µ2 (and similarly ν1 = µ1) as desired.

The above lemma has a number of consequences:

Corollary 5.3. If a measure µ is constructible, i.e. if Fµ exists, then all ν ≤ µ are

also constructible. In particular, the image of the mapping F → InnF ′ is closed

under taking divisors.

Indeed, given a stable approximation FCn to Fµ, it is not difficult to select C1,n ⊂
Cn so that BC1,n → Sν .

Corollary 5.4. If Fµ1 and Fµ2 are constructible, then Fµ1+µ2 is also constructible.

The proof relies on the Solynin-type estimate

λFC1
λFC2

≥ λFC1∪C2
λFC1∩C2

, (5.1)

valid when C1 and C2 are finite subsets of the disk counted with multiplicity. The

proof of (5.1) is essentially that of [18, Lemma 2.8], so we only sketch the details.

Consider the function

u = log+

(
λFC1∪C2

λFC1∩C2

λFC1
λFC2

)
.
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We claim that it is subharmonic and non-negative in D yet tends to 0 as |z| → 1.

This will show that it is equal to 0 identically. It is clearly non-negative by definition.

To show that u(z) is subharmonic, one can check that ∆u ≥ 0. We refer the reader

to [18, Lemma 2.8] for the computation. For the last statement, note that by Lemma

2.3, for a finite Blaschke product F , the quotient λF/λD → 1 uniformly as |z| → 1.

Proof of Corollary 5.4. Choose approximations FC1,n → Fµ1 and FC2,n → Fµ2 by

finite Blaschke products. Making a small perturbation if necessary, we can assume

that the sets C1,n and C2,n are disjoint. Let Cn = C1,n∪C2,n be their union. Passing

to a subsequence, we may assume that FCn → Fµ for some measure µ on the unit

circle. By Solynin’s estimate (5.1), we have

log
λD

λFC1,n

+ log
λD

λFC2,n

≤ log
λD
λFCn

. (5.2)

Taking n→∞ gives

log
λD
λFµ1

+ log
λD
λFµ2

≤ log
λD
λFµ

. (5.3)

By examining averages over rI and taking r → 1, we discover that µ ≥ µ1 + µ2.

Applying Corollary 5.3 shows that the measure µ1 + µ2 is constructible.

Remark. Solynin’s original estimate from [23, 24] compares hyperbolic metrics on two

domains in the plane with the hyperbolic metrics on their union and intersection:

λΩ1(z) · λΩ2(z) ≥ λΩ1∪Ω2(z) · λΩ1∩Ω2(z), z ∈ Ω1 ∩ Ω2.

Corollary 5.5. If S ′µ ∈ N then µ is constructible.

This follows from the division rule (Corollary 5.3) and the fact that Sµ divides

S ′µ. As noted in the introduction, M. Cullen [4] verified the hypothesis of Corollary

5.5 when the support of µ is a Beurling-Carleson set.

5.3 Invisible measures

Let µ be a finite positive measure on the unit circle, which is singular with respect

to the Lebesgue measure. We say µ is invisible if for any measure 0 < ν ≤ µ, there

does not exist a function Fν ∈J with InnF ′ν = Sν .
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Lemma 5.6. Either the map F → InnF ′ is surjective or there exists an invisible

measure.

Proof. Suppose Fµ is not constructible. Since the hull of the metric |Sµ| · λD defined

in Section 2.1 cannot vanish anywhere, it must be of the form λFν for some measure

ν. (Lemma 3.6 explains why Fν must be an inner function.) Applying Lemma 3.4,

we see that ν < µ since equality cannot hold. From the product rule (Corollary

5.4), it follows that the measure µ− ν is invisible. More precisely, if σ ≤ µ− ν was

constructible, then λFν > λFν+σ/2 > |Sµ| ·λD would contradict the definition of ν.

Actually, the above argument shows a little more:

Theorem 5.7. A measure µ is invisible if and only if the hull of |Sµ| · λD is the

Poincaré metric. More generally, any measure µ can be uniquely decomposed into a

constructible part and an invisible part: µ = µcon + µinv, in which case, the hull of

|Sµ| · λD is λFµcon .

We are now in a position to prove the countable version of the product rule

(Lemma 1.6). Suppose we are given countably many constructible measures µj,

j = 1, 2, . . . such that their their sum µ =
∑∞

j=1 µj is a finite measure. We claim

that µ is constructible. According to Theorem 5.7, the hull of |Sµ| · λD is of the

form λFν for some measure ν ≤ µ. However, from Corollary 5.4, we know that

µ̃j = µ1 + µ2 + · · · + µj is constructible. This shows that ν ≥ µ̃j for any j, which

forces ν = µ.

5.4 A criterion for invisibility

In this section, we only consider conformal metrics with strictly positive densities,

that is, genuine metrics instead of pseudometrics. Given a positive continuous func-

tion u on Sr = {z : |z| = r}, 0 < r < 1, let Λr[u] denote the unique conformal metric

of curvature −4 on Dr = {z : |z| < r} which agrees with u on Sr. For the existence

and uniqueness of Λr[u], we refer the reader to [11, Section 12] or [16, Appendix].

For a non-vanishing SK-metric λ, we will write Λ[λ] = λ̂ for the minimal conformal

metric of curvature −4 that exceeds λ.
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Lemma 5.8. The operation u → Λr[u] is monotone in u, that is, if u ≥ v then

Λr[u] ≥ Λr[v].

To see this, note that the function h = log+(Λr[v]/Λr[u]) is non-negative, sub-

harmonic and identically zero on Sr. To check that h is subharmonic, we use the

definition of curvature and Kato’s inequality (e.g. see [21, Proposition 6.6]):

∆h ≥ (4Λr[v]2 − 4Λr[u]2) · χv>u ≥ 0.

A similar argument shows:

Lemma 5.9. Let λ be a non-vanishing conformal metric on the unit disk of curvature

at most −4. For 0 < r < 1, the metric Λr[λ(reiθ)] is the minimal conformal metric

of curvature −4 that exceeds λ on Dr. The family of conformal metrics Λr[λ(reiθ)]

is non-decreasing in r, and the limit

λ̂ = Λ[λ] = lim
r→1

Λr[λ(reiθ)] (5.4)

is the minimal conformal metric of curvature −4 that exceeds λ on D.

In general, it is difficult to evaluate Λr[u] explicitly. In the next lemma, we do so

when u is a constant function.

Lemma 5.10. Given any 0 < c ≤ 1, there exists a unique 0 < r′ ≤ r so that

Λr[c · λD] = L∗λD where L(z) = r′

r
· z is the linear map Dr → Dr′.

The lemma follows by observing that since the metrics (Lr′)
∗λD are increasing in

r′, there is a unique value of r′ for which c · λD = (Lr′)
∗λD on Sr.

Corollary 5.11. We have

lim
C→∞

[
lim
r→1

Λr[C]

λD

]
→ 1,

uniformly on compact subsets of the unit disk.

We can now prove:
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Theorem 5.12. Suppose µ is a singular measure on the unit circle which satisfies

µ(I) ≤ C|I| log |1/I| for any interval I ⊂ S1 and some constant C > 0. Then, µ is

invisible.

Proof. From the product rule (Corollary 5.4), it is easy to see that a measure µ is

invisible if and only if ε · µ is for any ε > 0. This allows us to assume that µ(I) ≤
ε|I| log |1/I| which implies that the Poisson extension Pµ(z) ≤ ε(A log 1

1−|z| +B) for

some constants A and B. Hence, |Sµ|λD →∞ as |z| → 1. The theorem now follows

from the monotonicity principle (Lemma 5.8) and Corollary 5.11.

6 Roberts decompositions

In this section, we show that if µ does not charge Beurling-Carleson sets, then it

is invisible, that is, any measure 0 < ν ≤ µ cannot be in the image of the map

F → σ(F ′). To upgrade the argument of Section 5.4, we will use the following

theorem which is implicit in the work of Roberts [22]:

Theorem 6.1. Suppose µ is a measure on the unit circle which does not charge

Beurling-Carleson sets. Given a real number c > 0 and an integer j0 ≥ 1, µ can be

expressed as a countable sum

µ =
∞∑
j=1

µj, (6.1)

where each µj enjoys an estimate on the modulus of continuity:

ωµj(1/nj) ≤
c

nj
· log nj, nj := 22j+j0 . (6.2)

Here, ωµ(t) = supI⊂S1 µ(I), with the supremum taken over all intervals of length t.

It will be important for us that the measure µ admits infinitely many decomposi-

tions with different parameters c and j0, where c can be made arbitrarily small and

j0 arbitrarily large. For convenience of the reader, we recall the proof.

Proof. For each j = 1, 2, . . . , we can define a partition Pj of the unit circle into

nj arcs of equal length (we consider half-open arcs which contain only one of the
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endpoints, for example, the left endpoint). Since nj divides nj+1, each next partition

can be chosen to be a refinement of the previous one. Given a measure µ on the

unit circle, Roberts defines the grating of µ with respect to the sequence of partitions

{Pj}. This procedure decomposes µ =
∑∞

j=1 µj + ν so that (6.2) holds for each j,

with the residual measure ν supported on a Beurling-Carleson set.

To define µ1, consider the intervals in the partition P1. Call an interval I ∈ P1 light

if µ(I) ≤ (c/n1) · log n1 and heavy otherwise. On a light interval, take µ1 = µ, while

on a heavy interval, let µ1 be a multiple of µ so that the mass µ1(I) = (c/n1) · log n1.

Clearly, µ1 ≤ µ. Consider the difference µ − µ1 and grate it with respect to the

partition P2 to form the measure µ2, then consider µ − µ1 − µ2 and grate it with

respect to P3 to form µ3, and so on. Continuing in this way, we obtain a sequence

of measures µ1, µ2, . . . where each next measure is supported on the heavy intervals

of the previous generation.

By construction, the bound (6.2) holds for all j. Since the residual measure ν is

supported on the set of points which lie in heavy intervals at every stage, supp ν ⊂
S1 \L , where L is the union of interiors of light intervals of any generation. The

relation log nj+1 = 2 log nj implies that S1 \L is a Beurling-Carleson set:∑
light

|I| log
1

|I|
. 2j0 +

∑
heavy

|J | log
1

|J |
. 2j0 +

∞∑
j=0

∑
J∈Pj heavy

µj(J) ≤ 2j0 + µ(S1),

since any maximal light interval of generation j ≥ 2 is contained in a heavy interval

of the previous generation.

The estimate (6.2) on the modulus of continuity is easily seen to be equivalent

to an estimate on the Poisson extension:

|Pµj | ≤ c′ · log
1

1− |z|2
, z ∈ B(0, 1− 1/nj). (6.3)

Here, the constant c′ can be taken to be cc1 for some c1 > 0. This is stated in [22,

Lemma 2.2].

We will also need a simple lemma on conformal metrics:

Lemma 6.2. (i) For any two singular measures µ1 and µ2 on the unit circle,

Λ
[
|Sµ1| · Λ

[
|Sµ2 |λD

]]
= Λ

[
|Sµ1 ||Sµ2| · λD

]
.
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(ii) More generally,

Λ
[
|Sµ1| · . . .Λ

[
|Sµj−1

| · Λ[|Sµj |λD]
]
. . .
]

= Λ
[
|Sµ1 ||Sµ2| · · · |Sµj | · λD

]
.

(iii) For µ =
∑∞

j=1 µj, we have

lim
n→∞

Λ
[
|Sµ1| · . . .Λ

[
|Sµj−1

| · Λ[|Sµj |λD]
]
. . .
]

= Λ
[
|Sµ|λD

]
.

Proof. (i) The ≥ direction follows from the monotonicity of Λ. For the ≤ direction,

it suffices to show that

|Sµ1| · Λ
[
|Sµ2|λD

]
≤ Λ

[
|Sµ1||Sµ2| · λD

]
or

|Sµ1| · Λr

[
|Sµ2|λD

]
≤ Λr

[
|Sµ1||Sµ2| · λD

]
for any 0 < r < 1, cf. Lemma 5.9. To this end, we form the function

ur = log+

( |Sµ1| · Λr

[
|Sµ2|λD

]
Λr

[
|Sµ1||Sµ2| · λD

])
defined on Dr = {z : |z| < r}. Since it is subharmonic and vanishes on Sr = ∂Dr, it

must be identically 0. This proves the ≤ direction.

(ii) follows after applying (i) j − 1 times.

(iii) Let µ̃j = µ1 + µ2 + · · ·+ µj. By part (i), we have

|Sµ−µ̃j | · Λ
[
|Sµ̃j |λD

]
≤ Λ

[
|Sµ|λD

]
≤ Λ

[
|Sµ̃j |λD

]
.

Since |Sµ−µ̃j | → 1, Λ
[
|Sµ̃j |λD

]
are decreasing and converge to Λ

[
|Sµ|λD

]
.

We can now prove Theorem 1.10:

Proof of Theorem 1.10. Step 1. Let µ = µj be the Roberts decomposition (6.1) with

parameters c and j0 to be chosen later. In view of the invisibility criterion (Theorem

5.7), it suffices to show that

λj := Λ1−1/n1

[
|Sµ1| · . . .Λ1−1/nj−1

[
|Sµj−1

| · Λ1−1/nj

[
|Sµj | · λD

]]
. . .

]
(6.4)
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is close to the hyperbolic metric at the origin, uniform in j ≥ 1. Indeed, by the

monotonicity properties of Λ, we have

λj ≤ Λ

[
|Sµ1| · . . .Λ

[
|Sµj−1

| · Λ
[
|Sµj | · λD

]]
. . .

]
, (6.5)

so that if λj is close to λD, then so must

Λ
[
|Sµ1||Sµ2 | · · · |Sµn|λD

]
.

Step 2. The estimate on the modulus of continuity of µj implies that |Sµj |λD ≥
λ

4/5
D on the circle S1−1/nj . Here, we use the fact that we can choose c′ < 1/10 in

(6.3). We claim that

Λ1−1/nj

[
|Sµj |λD

]
≥ (1/2)λD, on S1−1/nj−1

. (6.6)

Assuming (6.6), we have

|Sµj−1
| · Λ1−1/nj

[
|Sµj |λD

]
≥ λ

4/5
D , on S1−1/nj−1

.

We could then inductively show that λj ≥ (1/2)λD on S1−1/n1 . By Corollary 5.11,

this would mean that λj is very close to λD at the origin, provided n1 is large (this

is where we use that j0 can be made arbitrarily large.)

Step 3. Thus, we need to show that Λ1−1/nj

[
|Sµj |λD

]
≥ (1/2) · λD on S1−1/nj−1

.

Define ε > 0 by 1−1/nj = 1− ε so that 1−1/nj−1 = 1− ε1/2. There exists a unique

0 < ` < 1 so that Λ1−1/nj

[
λ

4/5
D
]

= L∗λD where L(z) = `z. Inspection shows that

1− ` � ε4/5. Therefore,

Λ1−1/nj

[
|Sµj |λD

]
≥ Λ1−1/nj

[
λ

4/5
D
]

=
`

1− |`z|2
≥ (1/2) · λD, on S1−1/nj−1

as desired.

Remark. We invite the reader to compare the above argument with the one given

by Roberts [22] which uses the corona theorem to estimate the distance from an

invariant subspace to the identity function in Bergman space. Even though the two

settings are very different, the proofs share a similar theme.

The above theorem completes the strategy for proving Theorem 1.1 outlined in

the introduction.
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