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Dimensions of Quasicircles

Find D(k), the maximal dimension of a k-quasicircle, the image of

S1 under a k-quasiconformal mapping of the plane,

homeomorphism, ∂wµ(z) = µ(z) · ∂wµ(z), ‖µ‖∞ ≤ k .

Theorem: (Becker-Pommerenke, 1987)

D(k) ≤ 1 + 36 k2 +O(k3).

Astala’s conjecture: (proved by Smirnov)

D(k) ≤ 1 + k2, for 0 < k < 1.



Bloch functions

Let b be a Bloch function on D, i.e. a holomorphic function

satisfying

sup
z∈D

(1− |z |2)|b′(z)| <∞.

Examples:

log f ′, f : D→ C conformal,

Pµ =
1

π

∫
D

µ(w)

(1− zw)2
|dw |2, µ ∈ L∞(D).

Lacunary series:

z + z2 + z4 + z8 + . . .



Asymptotic variance

For a Bloch function, define its asymptotic variance by

σ2(b) = lim sup
r→1

1

2πdD(0, r)

∫
|z|=r
|b(z)|2 |dz |.

Set

Σ2 := sup
|µ|≤χD

σ2(Pµ).

(AIPP) 0.879 ≤ Σ2 ≤ 1, (Hedenmalm) Σ2 < 1,

D(k) = 1 + k2Σ2 +O(k8/3−ε),

(Prause-Smirnov) D(k) < 1 + k2 for all 0 < k < 1.
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McMullen’s identity

Suppose µ is a dynamical Beltrami coefficient on the disk, either

I invariant under a co-compact Fuchsian group Γ,

I or eventually invariant under a Blaschke product f (z).

Then,

2
d2

dt2

∣∣∣∣
t=0

M. dimw tµ(S1) = σ2
(

d

dt

∣∣∣∣
t=0

log f ′
)
,

= σ2(Pµ),

= ‖ · ‖2WP,

where ‖ · ‖2WP is the Weil-Petersson metric.



Integral means spectra

For a conformal map f : D→ Ω, the integral means spectrum is

given by

βf (p) := lim sup
r→1−

log
∫
|z|=r |f

′(z)p| |dz |
dD(0, r)

, p ∈ C.

Fact. For f ∈ Sk , we have β(p) = p − 1⇐⇒ p = M. dim f (S1).



Question: What if suppµ is sparse?

Suppose µ ∈ M(D) is a Beltrami coefficient with ‖µ‖∞ ≤ 1 whose

support is contained in a “garden” G =
⋃∞

j=1 Bj .

Separation condition: hyperbolic distance dD(Bi ,Bj) > R, i 6= j .

Theorem A (I. 2016)

For sparse µ, we have the improved bounds

βwkµ+ (p) ≤ Ce−R/2k2|p|2/4, 0 < k < k1, k |p| < k2(R),

M. dimwkµ+(S1) ≤ 1 + Ce−R/2k2, k < k2(R).



Question: What if suppµ is sparse?

Suppose µ ∈ M(D) is a Beltrami coefficient with ‖µ‖∞ ≤ 1 whose

support is contained in a “garden” G =
⋃∞

j=1 Bj .

Separation condition: hyperbolic distance dD(Bi ,Bj) > R, i 6= j .

Theorem A (I. 2016)

For sparse µ, we have the improved bounds

βwkµ+ (p) ≤ Ce−R/2k2|p|2/4, 0 < k < k1, k |p| < k2(R),

M. dimwkµ+(S1) ≤ 1 + Ce−R/2k2, k < k2(R).



Dynamical case

Using McMullen’s identity, one can show that for dynamical

Beltrami coefficients µ, we have

d2

dt2

∣∣∣∣
t=0

M. dimw tµ(S1) . lim
r→1−

|G ∩ Sr |,

. lim sup
r→1−

1

| log(1− r)|

∫ r

0
|G ∩ Ss |

ds

1− s
.

For a garden G which is the union of horoballs a hyperbolic

distance R apart, this is ≤ Ce−R/2.



A set invariant under some degree 2 Blaschke product



Change of gears: Feynman-Kac formula

Consider a potential V : D→ R, which we assume to be positive,

bounded and continuous.

We are interested in studying the growth of solutions of

∂u

∂t
= ∆hypu + V (x)u(x),

where the initial condition u(x , 0) ≥ 0 & has compact support.

Feynman-Kac formula

u(x , t) = Ex

{
u(Bt , 0) exp

∫ t

0
V (Bs)ds

}
.
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Growth of solutions

Let

βV := lim sup
t→∞

1

t
log

∫
D
u(x , t)dAhyp(x).

Theorem
The rate of growth of the solution is given by

βV = lim sup
t→∞

1

t
· E0

{
exp

∫ t

0
V (Bs)ds

}
.

As a function of p ≥ 0, βV (p) := βpV is increasing and convex.
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Sparsely supported potentials

Theorem B (I. 2016)

Suppose V = χG =
⋃
Bj , where Bj are disjoint horoballs,

satisfying the separation condition dD(Bi ,Bj) > R. Then,

βV (p) := βpV ≤ Ce−R/2p2,

for p < p0(R) sufficiently small.



Non-concentration estimate

Integrating the PDE, we obtain

d

dt

∫
D
ut(x)dAhyp(x) =

∫
D
V (x)ut(x)dAhyp(x).

Therefore, it suffices to show the non-concentration estimate∫
B
ut(x)dAhyp(x) ≤ Ce−R/2

∫
B∗

ut(x)dAhyp(x), ∀t > 0,

where B∗j = {z ∈ D : dD(z ,Bj) ≤ R/2} are disjoint.
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Brownian motion escapes from horoballs

Lemma
Consider hyperbolic Brownian motion started at a point z0 ∈ ∂B.

Let

`(B) =

∫ ∞
0

χB(Bs)ds

denote the amount of time Brownian motion spends in B.

(i) E
(
`(B)

)
= O(1).

(ii) P
(
`(B) > t

)
< Ce−γt , γ > 0.

Lemma
Consider hyperbolic Brownian motion started at a point z0 ∈ ∂B∗.
Then, E

(
`(B)

)
= O(e−R/2).
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Back to conformal mappings

Fix p ∈ C \ {0} and consider the functions

ut(x) = |f ′(x)p| · pt(x), pt(x) = pt(0, x).

In view of the maximal modulus principle and the fact that the

probability P
(
dD(0,Bt) > 0.99 t

)
> c ,∫

D
ut(x)dAhyp(x) ≥ c

∫
|z|=r
|f ′(z)p| |dz |,

where dD(0, r) = 0.99 t.



Growth of solutions: “Brownian spectra”

d

dt

∫
D
|f ′(x)p| · pt(x)dAhyp(x) =

∫
D
|f ′(x)p| ·∆hyp[pt(x)]dAhyp(x),

=

∫
D

∆hyp|f ′(x)p| · pt(x)dAhyp(x),

=

∫
D
V (x)|f ′(x)p| · pt(x)dAhyp(x).

potential V = |p|2|nf /ρ|2 non-linearity nf = f ′′/f ′

E. Dyn’kin’s estimate:

V (z) ≤ Ck2|p|2e−(2−2k−ε)S , S = dD(z ,G),

We are fine as long as k < 1/2− ε so that 2− 2k − ε > 1.
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Thank you for your attention!


