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Dimensions of Quasicircles

Find D(k), the maximal dimension of a k-quasicircle, the image of
St under a k-quasiconformal mapping of the plane,

homeomorphism, Ow*(z) = u(z) - Owh(z), |plleo < k.
Theorem: (Becker-Pommerenke, 1987)
D(k) < 1+436k*+ O(k%).
Astala’s conjecture: (proved by Smirnov)

D(k)<1+k?  for0<k<1.



Bloch functions

Let b be a Bloch function on D, i.e. a holomorphic function

satisfying
325(1 —[2?)[b'(2)] < oo
Examples:
log f f : D — C conformal,

Pu = i/ﬂ)(l’i(g/)zww\?, p € L2(D).

Lacunary series:
2, 4, 8
z+z+z +z°+ ...



Asymptotic variance

For a Bloch function, define its asymptotic variance by

1
a?(b) = limsu / b(2)|? |dz|.
(6) = timsup oy | 162 1o

Set
Y2 := sup o%(Pp).
[l <xp



Asymptotic variance

For a Bloch function, define its asymptotic variance by

1
a?(b) = limsu / b(2)|? |dz|.
(6) = timsup oy | 162 1o
Set

Y2 := sup o%(Pp).
[l <xp

(AIPP) 0.879 < ¥2 <1, (Hedenmalm) ¥2 < 1,
D(k) = 1+ k?22 + O(k8/37¢),

(Prause-Smirnov) D(k) <1+ k?> forall0< k < 1.



McMullen’s identity

Suppose u is a dynamical Beltrami coefficient on the disk, either
» invariant under a co-compact Fuchsian group I,

» or eventually invariant under a Blaschke product f(z).

Then,
2"—2 M. dim w(S!) = a2<d log f’)
dt? |, dt],_o
= o2(Pp),
= - e

where || - [|3p is the Weil-Petersson metric.



Integral means spectra

For a conformal map f : D — €, the integral means spectrum is
given by

! 0P 1l
Be(p) = limsup 08 Jyj= If'(2)"| |dz|

, e C.
o dn(0, 1) P

Fact. For f € Sk, we have B(p) = p — 1 <= p = M.dim f(S1).



Question: What if supp p is sparse?

Suppose 1 € M(D) is a Beltrami coefficient with ||u]|oc < 1 whose
support is contained in a “garden” G = Uj’il B;.

Separation condition: hyperbolic distance dp(B;, Bj) > R, i # j.
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Theorem A (l. 2016)

For sparse 11, we have the improved bounds
Bt () < Ce R /4, 0< k< ki, klp| < k(R),

M. dim w * (S1) < 14 Ce R2K2,  k < ky(R).



Dynamical case

Using McMullen's identity, one can show that for dynamical
Beltrami coefficients 1, we have

d2

. t 1 .
ﬁ tZOM.dlm w M(S ) 5 r|—|>T7 ‘g N Sr|,

Slimsup ——————

i SUP TTogt /!Qm5|
r—1—

For a garden G which is the union of horoballs a hyperbolic
distance R apart, this is < Ce™R/2.



A set invariant under some degree 2 Blaschke product




Change of gears: Feynman-Kac formula

Consider a potential V : D — R, which we assume to be positive,
bounded and continuous.

We are interested in studying the growth of solutions of

ou
5 = Apyptu + V(x)u(x),

where the initial condition u(x,0) > 0 & has compact support.
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Consider a potential V : D — R, which we assume to be positive,
bounded and continuous.

We are interested in studying the growth of solutions of

ou
5 = Apyptu + V(x)u(x),

where the initial condition u(x,0) > 0 & has compact support.

Feynman-Kac formula

u(x, t) = Ex{u(Bt, 0) exp /Ot V(Bs)ds}.



Growth of solutions

Let 1
By = lim sup Iog/ u(x, t)dAnyp(x).
D
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Growth of solutions

Let
) 1
By = lim sup Iog/ u(x, t)dAnyp(x).
D

t—o00

Theorem
The rate of growth of the solution is given by

1 t
By = limsup — -Eo{exp/ V(Bs)ds}.
0

t—oo L

As a function of p > 0, Bv(p) := Bpv is increasing and convex.



Sparsely supported potentials

Theorem B (. 2016)

Suppose V = xg =UJ B;j, where B; are disjoint horoballs,
satisfying the separation condition dp(Bj, Bj) > R. Then,

Bv(p) = Bpy < Ce R/12p2,

for p < po(R) sufficiently small.



Non-concentration estimate

Integrating the PDE, we obtain

jt/DUt(X)dAhyp(X):/DV(X)Ut(X)dAhyp(X)_



Non-concentration estimate

Integrating the PDE, we obtain

jt/DUt(X)dAhyp(X):/DV(X)Ut(X)dAhyp(X).

Therefore, it suffices to show the non-concentration estimate

/ ut(x)dAnyp(x) < Ce_R/z/ ut(x)dAnyp(x), vVt >0,
B

*

where B = {z € D : dp(z, B;) < R/2} are disjoint.



Brownian motion escapes from horoballs

Lemma
Consider hyperbolic Brownian motion started at a point zy € 0B.
Let

oB) = /Ooo \5(B)ds

denote the amount of time Brownian motion spends in B.

(i) E(¢(B)) = O(1).
(i) P(¢(B) > t) < Ce™™, 4 >0.
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Lemma

Consider hyperbolic Brownian motion started at a point zy € 0B*.
Then, E(¢(B)) = O(e~R/2),



Back to conformal mappings

Fix p € C\ {0} and consider the functions

u(x) = [F'(x)P| - pe(x),  pe(x) = pe(0, x).

In view of the maximal modulus principle and the fact that the
probability P(dp(0, B;) > 0.99t) > c,

[tttz e [ 1eer e,

=r

where dp(0, r) = 0.99 t.



Growth of solutions: “Brownian spectra”

% /D £ (x)P| - pt(x)dAnyp(x) = /D |£/(x)P] - Anyp[pe(x)]dAnyp(x),
- /]D)AhYP’f/(X)p’ - pe(x)dAnyp(x),
— /D V(x)If(x)P] - pe(x)dAnyp(X).

potential V = ’p’2|nf/p’2 non-|inearity ng = f,//f/



Growth of solutions: “Brownian spectra”

& LI pe)Analx) = [ 170071 Biolp ()}
= [ Bl (071 i) ),
= [ VEIF G- i)l
potential V' = |p|?|n¢/p|? non-linearity ns = f"/f'
E. Dyn’kin’s estimate:
V(z) < Ck?|p|2e—(—2k=9)S S =do(2,G),

We are fine as long as k < 1/2 — ¢ so that 2 — 2k — e > 1.



Thank you for your attention!



