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Abstract

We present an elementary framework for counting pre-images in conformal

dynamical systems using Pesin theory and suspension flows. Besides being

elementary, our approach only requires minimal regularity assumptions on the

dynamical system. We give two applications:

(1) We show that the Orbit Counting Theorem holds up to a Cesàro average

for any non-uniformly hyperbolic rational map, while the full Orbit Counting

Theorem holds for all but a short list of exceptional maps. Additionally, we

employ a rigidity result of A. Eremenko and S. van Strien to count pre-images

when one takes into account the argument of the derivative.

(2) We show that the Orbit Counting Theorem holds for any infinite-to-one

Adler map acting on the unit circle with finite Lyapunov exponent.

1 Introduction

Loosely speaking, a dynamical system F : X → X is a map which you can iterate.

To state the Orbit Counting Theorem, we make several basic assumptions.

(OC1) The space X ⊂ Rd carries a probability measure m such that m a.e. F is

differentiable and the derivative DF ∈ R+ ·SO(d). In other words F : X →
X is a conformal dynamical system.
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(OC2) The measure m is a conformal measure of dimension α > 0. This means

that

m(F (E)) =

ˆ
E

|F ′(x)|αdm,

for any set E ⊂ X on which F is injective. Moreover, the sets on which

F is injective cover X up to measure zero, so that |F ′(x)|α qualifies as the

measure-theoretic Jacobian of m.

(OC3) The space X carries an F -invariant ergodic probability measure dµ = γ dm

which is absolutely continuous with respect to m.

(OC4) Finally, we assume that log |F ′(x)| ∈ L1(X,µ) and the Lyapunov exponent

χ(µ) =

ˆ
X

log |F ′(x)|dµ > 0.

At its simplest, Orbit Counting is concerned with counting pre-images of a point

x ∈ X. Consider the counting function

n(x, T ) = #
{
(n ≥ 0, y ∈ X) : F ◦n(y) = x, log |(F ◦n)′(y)| < T

}
.

We say that the Orbit Counting Theorem holds if for µ a.e. x ∈ ∂D,

n(x, T ) ∼ eαT · γ(x)

α
´
X
log |F ′(x)|dµ

, as T → ∞.

We say that the Orbit Counting Theorem holds up to a Cesàro average if for µ

a.e. x ∈ ∂D,

1

T

ˆ T

0

n(x, S)

eαS
dS → γ(x)

α
´
X
log |F ′(x)|dµ

, as T → ∞.

In addition to the four basic assumptions above which are needed to state the

Orbit Counting Theorem, we also make three additional assumptions:

(OC5) Pesin theory holds for the dynamical system F : X → X with respect to

the measure µ. (The assumption will be explained in Section 4).
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(OC6) The Radon-Nikodym derivative γ > c > 0 is bounded below by a positive

constant µ a.e. (In particular, the measures µ and m are equivalent.)

(OC7) The restricted sum∑
F (y)=x

|F ′(y)|−α − max
F (y)=x

|F ′(y)|−α > c′ > 0 (1.1)

is bounded below by a positive constant µ a.e. (The assumption is trivially

satisfied if |F ′| is bounded above and a.e. point x ∈ X has at least two

pre-images.)

Theorem 1.1. The Orbit Counting Theorem holds up to a Cesáro average under

the assumptions (OC1)–(OC7) above.

One ingredient in the proof of the above theorem is the ergodicity of a certain

suspension flow gt : X̂ρ → X̂ρ (defined in Section 2.2).

Theorem 1.2. Suppose a dynamical system F : X → X satisfies the assumptions

(OC1)–(OC7) above. If the suspension flow gt : X̂ρ → X̂ρ is mixing, then the Orbit

Counting Theorem holds.

According to Theorem 6.1 below, the suspension flow is mixing if and only if

there exists a measurable function w : X → ∂D and a constant a ∈ R\{0} such that

w(F (x)) = eia log |F
′(x)|w(x), µ a.e. x ∈ X. (1.2)

Furthermore, by Lemma 6.2, any measurable solution w of (1.2) is automatically

continuous on the Pesin set Xlin ⊂ X. The Pesin set will be defined in Section 6.1,

but for now, we note that it is a relatively open subset of X with µ(Xlin) = 1, which

could potentially be all of X.

For most dynamical systems, the functional equation (1.2) does not have any

non-trivial solutions (i.e. with a ̸= 0) as it implies the alignment of inverse branches

(this condition will be explained in Section 6.2). However, ruling out the existence

of non-trivial eigenfunctions for particular dynamical systems is tricky and can only

be done in a case-by-case basis. In this paper, we focus on rational functions acting

on the Riemann sphere and Adler maps acting on the unit circle.

3



Remark. The assumptions (OC6) and (OC7) are used to control the number of “bad”

repeated pre-images of x ∈ X. Without these assumptions, the arguments in this

paper show the lower bounds in Theorems 1.1 and 1.2.

1.1 Application to rational functions

Let F : Ĉ → Ĉ be a rational map of degree d ≥ 2 with Julia set J = J (F ). While

the above list of assumptions looks long, only assumptions (OC1)–(OC4) need to be

checked since the remaining assumptions are true for all rational maps or follow from

these: see Section 10.

By the work of Rivera-Letelier and Przytycki [PR07], the above assumptions are

satisfied for Topological Collet-Eckmann (TCE) rational maps, with α = H. dimJ (F ).

For an even more general class of rational maps satisfying the above hypotheses, we

refer the reader to the work of Graczyk and Smirnov, see [GS09, Theorem 4].

Theorem 1.3. The Orbit Counting Theorem holds for any rational map satisfying

the assumptions (OC1)–(OC7) above with a small number exceptions. The excep-

tional rational maps are the ones conjugate to:

• z±d for some d ≥ 2,

• ±Td where Td is the Chebyshev polynomial of degree d ≥ 2,

• Lattès maps.

Motivated by the work of H. Oh and D. Winter [OW17], we examine the following

counting function: for a point x ∈ J (F ) and an arc I ⊂ ∂D, we define n(x, T, I) as

#

{
(n ≥ 0, y ∈ J (F )) : F ◦n(y) = x, log |(F ◦n)′(y)| < T,

(F ◦n)′(y)

|(F ◦n)′(y)|
∈ I

}
.

We say that the Orbit Counting Theorem with rotation holds if for any arc I ⊂ ∂D,

n(x, T, I) ∼ |I|
2π

· eαT · γ(x)

α
´
J (F )

log |F ′(x)|dµ
, as T → ∞.
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Theorem 1.4. The Orbit Counting Theorem with rotation holds for any rational

map satisfying the conditions (OC1)–(OC7), albeit with a larger list of exceptions:

this time, we also need to include rational maps whose Julia sets are contained in a

circle or a line.

The proof is only slightly more difficult than that of Theorem 1.3. The extra

ingredient is a rigidity result of A. Eremenko and S. van Strien [EvS11]. The proofs

of Theorems 1.3 and 1.4 will be presented in Sections 12 and 13 respectively.

1.2 Applications to one-dimensional dynamics

A self-map F of the unit circle is an Adler map if it is C2 outside a closed subset Σ of

Lebesgue measure zero (called the singular set) and satisfies the following conditions:

sup
x∈∂D\Σ

|F ′(x)| > 1, lim sup
x→Σ

|F ′(x)| = ∞, (1.3)

M := sup
x∈∂D\Σ

|F ′′(x)|
|F ′(x)|2

< ∞. (1.4)

In Section 14, we show the following theorem:

Theorem 1.5. Let F be an Adler map acting on the unit circle. If
ˆ
∂D

log |F ′|dm <∞, (1.5)

then the Orbit Counting Theorem holds up to a Cesáro average. If F is infinite-to-

one, then the full Orbit Counting Theorem holds.

An alternative approach to orbit counting via thermodynamic formalism and

Tauberian theory was pioneered by S. P. Lalley [Lal89] and further developed in

[PoU17, IU23]. While this approach has its own advantages, it requires a slightly

stronger integrability assumption than necessary:

ˆ 1

0

(log |F ′|)1+εdm <∞, for some ε > 0.

By contrast, the technique in this paper gives the optimal result.

5



1.3 On periodic orbits and critical points

Lemma 1.6. Suppose µ is an ergodic probability measure on X.

(i) If the Lyapunov exponent of µ is positive, then µ does not charge the union of

the non-repelling periodic orbits.

(ii) If log |F ′(x)| ∈ L1(X,µ), then µ does not charge {x ∈ X : F ′(x) = 0}.

Proof. (i) For q ≥ 1, let NRq denote the set of periodic points of period q whose

multiplier has absolute value at most 1. If µ(NRq) > 0 for some q ≥ 1, then by the

ergodic theorem, there would exist a point x0 ∈ NRq such that

1

q
log |(F ◦q)′(x0)| =

ˆ
X

log |(F ◦n)′(x)|dµ(x).

This is a contradiction since the left hand side is ≤ 0 while the right hand side is

> 0 by the assumption. As a result, µ does not charge any of the sets µ(NRq).

(ii) is immediate from the assumption.

1.4 Notes and references

The general strategy was first utilized in the work [IU24] in the context of inner

functions with derivative in the Nevanlinna class. The case of inner functions is

in some ways easier, but in some ways harder than what is presented here: One

thing that makes inner functions simpler is that they are expanding on the unit

circle. One thing that makes inner functions more complicated is that in general,

the geodesic flow on a Riemann surface lamination associated to an inner function

cannot be represented as a suspension flow over the solenoid. Thus, while the present

work bears some similarities to [IU24], the two works are somewhat orthogonal with

different sets of challenges.

The work of Oh and Winter [OW17] discusses the Orbit Counting Theorem with

rotation for hyperbolic rational maps. Although they work with a rather special class

of well-behaved rational maps, they provide an O(e(α−ε)T ) error estimate by employ-

ing intricate machinery due to Dolgopyat [Dol98]. This approach relies on the fact

that the dynamical zeta function admits a meromorphic extension to a slightly larger

half-plane {s ∈ C : Re s > α−ε}. Somewhat remarkably, Z. Li and J. Rivera-Letelier
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[LR25] extended the Oh-Winter result to TCE rational maps, which could be less

well-behaved. We note that for general conformal dynamical systems, the mero-

morphic extension requires some extra regularity hypotheses, e.g. for Adler maps,

one would ask that
´
∂D |F

′|pdm < ∞ for some p > 0. It is possible that the Orbit

Counting Theorem does not hold with the above error term for a general Adler map

satisfying (1.5).

In an important work, M. Lyubich and Y. Minsky [LM97] associated natural

affine and hyperbolic laminations, AF and HF/F̂ , to a rational map F : Ĉ → Ĉ
of degree d ≥ 2. In [Glu10a, Glu10b], A. Glutsyuk studied the density and ergodic

properties of horospheres in HF/F̂ for convex co-compact rational maps (a rational

map is convex co-compact if it is critically non-recurrent and has no parabolic points).

An important tool in these works is a rigidity result from [KL05, Theorem 3.54] which

says that AF is Euclidean if and only if F is one of the exceptional rational maps

from Theorem 1.3. Glutsyuk’s work closely aligns with the approach in this paper,

although it is expressed in different terminology. In a classical argument due to

E. Hopf, one shows the mixing of the geodesic flow on the unit tangent bundle of a

compact hyperbolic surface by using the ergodicity of the horocyclic flow. Although

horospheres appear implicitly in Section 6, we do not use the horospherical flow –

instead, we rely on an argument of M. Babillot [Bab02] to give a direct proof of the

mixing of the geodesic or suspension flow.

The arguments in this paper show that under the assumptions of Theorem 1.2

on the conformal dynamical system (F,X, µ), for µ a.e. x ∈ X, as T → ∞, the

n(x, T ) repeated pre-images of x with log |(F ◦n)′(y)| < T equidistribute with respect

to the measure µ. It is possible that with a little bit more work, one can conclude

equidistribution under the less restrictive hypotheses of Theorem 1.1. One can com-

pare this with a celebrated result of Lyubich [Lyu83] which says that for any rational

map F : Ĉ → Ĉ of degree d ≥ 2, for all but two points x ∈ Ĉ, as n → ∞, the dn

pre-images of x of order n equidistribute with respect to the measure of maximal

entropy of F . It is worth mentioning that the case of polynomials is substantially

simpler and has been worked out by H. Brolin [Bro65] almost twenty years earlier.
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Part I

2 Preliminaries

In this section, we define the fundamental notions that will be used throughout this

paper: natural extensions, suspension flows and almost-invariant functions. We then

discuss the consequences of ergodicity and mixing of the suspension flow.

2.1 Natural extensions

Let F : X → X be a dynamical system and µ be an invariant measure supported on

X. The natural extension of (X,F, µ) is a triple (X̂, F̂ , µ̂), where:

1. The space X̂ consists of all backward orbits

· · · → x−2 →F x−1 →F x0

under the dynamics of F .

2. The map F̂ : X̂ → X̂ applies F to each coordinate:

(x−n) → (F (x−n)).

3. The measure µ̂ is the unique F̂ -invariant measure which projects to µ on each

coordinate.

Remark. We will sometimes index backwards orbits x = (xn)n∈Z by the integers,

rather than by the natural numbers. The difference is not essential since for n > 0,

xn = F ◦n(x0) is uniquely determined by x0.
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Given a set A ⊂ X, we write Â ⊂ X̂ for the set of inverse orbits x = (x−n)

with x0 ∈ A. From the definition of the natural extension measure, it is clear that

µ̂(Â) = µ(A).

It is well known that if µ is ergodic with respect to F : X → X, then the natural

extension measure µ̂ is ergodic with respect to F̂ : X̂ → X̂.

2.2 The suspension flow

We now define the suspension flow gs : X̂ρ → X̂ρ with respect to the roof function

ρ(x) = log |F ′(x0)|.

1. The suspension space X̂ρ is formed by taking the quotient of X̂ × R+ with

respect to the equivalence relation (x, t) ∼ F̂ (x, t) = (F̂ (x), |F ′(x0)| t).

2. The product measure µ̂× (dt/t) on X̂ × R+ descends to an invariant measure

µ̂ρ on the suspension space.

3. The suspension or geodesic flow gs : X̂ρ → X̂ρ is given by (x, t) → (F̂ (x), es · t).

It is not difficult to see that if µ̂ is ergodic for F̂ : X̂ → X̂, then µ̂ρ is ergodic

with respect to the suspension flow gs : X̂ρ → X̂ρ.

We write F (x, t) = (F (x), |F ′(x)|t) for the action on X ×R+ induced by F , and

F̂ (x, t) = (F̂ (x), |F ′(x0)|t) for the action on X̂ × R+ induced by F̂ . For a point

(x, r) ∈ X̂ × R+, it is convenient to write

rn = |(F ◦n)′(x0)|r, n ∈ Z,

so that (x, r) = (xn, rn)
∞
n=−∞ is a bi-infinite orbit under F̂ : X̂ × R+ → X̂ × R+.

Lemma 2.1. The total mass of the measure µ̂ρ on X̂ρ is

ˆ
X

log |F ′(x)|dµ(x).

Proof. To prove the lemma, we describe a fundamental domain E for the action of

F̂ on X̂ ×R+ and compute its area. Here, by a fundamental domain, we mean a set

9



E ⊂ X̂ × R+ such that almost any orbit in X̂ × R+ is equivalent to a unique point

in E.

Let A ⊂ X ×R+ be the set of points (x, t) in X × (0, 1] whose image under F̂ is

contained in X × (1,∞) and B ⊂ X × R+ be the set of points (x, t) in X × (1,∞)

whose image is contained in X × (0, 1]. In other words, A is the set of points which

leave X × (0, 1] while B is the set of points which enter X × (0, 1].

The saturated sets Â, B̂ ⊂ X̂ × R+ have areas

(µ̂× (dt/t))(Â) =

ˆ
X

log+ |F ′(x)|dµ(x),

(µ̂× (dt/t))(B̂) =

ˆ
X

log− |F ′(x)|dµ(x).

By the ergodic theorem, for almost every bi-infinite orbit (x, t) = (xn, tn)n∈Z in

X × R+, we have t−n → 0 and tn → ∞. As a result, under forward iteration by F̂ ,

almost every orbit passes through A, while almost every point in B lands in A in a

finite number of steps. We can therefore decompose

B =
∞⊔
i=1

Bi ⊔N,

where Bi ⊂ B is the subset of points whose minimal iterate that lies in A is F̂ ◦i and

N has measure zero. From the above remarks, it follows that

E = Â \
∞⊔
i=1

F̂ ◦i(B̂i)

is a fundamental domain for the action of F̂ on X̂ × R+ with

(µ̂× (dt/t))(E) = (µ̂× (dt/t))(Â)− (µ̂× (dt/t))(B̂)

=

ˆ
X

log |F ′(x)|dµ(x).

The proof is complete.
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2.3 Almost-invariant functions

Following [McM08, IU24], we say that a function h(x, t) : X × R+ → R is weakly

almost-invariant if for µ̂× (dt/t) a.e. (x, t) ∈ X̂ × R+, the limit

ĥ(x, t) := lim
n→∞

h
(
x−n, |(F ◦n)′(x−n)|−1 t

)
(2.1)

exists. The limit ĥ(x, t) can be viewed as a function defined almost everywhere on

the suspension space X̂ρ. We refer to the function ĥ(x, t) as the natural extension of

h(x, t).

Theorem 2.2. Suppose h : X × R+ → R is a bounded weakly almost-invariant

function. Then for µ almost every x ∈ X, we have

lim
T→∞

1

T

ˆ T

0

h(x, e−t)dt =
1´

X
log |F ′(x)|dµ

ˆ
X̂ρ

ĥ(x, t)dµ̂ρ.

Proof. By the ergodic theorem applied to the flow g−t : X̂ρ → X̂ρ, for µ̂ × (dt/t)

a.e. (x, r) ∈ X̂ρ, we have

lim
T→∞

1

T

ˆ T

0

ĥ(x, re−t)dt =
1´

X
log |F ′(x)|dµ

ˆ
X̂ρ

ĥ(x, t)dµ̂ρ.

As the set of pairs (x, r) ∈ X̂ρ for which the above equation holds is invariant under

the suspension flow, we might as well assume that r = 1. To complete the proof of

the theorem, we need to show that for µ̂ a.e. inverse orbit x = (x−n)
∞
n=0 ∈ X̂, we

have

lim
T→∞

1

T

ˆ T

0

h(x0, e
−t)dt = lim

T→∞

1

T

ˆ T

0

ĥ(x, e−t)dt. (2.2)

To that end, we check that

lim sup
T→∞

1

T

ˆ T

0

|h(x0, e−t)− ĥ(x, e−t)|dt = 0. (2.3)

Given an ε > 0 and a ρ > 0, we define A(ε, ρ) ⊂ X̂ρ as the set of pairs (x, r) ∈
X̂ρ = (X̂ × R+)/∼ for which

|h(xn, rn)− ĥ(x, r)| < ε, for all n ∈ Z with rn ≤ ρ.
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In other words, we look at the points of X̂ρ, for which the value of ĥ is determined

within ε by the part of the orbit that lies in X × (0, ρ].

By the definition of a weakly almost invariant function, for any fixed ε > 0,

µ̂ρ(A(ε, ρ)
c) → 0, as ρ→ 0.

We may therefore choose ρ = ρ(ε) so that µ̂ρ(A(ε, ρ)
c) < ε.

By the ergodic theorem, a generic backward trajectory {(x, re−t) : t > 0} spends

little time in A(ε, ρ)c, i.e.

lim
T→∞

1

T

ˆ T

0

χA(ε,ρ)c(x, re
−t) dt <

ε´
X
log |F ′(x)|dµ

,

and as before, we may assume that r = 1. Consequently,

lim sup
T→∞

1

T

ˆ T

0

|h(x0, e−t)− ĥ(x, e−t)|dt ≲ ε+
2ε∥h∥∞´

X
log |F ′(x)|dµ

,

which can be made arbitrarily small by requesting that ε > 0 is small. This concludes

the proof of (2.3) and hence of (2.2).

Theorem 2.3. Suppose h : X × R+ → R is a bounded weakly almost-invariant

function. If the suspension flow gt on X̂ρ is mixing, then for any window size δ > 0,

lim
T→∞

1

δ

ˆ T+δ

T

ˆ
X

h(x, e−t) dµ dt =
1´

X
log |F ′(x)|dµ

ˆ
X̂ρ

ĥ(x, t)dµ̂ρ (2.4)

and

lim
T→∞

1

δ

ˆ T+δ

T

ˆ
X

h(x, e−t) dmdt =
1´

X
log |F ′(x)|dµ

ˆ
X̂ρ

ĥ(x, t)dµ̂ρ. (2.5)

Proof. Consider the set Xδ = X × [e−δ, 1]. As usual, we write X̂δ for the collection

of inverse orbits (x, t) ∈ X̂ × R+ with (x0, t) ∈ Xδ. Pushing forward the measure

µ̂ × (dt/t)|X̂δ
of mass δ under the natural projection map X̂ × R+ → X̂ρ, we get a

measure M(x, t)µ̂ρ on X̂ρ, where the integer-valued density function M(x, t) records

the number of backward orbits in each equivalence class contained in X̂δ. By the

mixing of the suspension flow gt : X̂ρ → X̂ρ, as T → ∞,〈
ĥ, g−T [M(x, t)]

〉
→ δ´

X
log |F ′(x)|dµ

ˆ
X̂ρ

ĥ(x, t) dµ̂ρ
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or
1

δ

ˆ
X̂

ˆ T+δ

T

ĥ(x, e−t) dµ̂ dt→ 1´
X
log |F ′(x)|dµ

ˆ
X̂ρ

ĥ(x, t) dµ̂ρ.

Using the sets A(ε, ρ) ⊂ X̂ρ as in the previous proof, one can show that

lim
T→∞

1

δ

∣∣∣∣ˆ
X̂

ˆ T+δ

T

ĥ(x, e−t) dµ̂ dt−
ˆ
X̂

ˆ T+δ

T

h(x0, e
−t) dµ̂ dt

∣∣∣∣ = 0,

from which (2.4) follows. The argument for (2.5) is similar, except that we use the

pushforward of the measure γ(x0)
−1 · µ̂× (dt/t)|X̂δ

, which also has mass δ.

We define the hyperbolic metric on X × R+ by

dX×R+

(
(x, t1), (y, t2)

)
:= dH(it1, |x− y|+ it2),

where dH denotes the hyperbolic distance in the upper half-plane H. In particular,

dX×R+

(
(x, t1), (x, t2)

)
= log |t2/t1|.

Under a mild continuity hypothesis on h, averaging over windows becomes unneces-

sary:

Corollary 2.4. Suppose h : X × R+ → R is a bounded weakly almost-invariant

function which is uniformly continuous in the hyperbolic metric of X × R+ in the t

variable. If the suspension flow gt on X̂ρ is mixing, then

lim
T→∞

ˆ
X

h(x, e−T )dµ =
1´

X
log |F ′(x)|dµ

ˆ
X̂ρ

ĥ(x, t)dµ̂ρ.

and

lim
T→∞

ˆ
X

h(x, e−T )dm =
1´

X
log |F ′(x)|dµ

ˆ
X̂ρ

ĥ(x, t)dµ̂ρ.

3 Linear distortion

For simplicity of exposition, we work with holomorphic mappings in the complex

plane, but the arguments are applicable in Rd for any d ≥ 1.
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Let Ω ⊂ C be a domain in the plane and F : Ω → C be a (possibly discontinuous)

map. In this section, we describe one possible way of quantifying how far away F is

from a linear map in a ball B(x, r) ⊂ Ω. We equip the punctured plane C \ {0} with

the metric |dz|/|z|.
If F is holomorphic on B(x, r) and F ′ does not vanish on B(x, r), then we define

the linear distortion of F near x at scale r as

δF (x, r) := min
(
1/10, diamC\{0}

{
F ′(z) : z ∈ B(x, r)

})
.

Otherwise, we simply set δF (x, r) := 1/10. For 0 < ε < 1/10, we say that F is

ε-linear on B(x, r) if δF (x, r) < ε. The constant 1/10 has been chosen so that if F is

ε-linear on B(x, r) then F is injective on B(x, r). The following lemma summarizes

the basic properties of linear distortion:

Lemma 3.1. Linear distortion satisfies the following properties:

(i) δF (x, r) = 0 if and only if F is linear on B(x, r).

(ii) If B(y, s) ⊂ B(x, r) then δF (y, s) ≤ δF (x, r).

(iii) If F is conformal at x, then δF (x, r) → 0 as r → 0.

(iv) The image of a ball B(x, r) is close to a ball centered at F (x):

B
(
F (x), e−ε|F ′(x)|r

)
⊂ F (B(x, r)) ⊂ B

(
F (x), eε|F ′(x)|r

)
.

Lemma 3.2. Suppose F1, F2, . . . , Fn is a sequence of maps. For a point x = x0 ∈ C
and real number r = r0 > 0, we have

δFn◦Fn−1◦···◦F1(x, r) ≤
n∑

j=1

δFj
(xj, 2rj), (3.1)

where xj+1 = Fj+1(xj) and rj+1 = |F ′
j+1(xj)|rj for j = 0, 1, . . . , n− 1.

The motivation behind the definition of rj is that if F were a linear map at each

step, then F would map B(xj, rj) to B(xj+1, rj+1).

Lemma 3.3. For any complex numbers zj, wj ∈ C \ {0}, j = 1, 2, . . . , n, we have

dC\{0}(z1z2 · · · zn, w1w2 · · ·wn) ≤
n∑

j=1

dC\{0}(zj, wj). (3.2)
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Proof. It suffices to consider the case when n = 2, as the general case follows from

induction. First note that dC\{0} is homogenous in the sense that if a ∈ C\{0}, then

dC\{0}(az, aw) = dC\{0}(z, w).

Using the above fact together with the triangle inequality, we get

dC\{0}(z1z2, w1w2) ≤ dC\{0}(z1z2, w1z2) + dC\{0}(w1z2, w1w2)

= dC\{0}(z1, w1) + dC\{0}(z2, w2),

as desired.

Proof of Lemma 3.2. If the right hand side of (3.1) exceeds 1/10, the inequality is

trivial. Otherwise, by Lemma 3.1(iv), under iteration, the image of the ball B(x, r)

is contained inside the balls B(xj, 2rj), j = 1, 2, . . . , n. From here, (3.1) follows from

Lemma 3.3.

4 Background on Pesin theory

In this section, we give a gentle introduction to Pesin theory for conformal dynamical

systems. As a byproduct of our discussion, we will give a new (and perhaps simpler)

proof of a result by Przytycki and Urbanski [PrU10, Theorem 10.2.3] which says

that if F is a rational map and µ is an invariant measure supported on J (F ) with

positive Lyapunov exponent, then (F,J (F ), µ) is non-uniformly hyperbolic.

4.1 Hyberbolic dynamical systems

Suppose X ⊂ C is a closed set in the complex plane. In a hyperbolic dynamical

system F : X → X, the limit set X is self-similar with bounded distortion. This

means that a little piece of X looks like a slightly distorted copy of a piece of X of

definite size. More precisely, for each x ∈ X and 0 < r < diamX, there is an iterate

F ◦n which maps B(x, r) injectively onto a set whose diameter is comparable to the

diameter of X such that

1/C ≤ |(F ◦n)′(x1)|
|(F ◦n)′(x2)|

≤ C, x1, x2 ∈ B(x, r).
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The characteristic property of a hyperbolic dynamical system is that for any

inverse orbit x = (x−n), the dynamics is univalent asymptotically linear (UAL):

1. There exists an r(x) > 0 so that that F ◦n has an inverse branch defined on

B(x0, r) which takes x0 to x−n.

2. The diameters of F−n(B(x0, r)) shrink to 0.

3. The sequence of normalized maps

Fx,−n(z) = Lx,−n ◦ F−n =
F−n(z)− x−n

|(F−n)′(x0)|

converges uniformly on compact subsets of B(x0, r) to some function F−∞
x .

Here, the sequence of affine maps Lx,−n(z) = Ax,−nz + Bx,−n has been chosen

so that

Fx,−n(x0) = 0 and (Fx,−n)
′(x0) = 1.

As n → ∞, the sequence of entire functions {F ◦n ◦ L−1
x,−n} converges uniformly

on compact subsets of the complex plane. The limit of these maps F∞
x is the inverse

of F−∞
x on B(x0, r).

4.2 Non-uniform hyperbolicity

In this paper, we work with a less stringent class of dynamical systems, where the

dynamics is non-uniformly hyperbolic. Below, we assume that the dynamical system

F : X → X satisfies the following basic assumptions:

P1. F possesses an ergodic probability measure µ.

P2. F is differentiable µ almost everywhere.

P3. The Lyapunov exponent

0 <

ˆ
X

log |F ′(x)|dµ <∞.

We say that that a dynamical system F : X → X is non-uniformly hyperbolic if

backward iteration is asymptotically linear for µ̂ almost every inverse orbit x ∈ X̂.
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Theorem 4.1. Suppose that (F,X, µ) is a dynamical system which satisfies the As-

sumptions P1–P3 above. If

∆ =

ˆ
X

ˆ 1

0

δF (x, r)
dµ dr

r
<∞,

then (F,X, µ) is non-uniformly hyperbolic.

The above condition says that if we want to show that Pesin theory holds for

a particular dynamical system, then its enough to check that the total amount of

linear distortion present at scales less than 1 is finite.

4.3 Cumulative distortion

Suppose x = (x−n)
∞
n=0 is a backward orbit. We define the cumulative linear distortion

of F along x at scale r > 0 as

δ̂F (x, r) =
∞∑
n=1

δF (x−n, 2r−n), r−n = |F ◦n(x−n)|−1r.

Lemma 4.2. Let 0 < ε < 1/10. If δ̂F (x, r) < ε, then for any n ≥ 0, F−n admits an

ε-linear inverse branch on B(x0, r) which takes x0 to x−n.

Corollary 4.3. If δ̂F (x, r) <∞, then for any ε > 0 and n ≥ n0(ε) sufficiently large,

F admits ε-linear inverse branches on B(x−n, r−n) along x.

Proof of Theorem 4.1. By the ergodic theorem and the positivity of the Lyapunov

exponent, for µ̂ almost every inverse orbit x ∈ X̂,

(F−n)′(x0) → 0,

so that µ̂× (dr/r) almost every backward orbit of the map

F : (x, r) → (F (x), |F ′(x)|r)

eventually lies inside X × (0, 1]. In other words, X × (0, 1] is a backwards absorbing

set. Since

δ̂1(x, r) =
∞∑

n=−∞

χ{rn<1} · δ(xn, rn)
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measures the cumulative distortion along the part of a bi-infinite orbit (x, r) =

(xn, rn)
∞
n=−∞ ∈ X̂ρ contained in X × (0, 1],

∆ =

ˆ
X

ˆ 1

0

δF (x, r)
dµ dr

r
=

ˆ
X̂ρ

δ̂1(x, r)dµ̂ρ.

Consequently, if ∆ < ∞, then for a.e. (x, r) ∈ X̂ρ, the cumulative linear distortion

over the part of (x, r) contained in X× (0, 1] is finite. The theorem now follows from

Corollary 4.3.

4.4 Example: Gauss map

We first consider a one-dimensional example. By identifying the endpoints, we can

think of the interval [0, 1] as a circle. We write {x} = x − ⌊x⌋ for the fractional

part of x. The Gauss map F : (0, 1] → (0, 1] is given by x → {1/x}. The Lebesgue

measure m = dx is a conformal measure of dimension 1, while

µ =
1

log 2
· dx

1 + x

is an ergodic absolutely continuous probability measure. In this example, the Radon-

Nikodym derivative γ = dµ/dm is bounded above and below.

We may express (0, 1) as a union of countably many intervals In = [1/(n+1), 1/n),

with n = 1, 2, . . . , each of which get mapped bijectively onto [0, 1). It is not difficult

to see that

δF (x, r) ≲

1, r ≥ |In|,

r/|In|, r ≤ |In|.

As the length |In| of In is comparable to 1/n2, we have ∆ ≍ |In| log 1
|In| <∞, and so

the Gauss map is non-uniformly hyperbolic by Theorem 4.1.

4.5 Example: Rational maps

Let F : C → C be a rational map and µ be an invariant measure supported on the

Julia set of F whose Lyapunov exponent is finite and positive:

0 <

ˆ
J (F )

log |F ′(x)|dµ <∞.
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For a point x ∈ J (F ), let Inj(x) denote the radius of the largest ball centered at x

on which F is injective. (If x is a critical point of F , we set Inj(x) to 0.) By Koebe’s

distortion theorem,

δF (x, r) ≲

1, r ≥ Inj(x),

r/ Inj(x), r ≤ Inj(x),

which leads to the estimate

∆ ≲
ˆ
J (F )

log+
1

Injx
dµ(x). (4.1)

Let d(x,CV) be the Euclidean distance from x to the set of the critical values of

F . With help of Koebe’s distortion theorem, it is not difficult to see that

d(F (x),CV)

|F ′(x)|
≲ Injx.

Consequently, the finiteness of the integral

ˆ
J (F )

log+
1

d(x,CV)
dµ(x) (4.2)

guarantees that ∆ < ∞. As rational maps have finitely many critical values, ∆ is

finite.

The above conditions are also applicable to the dynamics of entire functions,

provided one replaces critical values with singular values. Note however that an

entire function can have infinitely many singular values, ∆ need not be finite. For

applications, see [Jov24].

5 A measurable atlas

By a measurable atlas , we mean a collection of measurable sets that cover a measure

space up to a set of measure zero. Below, we describe convenient collections of UAL

charts for (X̂, µ̂) and (X̂ρ, µ̂ρ), which we will use throughout this paper.

Suppose x ∈ X does not belong to a grand orbit of a critical point or a periodic

point such that |(F ◦n)′(x)| → ∞ as n→ ∞. (By Lemma 1.6, we are excluding a set
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of points of measure zero.) We write

⃝ = ⃝x = B(x, η) ∩X ⊂ X

and

□ = □x,t = (B(x, η) ∩X)× (e−ηt, t) ⊂ X × R+.

Due to the above restrictions on the point x ∈ X, when the scale 0 < η < η0(x) is

sufficiently small,

F ◦n(□) ∩□ = ∅, for any n ≥ 0, (5.1)

and the sets {F−n(□) : n ≥ 0} are disjoint.

Let y be a repeated pre-image of x, i.e. a point in X such that F ◦n(y) = x for

some n ≥ 0. We write ⃝y for the connected component of F−n(⃝) which contains y

and □y for the connected component of f−n(□) which contains (y, |(F ◦n)′(y)|−1). We

say that y is “ε-linear at scale η” or“good” if for any 0 ≤ k ≤ n, the branch of F−k

which takes x→ F ◦(n−k)y defines an ε-linear homeomorphism from ⃝x to ⃝F ◦(n−k)y.

We denote the union of the boxes □y associated to good repeated pre-images of x

by □̃ε,η ⊂ X × R.
Similarly, we say that a backward orbit x with x0 = x is “ε-linear at scale η” or

“good” if for any n ≥ 0, F−n defines an ε-linear homeomorphism from ⃝x0 to ⃝x−n .

We define ⃝x ⊂ X̂ as the set of inverse orbits z with z−n ∈ ⃝x−n and □x ⊂ X̂×R+

as the set of inverse orbits (z, t) with (z−n, t−n) ∈ □x−n . Finally, we define ⃝̂ε,η ⊂ ⃝̂
and □̂ε,η ⊂ □̂ as unions of ⃝x and □x over all good inverse orbits that start in ⃝x.

In view of (5.1), the natural projection from X̂ × R+ to X̂ρ is injective on □̂ε,η, so

that □̂ε,η is naturally a subset of X̂ρ.

To summarize, for any fixed ε > 0, the sets {⃝̂xj ,ηj
} cover X̂ up to µ̂ measure

zero, while the sets {□̂xj ,tj ,ηj} satisfying (5.1) cover X̂ρ up to µ̂ρ measure zero.

5.1 Abundance of good pre-images

We now show that when the scale η > 0 is small, most pre-images are good:

Lemma 5.1. Suppose 0 < ε < 1/10 is fixed. For µ a.e. x ∈ X, we have

lim
η→0

µ̂(⃝̂ε,η)

µ̂(⃝̂)
= 1,
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where ⃝ = B(x, η) ∩X and ⃝̂ε,η ⊂ X̂ is the union of all ε-linear inverse branches

defined on ⃝.

Proof. For r > 0, we define Gr ⊂ X̂ as the set of inverse orbits y = (y−n)
∞
n=0 ∈ X̂ for

which inverse iteration is ε-linear on B(y0, r). It is clear from the definitions that the

sets Gr are increasing as r → 0+. By non-uniform hyperbolicity, the union
⋃

r>0 Gr

has full µ̂ measure.

Restricting µ̂ to Gr and projecting onto the 0-th coordinate, we obtain the mea-

sures νr = (π0)∗µ̂|Gr , r > 0, on X. Evidently, as r → 0, the measures νr increase

to (π0)∗µ̂ = µ. In other words, for µ a.e. x ∈ X, the Radon-Nikodym derivatives

(dνr/dµ)(x) increase to 1.

By Lebesgue’s differentiation theorem, for µ a.e. x ∈ X and δ > 0, there exists

an r = r(x, δ) > 0 so that

lim
η→0

µ̂(Gr ∩ ⃝̂)

µ(⃝)
= lim

η→0

νr(⃝)

µ(⃝)
=

dνr
dµ

(x) > 1− δ. (5.2)

From the definitions, it is clear that if 0 < η < r/2 and y is an inverse orbit with

y0 ∈ ⃝ such that inverse iteration under F is ε-linear on B(y0, r) along y, then

y ∈ ⃝̂ε,η. Consequently, for any 0 < η < r/2 sufficiently small, we have

µ̂(⃝̂ε,η)

µ(⃝)
> 1− δ.

The lemma follows since δ > 0 was arbitrary.

Remark. We say that x ∈ X is a ε-Pesin point if

lim
η→0

µ̂(⃝̂ε,η)

µ̂(⃝̂)
= 1

and a strong Pesin point if the above limit is 1 for any ε > 0. The above lemma

shows that µ a.e. x ∈ X is a strong Pesin point.
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5.2 Uniformly continuous functions

In Section 2.3, we defined a hyperbolic metric on X ×R+. We now define a leafwise

hyperbolic metric on X̂ × R+. Namely, suppose that z(·) is a UAL inverse branch

on U , x0, y0 ∈ U and x = z(x0),x = z(y0). We set

dX̂×R+

(
(x, s), (y, t)

)
:= lim

n→∞
dX×R+

(
(x−n, s−n), (y−n, t−n)

)
= lim

n→∞
dH(is−n, |x−n − y−n|+ it−n).

Lemma 5.2. Consider the set of functions h : X × R+ → R which are uniformly

continuous in the hyperbolic metric of X×R+. Their natural extensions ĥ to X̂ρ are

dense in L2(X̂ρ, µ̂ρ).

From the definition above, it is clear that the natural extensions ĥ are uniformly

continuous functions on the leaves of X̂ρ.

Proof. Since X̂ρ is covered by countably many product charts □̂ε,η up to a set of

measure zero, it suffices to approximate any function h ∈ L2(X̂ρ, µ̂) which is sup-

ported on finitely many such product charts, and thus any function h ∈ L2(X̂ρ, µ̂)

supported on a single product chart □̂ε,η.

For a point (w, r) ∈ X × R+, we write

T (w, r) =
{
(w, r) : w0 = w, r0 = r

}
∈ X̂ × R

for the “fiber” of inverse orbits under F̂ which start at (w, r). Naturally, Tε,η(w, r)

denotes the intersection of T (w, r) and □̂ε,η.

Since □̂ε,η is a product over □, the measure µ̂|□̂ε,η
disintegrates into conditional

measures νw,r on the fibers Tε,η(w, r), indexed by (w, r) ∈ □. This means that

µ̂|□̂ε,η
(E) =

ˆ
□
νw,r(E ∩ T (w, r)) dµ dt

t
,

for any measurable set E ⊂ □̂ε,η. More generally, for a good repeated pre-image y

of x, we write □̂y,ε,η ⊂ □̂ε,η for the subset of inverse orbits that pass through □y. By

the same reasoning, the measure µ̂|□̂y,ε,η
disintegrates into the conditional measures
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νw,r indexed by (w, r) ∈ □y on the fibers Tε,η(w, r), which consist of inverse orbits in

□̂ε,η that pass through (w, r).

We define a sequence of weakly almost-invariant functions hn : X × R+ → R,
supported on □̃ε,η. We first define hn on the boxes □y, where y ranges over the

repeated pre-images of x of order n, by averaging h over good inverse branches:

hn(w, r) =
1

νw,r(Tε,η(w, r))

ˆ
Tε,η(ξ,r)

h(w, r)dνw,r, (w, r) ∈ □y.

We then extend hn by backwards invariance to the pre-images □z of □y which belong

to □̃ε,η. By the L2 martingale convergence theorem, the natural extensions ĥn(z, r)

convege to ĥ.

To get an approximation by uniformly continuous functions, we first use Lusin’s

theorem to tweak hn on the boxes □y before extending hn to the boxes □z.

6 When is the suspension flow mixing?

In this section, we show the following theorem:

Theorem 6.1. Let (X,F, µ) be a non-uniformly hyperbolic dynamical system, where

µ is an ergodic probability measure on X with a positive Lyapunov exponent. The

suspension flow gt : X̂ρ → X̂ρ is mixing if and only if there exists a measurable

function w : X → ∂D and an a ∈ R \ {0} such that

w(F (x)) = eia log |F
′(x)|w(x), µ a.e. x ∈ X. (6.1)

6.1 Basic observations

Let U be a connected open set which intersects X. We define ÛUAL ⊂ Û as the union

of the inverse branches on which backward iteration is univalent and asymptotically

linear. Similarly, for 0 < ε < 1/10, we define Ûε-linear ⊂ ÛUAL as the union of the

inverse branches on which backward iteration is ε-linear. We define the Pesin set

Xlin ⊂ X as the union of relatively open subsets X ∩U ⊂ X for which µ̂(ÛUAL) > 0.

Alternatively, the Pesin set could have been defined using ε-linearity. From Section

5, we know that these cover X up to a set of measure 0, i.e. µ(Xlin) = µ(X) = 1.

23



The following lemma is essentially due to A. Zdunik [Zdu90, Lemma 2], see also

[FU00, Lemma 3]:

Lemma 6.2. After redefining on a set of µ measure zero, any solution w of the

functional equation (6.1) is continuous on the Pesin set.

Sketch of proof. Let U be a connected open set such that µ̂(ÛUAL) > 0. Pick an

arbitrary point x ∈ X ∩ U . For a UAL inverse branch z = (z−n(·))∞n=0 defined on

U , form the rescaling limit Φx, normalized along the inverse orbit x = z(x). By the

functional equation, for any y ∈ X ∩ U , y = z(y) and n ≥ 0, we have

arg
w(y)

w(x)
= arg

w(y−n)

w(x−n)
+ a · log |(F ◦n)′(y−n)|

|(F ◦n)′(x−n)|
.

An argument involving Lusin’s theorem (see the references) shows that there is a

subsequence of integers nj → ∞ such that arg
w(y−nj )

w(x−nj )
→ 0. Taking the limit along

this subsequence, we see that

arg
w(y)

w(x)
= a · log |Φ′

x(y)|
|Φ′

x(x)|
= a · log |Φ′

x(y)|.

From the above equation, it is clear that w(y) is continuous on X ∩ U .

Lemma 6.3. If the functional equation (6.1) has a solution, then the geodesic flow

gt : X̂ρ → X̂ρ is not mixing.

Proof. Since the value of argw(x) is defined modulo 2π, the value of (1/a) argw(x)

is defined modulo 2π/a. By the functional equation for w, the set

A =
{
(x, t) ∈ X × R+ : (1/a) argw(x)− log t ∈ [0, π/a] mod 2π/a

}
is invariant under F̂ : X ×R+ → X ×R+. An examination of the proof of Theorem

2.3 shows that if gt : X̂ρ → X̂ρ is mixing, then for any connected open set U ⊂ C
and δ > 0, the limit

lim
T→∞

1

δ

ˆ T+δ

T

ˆ
X∩U

χA(x, e
−T )dµ (6.2)

exists. It is clear from the definition of the set A that the function

T →
ˆ
X∩U

χA(x, e
−T )dµ
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is periodic with period 2π/a.

By choosing U appropriately, we can ensure that the limit in (6.2) does not exist.

For this purpose, let V be a connected set such that µ̂(V̂UAL) > 0. Since w is

continuous on X ∩ V by Lemma 6.2, we can take U to be an open subset of V such

that µ(ÛUAL) > 0 and |w(x1) − w(x2)| < π/(5a) for x1, x2 ∈ X ∩ U . If δ = π/(5a),

then for some values of T ,

1

δ

ˆ T+δ

T

ˆ
X∩U

χA(x, e
−T )dµ

will be zero, while for other values of T , it will be positive (and strictly bounded

below by periodicity).

6.2 Non-alignment implies mixing

Suppose z and z′ are two univalent asympotically linear (UAL) inverse branches

defined on a connected open set U which intersects X. We say that z and z′ are

aligned on X if the rescaling maps F−∞
x (z) = F−∞

x′ (z), z ∈ X ∩ U , where x = z(x0)

and x′ = z′(x0) are inverse orbits that start at x0 ∈ X ∩ U . We say that z and

z′ are absolute-value aligned if the weaker condition |F−∞
x (z)| = |F−∞

x′ (z)| holds for
z ∈ X ∩ U . In this section, we show:

Theorem 6.4. If a positive measure of UAL inverse branches are not absolute-value

aligned, then the suspension flow on X̂ρ is mixing.

To prove Theorem 6.4, we use an argument due to M. Babillot based on [Bab02,

Lemma 1]. In our setting, Babillot’s lemma can be stated as follows: let h ∈
L2(X̂ρ, µ̂ρ). If h ◦ gt does not converge weakly to a constant function (as t tends

to ±∞), then there is a sequence of times tn → ∞ and a non-constant function

ψ ∈ L2(X̂ρ) so that

h ◦ gtn → ψ and h ◦ g−tn → ψ,

weakly in L2(X̂ρ, µ̂ρ) as n→ ∞.

In light of the aforementioned density result, Theorem 6.4 reduces to showing the

following statement:
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Lemma 6.5. In the setting of Theorem 6.4, suppose that ĥ : X̂ρ → R is the natural

extension of a function h : X×R+ → R that is uniformly continuous in the hyperbolic

metric of X̂×R+. If for some sequence of real numbers tn → ∞ and ψ ∈ L2(X̂ρ, µ̂ρ),

ĥ ◦ gtn → ψ and ĥ ◦ g−tn → ψ,

then ψ is constant.

Let U be a connected open set which intersects X with µ̂(ÛUAL) > 0. Below,

x0, y0 will denote two points in X ∩U . We will generally fix x0 and let y0 vary. For a

UAL inverse branch z(·) = (z−n(·))∞n=0 defined on U , we write x = z(x0), y = z(y0)

and ∆x(y0) = |(F−∞
x )′(y0)|. By construction, the function y0 → ∆x(y0) is continuous

on X ∩ U and is normalized so that ∆x(x0) = 1.

Lemma 6.6. Let {tn} be the sequence of real numbers and ψ be the limit function

from Lemma 6.5. After redefining ψ on a set of µ̂ measure zero if necessary, the

following holds: for any univalent inverse branches z, z′ ⊂ ÛUAL, we have:

ψ

(
x,

∆x′(y0)

∆x(y0)
t

)
= ψ(x, t), t > 0, x0, y0 ∈ X ∩ U. (6.3)

Proof. Step 1. Using the forward geodesic flow. If ĥ is leafwise uniformly continuous

in the hyperbolic metric on X̂ρ, then so are the functions ĥ◦g±tn . After redefining on

a set of measure zero, the limit ψ is also leafwise uniformly continuous with the same

modulus of continuity. As the points (x, t) and (y,∆x(y0)t) are forward-asymptotic

under the geodesic flow:

lim
s→∞

dhyp
(
(x, est), (y,∆x(y0)e

st)
)
= 0,

we have

ψ(x, t) = ψ(y,∆x(y0)t), t > 0. (6.4)

A similar argument shows that

ψ(x′, t) = ψ(y′,∆x′(y0)t), t > 0. (6.5)
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Step 2. Using the backward geodesic flow. With help of the sets A(ε, ρ) ⊂ X̂ρ

from Section 2.2, it is not difficult to show that for µ̂× (dt/t) a.e. (x, r) ∈ X̂ × R+,

lim
n→∞

g−tnĥ(x, r) = lim
n→∞

ĥ(x, re−tn) = lim
n→∞

h(x, re−tn).

In other words, except on a set of µ̂× (dt/t) measure zero,

ψ(x, r) = ψ(x0, r) (6.6)

only depends on the 0-th coordinate of x.

Step 3. Conclusion. Putting (6.4),(6.5) and (6.6) together, we obtain

ψ

(
x,

∆x′(y0)

∆x(y0)
t

)
= ψ

(
y,∆x′(y0) t

)
= ψ

(
y′,∆x′(y0) t

)
= ψ(x′, t) = ψ(x, t),

which is what we wanted to show.

We are now ready to show Theorem 6.4:

Proof of Theorem 6.4. Let x0 ∈ X and suppose that the inverse branch z′ is not

absolute-valued aligned with z on any neighbourhood U of x0. As the function

y0 → ∆x′ (y0)
∆x(y0)

attains values arbitrarily close but not equal to 1, the periods

∆x′(y0)

∆x(y0)
, y0 ∈ U,

generate a dense subgroup group (R+, ·). Lemma 6.6 tells us that ψ is constant on

the fiber

(ÛUAL × R+) ∩
{
(z, t) ∈ X̂ρ : z0 = x0, t ∈ R+

}
.

By (6.4), ψ is constant on ÛUAL × R+, while by (6.6), ψ is constant on Û × R+.

Since µ̂ρ a.e. point in X̂ρ is equivalent to a point in Û × R+, ψ is constant on X̂ρ as

desired.
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6.3 Mixing and the functional equation

Proof of Theorem 6.1. Lemma 6.3 says that if the functional equation (6.1) has a

solution, then the flow gt : X̂ρ → X̂ρ is not mixing. It remains to show the converse:

namely, if the flow is not mixing, then the functional equation (6.1) has a solution

w : X → ∂D.
Let ψ be the limit function from Lemma 6.5 as before. We lift ψ : X̂ρ → R to

a function defined on X̂ × R+. We say that λ > 0 is a period of ψ on the fiber

{x} × R+ ⊂ X̂ × R+ if

ψ(x, λt) = ψ(x, t), for all t > 0.

We write Per(x) ⊂ R+ for the set of periods of ψ on {x}×R+. Since ψ is continuous,

Per(x) forms a closed multiplicative subgroup of R+. We say that λ > 0 is an essential

period of ψ : X̂ ×R+ → R if the above equation holds for µ̂ a.e. inverse orbit x ∈ X̂.

We denote the essential periods of ψ by Per(ψ).

Step 1. Suppose U is a connected open set such that µ̂(Ûε-linear) > 0. We use

the following notation: z, z′ are ε-linear inverse branches defined on U , x0, y0 are two

points in X ∩ U and x = z(x0),y = z(y0),x
′ = z′(x0),y

′ = z′(y0). We make the

following simple observations:

1. Since ψ : X̂ × R+ → R is F̂ -invariant, Per(x) = Per(F̂ (x)).

2. With help of the forward geodesic flow (6.4), it readily follows that Per(x) =

Per(y).

3. Meanwhile, the backward geodesic flow (6.6) tells us that for µ̂ a.e. ε-linear

inverse branches z, z′ defined on U , Per(x) = Per(x′).

Observations 2 and 3 say that Per(x) is the same for µ̂ a.e. x ∈ µ̂(Ûε-linear). By

Observation 1 and ergodicity, Per(x) is the same for µ̂ a.e. x ∈ X̂.

Step 2. Let z be an ε-linear inverse branch defined on U . By the F̂ -invariance of

ψ : X̂ × R+ → R and (6.4), it follows that if x0, x−n = z−n(x0) ∈ X ∩ U then

∆x(x−n)|(F ◦n)′(x−n)| ∈ Per(x). (6.7)
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In this step, we show that ψ has a non-trivial essential period. By the Poincaré

recurrence theorem, for µ̂ a.e. x ∈ Ûε-linear, there is an increasing sequence of integers

nj → ∞ such that F̂−nj(x) lands in Ûε-linear. As one of the requirements in the

definition of an ε-linear inverse branch, the derivative |(F ◦n)′(x−n)| → ∞ as n→ ∞.

Since e1−ε < ∆x(x−n) < e1+ε, the period constructed in (6.7) is non-trivial when nj

is large.

Step 3. If the set of essential periods of ψ is all of R+, then ψ is constant, being a

uniformly continuous function. Otherwise, the set of essential periods is {λn : n ∈ Z}
for some λ > 1. We choose a > 0 so that λ = exp(2π/a). To construct a solution of

the functional equation (6.1), we fix a connected open set U such that µ̂(Ûε-linear) > 0

and a point x0 ∈ X ∩ U . We first define w on X ∩ U by

w(y0) = eia∆x(y0)

and then use the functional equation to extend w to
⋃

n≥0 F
−n(X ∩ U) ⊂ X. By

ergodicity, the inverse images cover a set of full µ measure. Equation (6.7) guarantees

that w is well-defined.

Part II

7 A rough estimate

In this section, we give a rough upper bound for the number of repeated pre-images

of a point x ∈ X:

Lemma 7.1. Under the assumptions (OC6) and (OC7), there exists a constant C >

0 so that

n(x, T ) ≤ CeαTγ(x),

for any point x ∈ X with γ(x) <∞ and T > 0.

Proof. For the convenience of exposition, we assume that x does not belong to a

grand orbit of a periodic point, so that the repeated pre-images of x form a tree,

which we call T (x).
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For a vertex y ∈ T (x), we write Ny for the iterate of F which takes y to x, so

that F ◦Ny(y) = x. Fix a T > 0. We say that a vertex y is heavy if |(F ◦Ny)′(y)| < eT

and light otherwise. Our goal is to show the number of heavy vertices is bounded by

CeαTγ(x).

Let T (x, T ) ⊂ T (x) be the minimal subtree which contains the root x and the

heavy vertices. We classify vertices y ∈ T (x, T ) as leaves, ordinary vertices and

joints:

• y is a leaf if it has no heavy descendants.

• y is an ordinary vertex if it has only one child with heavy descendants.

• y is a joint if it has at least two children which have heavy descendants.

It is well known (and not difficult to see) that the Radon-Nikodym derivative γ

of invariant and conformal measures satisfies the transfer identity

γ(y) =
∑

F (z)=y

|F ′(z)|−αγ(z). (7.1)

In terms of the function Γ(y) := |(F ◦Ny)′(y)|−αγ(y), the above identity takes the

form

Γ(y) =
∑

F (z)=y

Γ(z). (7.2)

Repeatedly expanding (7.2) shows

γ(x) = Γ(x) ≤
∑

y∈∂T (x,T )

Γ(y),

so that the number of heavy leaves is at most eαTγ(x)/c, where c is the constant

from (OC6). Inspection shows that the number of joints is bounded above by the

number of heavy leaves minus 1, and so is also ≤ eαTγ(x)/c.

It remains to estimate the number of ordinary heavy vertices. Let y be an ordinary

heavy vertex and z be the (unique) child of y which has a heavy descendent. The

equation

Γ(y) = Γ(z) + |(F ◦Ny)′(y)|−α
∑

F (w)=y
w ̸=z

|F ′(w)|−αγ(w)
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implies that Γ(y) ≥ Γ(z)+Ke−αT , where K = cc′ > 0 is the product of the constants

from the assumptions (OC6) and (OC7). An induction argument shows that γ(x) =

Γ(x) is at least Ke−αT times the number of heavy ordinary vertices. Consequently,

the number of heavy ordinary vertices is bounded above by eαTγ(x)/K. Putting the

above estimates together proves the lemma.

8 Orbit Counting up to a Cesàro average

In this section, we show Theorem 1.1, which says that if a dynamical system F :

X → X satisfies the hypotheses (OC1)–(OC7) from the introduction, then the Orbit

Counting Theorem holds up to a Cesàro average. The idea is to count good and bad

pre-images separately. Given 0 < ε < 1/10, η > 0 and x ∈ X,

nε,η(x, T ) = #
{
(n ≥ 0, y ∈ X) : F ◦n(y) = x, log |(F ◦n)′(y)| < T, (ε, η)-good

}
,

counts repeated pre-images of x that are ε-linear at scale η. Naturally, we set

n(ε,η)-bad(x, T ) := n(x, T ) − nε,η(x, T ). The proof of Theorem 1.1 splits into two

lemmas:

Lemma 8.1. Fix the threshold of distortion 0 < ε < 1/10. For µ a.e. x ∈ X, when

the scale 0 < η < η0(x, ε) is sufficiently small,

nε,η(x, T ) ∼ε
γ(x)´

X
log |F ′(x)|dµ

· eαT ,

for any T > 0 sufficiently large.

The notation “A ∼ε B” indicates that there exists a constant C > 0, independent

of ε > 0, so that (1− Cε)A ≤ B ≤ (1 + Cε)A.

Lemma 8.2. Fix the threshold of distortion 0 < ε < 1/10. For µ a.e. x ∈ X and

θ > 0, when the scale 0 < η < η0(x, ε, θ) is sufficiently small,

n(ε,η)-bad(x, T ) ≤ θ · γ(x)eαT , T > 0.
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8.1 Some assumptions on x ∈ X

Since we only want to prove the Orbit Counting Theorem for µ a.e. x ∈ X, we may

make the following assumptions on x :

A. By Lemma 1.6, x does not belong to the grand orbit of a critical or periodic

point.

B. By (OC4) and the ergodic theorem, the derivative

(F ◦n)′(x) → ∞, as n→ ∞. (8.1)

C. By Lebesgue’s differentiation theorem,

lim
η→0

µ(⃝)

m(⃝)
= γ(x). (8.2)

D. By Lemma 5.1, x is an ε-Pesin point:

lim
η→0

µ̂(⃝̂ε,η)

µ(⃝)
= 1.

8.2 Asymptotic counting of good pre-images

We define h : X × R+ → R to be 1 on the ε-linear repeated pre-images of □ under

the dynamics of F : X × R+ → X × R+ and 0 otherwise. From the definition, it is

clear that h(x, t) is a bounded weakly almost-invariant function, supported on the

set □̃ε,η. We denote its natural extension to X̂ρ, described in (2.1), by ĥ(x, t). Since

we have chosen η > 0 sufficiently small so that (5.1) holds, we have
ˆ
X̂ρ

ĥ(x, t)dµ̂ρ = µ̂(⃝̂ε,η) · η.

Lemma 8.3. The modified counting function

nε,η(x, T ) :=
∑

n≥0, F ◦n(y)=x, (ε,η)-good
log |(F ◦n)′(y)|<T

|(F ◦n)′(y)|−α ∼ε
γ(x)

α
´
X
log |F ′(x)|dµ

, (8.3)

for any T > 0 sufficiently large.
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Proof. Step 1. Using ergodicity. By Theorem 2.2, for µ a.e. x ∈ X, we have

1

T

ˆ T

0

h(x, e−t) dt→
µ̂(⃝̂ε,η) · η´

X
log |F ′(x)|dµ

, as T → ∞.

As the measures µ and m are equivalent, the above identity also holds for m a.e. x ∈
X. Integrating with respect to m (and using the bounded convergence theorem), we

get

1

T

ˆ
X

ˆ T

0

h(x, e−t) dt dm→
µ̂(⃝̂ε,η) · η´

X
log |F ′(x)|dµ

, as T → ∞. (8.4)

Step 2. Left hand side of (8.4). From the definition of ε-linearity and the descrip-

tion of the function h, it is clear that the left hand side of (8.4) is bounded below

by
η

T

∑
n≥0, F ◦n(y)=x, (ε,η)-good
log |(F ◦n)′(y)|<T−ε−η

m(⃝y)

and bounded above by

η

T

∑
n≥0, F ◦n(y)=x, (ε,η)-good
log |(F ◦n)′(y)|<T+ε+η

m(⃝y).

Since m is a conformal measure of dimension α, we have

m(⃝y) = |(F ◦n)′(y)|−α ·m(⃝x).

As a result,

n(ε,η)-good(x, T − ε− η)

T
≤ LHS

η ·m(⃝x)
≤
n(ε,η)-good(x, T + ε+ η)

T
,

for any T > T0(x, ε, η) sufficiently large.

Step 3. Right hand side of (8.4). By assumptions C and D on the point x ∈ X,

by asking η > 0 to be sufficiently small,

RHS

η ·m(⃝x)
=

µ(⃝x)/m(⃝x)´
X
log |F ′(x)|dµ

·
µ̂(⃝̂x,ϵ,η)

µ(⃝x)
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can be made as close as we want to

γ(x)´
X
log |F ′(x)|dµ

.

The proof is complete.

Proof of Lemma 8.1. By the lemma above,

1

T

ˆ T

0

nε,η(x, S)

eαS
dS =

1

T

∑
n≥0, F ◦n(y)=x, (ε,η)-good

log |(F ◦n)′(y)|<T

ˆ T

log |(F ◦Ny )′(y)|
e−αSdS

=
1

αT

∑
n≥0, F ◦n(y)=x, (ε,η)-good

log |(F ◦n)′(y)|<T

(e−α log |(F ◦Ny )′(y)| − e−αT )

=
1

αT

∑
n≥0, F ◦n(y)=x, (ε,η)-good

log |(F ◦n)′(y)|<T

e−α log |(F ◦Ny )′(y)| + o(1),

where in the last step we used the a priori estimate (Lemma 7.1) to estimate the

number of terms.

8.3 Estimating the number of bad pre-images

As in Section 7, we denote the set of repeated pre-images y of x by T (x). Naturally,

we denote the subset of repeated pre-images of x which are ε-linear at scale η by

Tε,η(x). The set Tε,η(x) may be alternatively described as

Tε,η(x) = T (x) \
⊔

y∈max-bad(x)

T (y),

where the sum is over the maximal bad repeated pre-images (we say that y is a

maximal bad repeated pre-image of x if y is a bad pre-image but F (y) is a good

pre-image).

Lemma 8.4. Fix the threshold of distortion 0 < ε < 1/10. For µ a.e. x ∈ X and

δ > 0, we can choose the scale η = η(x, δ) > 0 sufficiently small, so that the ratio∑
y∈max-bad(x) Γ(y)

Γ(x)
=

1

γ(x)
·

∑
y∈max-bad(x)

γ(y)|F ′(y)|−α < δ. (8.5)
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Proof. For x ∈ X, let Fx ⊂ X̂ be the fiber (or transversal) of inverse orbits x =

(x−n)
∞
n=0 that start at x0 = x. If y is a repeated pre-image of x, we write Fx,y ⊂ Fx

for the set of inverse orbits that start at x and pass through y. For m a.e. x ∈ X,

we define a measure γx on Fx ⊂ X̂ of mass γ(x) = Γ(x) such that γx(Fx,y) = Γ(y).

For a point x ∈ X and ε, η > 0, we have

µ̂(⃝̂x,ε,η) = lim
n→∞

∑
F ◦n(y)=x, (ε,η)-good

µ(⃝y)

=

ˆ
⃝x

γx′(Fx′ ∩ ⃝̂x,ε,η)dm(x′).

Meanwhile,

µ(⃝x) = µ̂(⃝̂x) =

ˆ
⃝x

γx′(Fx′)dm(x′).

Together with Condition D, this implies that for most (with respect to m) x′ ∈ ⃝x,

we have
γx′(Fx′ ∩ ⃝̂x,ε,η)

γx′(Fx′)
≈ 1,

i.e. ∑
y′∈max-bad(x′) Γ(y

′)

Γ(x′)
=

γx′(Fx′ \ ⃝̂x,ε,η)

γx′(Fx′)
≈ 0,

as desired.

Proof of Lemma 8.2. By Lemmas 7.1 and 8.4, we have

n(ε,η)-bad(x, T ) =
∑

y∈max-bad(x)

n
(
y, T − log |(F ◦Ny)′(y)|

)
≤ C

∑
y∈max-bad(x)

γ(y)eα(T−log |(F ◦Ny )′(y)|)

= CeαT
∑

y∈max-bad(x)

γ(y)|(F ◦Ny)′(y)|−α

= CeαT
∑

y∈max-bad(x)

Γ(y)

= Cδ · γ(x)eαT ,

as desired.
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9 Mixing implies Orbit Counting

In this section, we show:

Theorem 9.1. Let F : X → X be a dynamical system that satisfies the hypotheses

(OC1)–(OC7) from the introduction. If the suspension flow gt on X̂ρ is mixing with

respect to the product measure µ̂× (dt/t), then the Orbit Counting Theorem holds.

For a point x ∈ X and real numbers 0 < T1 < T2, we write

n(x, T1, T2) = #
{
(n ≥ 0, y ∈ X) : F ◦n(y) = x, T1 < log |(f ◦n)′(y)| < T2

}
.

To prove the Orbit Counting Theorem, we show for a fixed window size δ > 0 and µ

a.e. x ∈ X,

n(x, T, T + δ) ∼
{ˆ T+δ

T

eαtdt

}
· γ(x)´

X
log |F ′(x)|dµ

, as T → ∞.

In fact, by cutting up the interval of length δ into smaller pieces, it is enough to

prove the seemingly weaker statement

n(x, T, T + δ) ∼δ
γ(x)´

X
log |F ′(x)|dµ

· δ · eαT , as T → ∞, (9.1)

where the notation ∼δ means that the ratio between the two quantities tends to 1

as δ → 0+.

As before, we assume that the point x satisfies the Conditions A, B, C and D from

Section 8.1. When applying the mixing of the suspension flow, we fix two constants

0 < ε, η << δ. Eventually, we will take ε, η → 0.

Proof of Theorem 9.1. Applying Theorem 2.3 to the function h(x, t) from Section

8.2, we get

(m× dt/t)
(
(X × [e−(T+δ), e−T ]) ∩ □̃(ε,η)-good

)
→ δ · η´

X
log |F ′(x)|dµ

· µ̂(⃝̂ε,η), (9.2)

as T → ∞. In view of ε-linearity, the left hand side of (9.2) is bounded below by∑
n≥0, F ◦n(y)=x, (ε,η)-good

T+ε+η<log |(F ◦n)′(y)|<(T+δ)−ε−η

m(⃝y)
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and bounded above by ∑
n≥0, F ◦n(y)=x, (ε,η)-good

T−ε−η<log |(F ◦n)′(y)|<(T+δ)+ε+η

m(⃝y).

Since m is a conformal measure of dimension α,

m(⃝y) ∼δ e
−αTm(⃝x),

for all repeated pre-images y involved in these expressions. We will be slightly im-

precise and say that the left hand side of (9.2) is roughly

nε,η(x, T, T + δ) · η · e−αT ·m(⃝x).

Since the point x ∈ X satisfies Conditions C and D, when η > 0 is small,

µ̂(⃝̂ε,η) ≈ µ(⃝x) ≈ γ(x)m(⃝x).

Putting the above equations together, we obtain

nε,η(x, T, T + δ) ∼δ
γ(x)´

X
log |F ′(x)|dµ

· δ · eαT .

As in the case of the Orbit Counting up to a Cesàro average, we may use the a

priori estimate (Lemma 7.1) to show that the contribution of the bad pre-images is

negligible, which proves (9.1).

Part III

10 On the Radon-Nikodym derivative

In this section, we show that if F is a rational function which satisfies (OC1)–

(OC4), then it automatically satisfies the (OC6). In Section 4.5, we saw that any

rational function F which has an invariant probability measure µ with a positive

Lyapunov exponent satisfies (OC5), while (OC7) holds for any rational function as
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|F ′| is bounded above. Consequently, if a rational function satisfies (OC1)–(OC4),

then it also satisfies (OC5)– (OC7).

The property (OC6) was originally proved by N. Dobbs [Dob12, Proposition 34].

For the convenience of the reader, we provide a slightly different argument, which is

perhaps more elementary.

Lemma 10.1. Suppose m is a conformal measure and µ = γ dm is an ergodic

absolutely continuous invariant measure. For any measurable set E ⊂ X, we have

µ(E) = lim
n→∞

1

n

n−1∑
j=0

m(F−j(E)).

Proof. Applying the ergodic theorem to the map F̂−1 : X̂ → X̂ and the function

x = (xn)
0
n=−∞ → γ−1(x0) shows that for µ̂ a.e. x ∈ X̂,

1

n

n−1∑
j=0

γ−1(x−j) →
ˆ
X̂

γ−1(x0)dµ̂(x) = 1.

Integrating over Ê =
{
x = (x−n)

∞
n=0 ∈ X̂ : x0 ∈ E

}
, we get

1

n

n−1∑
j=0

ˆ
Ê

γ−1(x−j)dµ̂ → µ̂(Ê) = µ(E).

By the F̂ -invariance of µ̂, for any non-negative integer j ≥ 0, we have

ˆ
Ê

γ−1(x−j)dµ̂ =

ˆ
̂F−j(E)

γ−1(x0)dµ̂ =

ˆ
F−j(E)

γ−1(x0)dµ = m(F−j(E)).

Substituting the above expressions for the integrals in the equation above proves the

lemma.

Lemma 10.2. Suppose F : X → X is eventually onto in the sense that for any

relatively open set U ⊂ X, there is an n ≥ 0 so that F ◦n(U) = X. Then, any

conformal probability measure m gives positive mass to every open set.

Proof. The lemma follows from the inequality m(X) ≤
´
U
|(F ◦n)′(x)|αdm.
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The following lemma is taken from [Dob12, Lemma 29]:

Lemma 10.3. Suppose m is a conformal measure and µ = γ dm is an absolutely

continuous invariant measure. Assume that F is eventually onto and (X,F, µ) is

non-uniformly hyperbolic. If m gives positive mass to open sets, then the measures

µ and m are equivalent.

Proof. Assume for the sake of contradiction that there exists a measurable set B

such that m(B) > 0 and µ(B) = 0. Then,

X ′ = X \
⋃
j≥0

F−j(B)

is a forward-invariant set such that µ(X ′) = 1 but m(X ′) < 1.

Fix an 0 < ε < 1/10 and pick an open ball U such that µ̂(Ûε-linear) > 0. By

ergodicity, for µ̂ a.e. x ∈ X̂, there is an increasing sequence of integers nj → ∞
such that F̂ ◦nj(x) lands in the positive measure set Ûε-linear. Consequently, for µ

a.e. x ∈ X ′, there exists sequences of open sets Uj containing x and positive integers

nj → ∞ such that F−nj : U → Uj is ε-linear. By Lebesgue’s density point theorem,

e.g. see [Mat95, Corollary 2.14], for m a.e. x ∈ X ′,

lim
r→0+

m(X ′ ∩B(x, r))

m(B(x, r))
= 1,

and consequently, for µ a.e. x ∈ X ′,

lim
j→∞

m(X ′ ∩ Uj)

m(Uj)
= 1,

since the sets Uj are approximately round balls. In view of the conformality of the

measure m and the uniform bound on the distortion, this implies that

m(U) = m(X ′ ∩ U) =⇒ m(U \X ′) = 0.

By the eventually onto property, m(X \ X ′) = 0, which contradicts that m(B) >

0.

Lemma 10.4. Fix an 0 < ε < 1/10. If m gives positive mass to open sets and

(X,F, µ) is non-uniformly hyperbolic, then the Radon-Nikodym derivative γ > c(U) >

0 is bounded below on any open set U ⊂ X such that µ̂(Ûε-linear) > 0.
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Proof. Since µ(U) = µ̂(Û) ≥ µ̂(Ûε-linear), the open set U has positive µ measure.

Consequently, by Lemma 10.3, U also has positive m measure. For a set measurable

set B ⊂ U , let

µgood(B) = lim sup
n→∞

1

n

n−1∑
j=0

∑
Bj⊂F−j(B)

ε-linear

m(Bj),

where the inner sum is over the sets of the form Bj = F−j(B) ∩ Uj, where Uj is an

ε-linear repeated pre-image of U of order j. By ε-linearity and the fact that m is

conformal measure of dimension α, we have

µgood(B)

µgood(U)
≥ c · m(B)

m(U)
, c = e−2αε.

Thus,

µ(B) ≥ µgood(B) ≥ c · µgood(U)

m(U)
·m(B).

Since B ⊂ U was an arbitrary measurable set, the Radon-Nikodym derivative

γ(x) > c · µgood(U)

m(U)

is bounded below on U .

Lemma 10.5. In the setting of the above lemma, suppose that we also know that

the derivative |F ′| is bounded above m a.e. on X and F is eventually onto. Then,

γ > c > 0 on all of X.

Proof. Since m is a conformal measure and µ is an invariant measure, for a point

x ∈ X, we have

γ(x) =
∑

F ◦n(y)=x

γ(y) |(F ◦n)′(y)|−α.

Consequently, if γ is bounded below on a relatively open subset U ⊂ X, then it is

also bounded below on X.
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11 On alignment of inverse branches

The following lemma says that in the case of rational functions, if backward iteration

along two inverse branches is not aligned (the definition was given in Section 6.2),

then misalignment occurs on a positive measure set of inverse branches:

Lemma 11.1. Let F be a rational function acting on its Julia set. Suppose that

some two UAL inverse branches z and z′ are not aligned. If the diameters of z−n(U)

and z′−n(U) shrink to 0, then there exist positive µ̂ measure sets of inverse branches

Z,Z ′ defined on U , so that any inverse branch in Z is not aligned with any inverse

branch in Z ′. The same statement also holds for absolute-value alignment in place

of alignment.

Proof. By non-uniform hyperbolicity, for any ε > 0, there is a ball B(x, ρ) centered

at a point x ∈ X so that the union of the ε-linear inverse branches defined on B(x, ρ)

has positive µ̂ measure.

For each point y ∈ X, there is an ry > 0 and an inverse iterate defined on

B(y, ry) with F
−Ny(B(y, ry)) ⊂ B(x, ρ). By compactness, one can cover X = J (F )

by finitely many such balls B(y, ry). We refer to these inverse iterates as “transitions”

to B(x, ρ).

Now, when n is large, z−n(U) belongs to one of these balls B(y, ry). Given an

inverse branch z, we produce a positive µ̂ measure Zn,ε of inverse branches which

have rescaling limits close to that of z as follows: we first follow z for n steps, then

we transition to B(x, ρ) and finally, we follow a Pesin branch from there. Similarly,

we can produce a family Z ′
n,ε of inverse branches which have approximately the same

rescaling limit as z′. When n > 0 is large and ε > 0 is small, the families Zn,ε and

Z ′
n,ε will have disjoint sets of rescaling limits.

12 Alignment implies rigidity

To prove the Orbit Counting Theorem for rational maps, we show the following

theorem:
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Theorem 12.1. Let F be a rational function satisfying the conditions (OC1)–(OC7).

If all univalent inverse branches are absolute-value aligned, then F is one of the

exceptional rational functions listed in the introduction.

We follow an argument of V. Mayer [May02], almost verbatim. We recall the

main techniques. A holomorphic function Ψ : C → Ĉ is automorphic with respect to

a discrete group Γ ⊂ Isom+C if:

1. Ψ ◦ γ = Ψ for every γ ∈ Γ,

2. Γ acts transitively on the fibers, i.e. if Ψ(z1) = Ψ(z2), then there is an element

γ ∈ Γ which takes z1 to z2.

As explained in [May02, Lemma 2.5], in order to check that the transitivity of

Γ on the fibers, it is enough to check that Γ acts transitively on some regular fiber,

i.e. there exists a point w ∈ Ψ(C) which is not a critical value of Ψ, such that for

any two pre-images z1, z2 ∈ Ψ−1(w), there is an element of Γ which takes z1 to z2.

The following lemma due to Ritt is at the core of Mayer’s argument:

Lemma 12.2. Let F : Ĉ → Ĉ be a rational map. Suppose there exists an entire

function Ψ such that

F (Ψ(z)) = Ψ(λz), z ∈ C,

for some λ ∈ C with |λ| > 1. If Ψ is automorphic with respect to a co-compact group

Γ ⊂ Isom+C, then F is a Lattès map, while if Ψ is automorphic with respect to Z,
then F is either a power map of a Chebyshev polynomial.

The following two elementary lemmas are implicit in Mayer’s paper. We state

them explicitly for convenience:

Lemma 12.3. Suppose U0 ⊂ C is a domain in the plane which contains the origin

and g : U0 → C is an analytic function which is not identically zero. If the analytic

set Z = {Re g = 0} is invariant under z → λz with |λ| > 1, then λ ∈ R and Z is

contained in a union of finitely many lines through the origin.

Lemma 12.4. Let S ⊂ C be a discrete set in the plane which contains at least 2

points. If γ ∈ AutC maps S to S, then γ ∈ Isom+C.
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With the above preparations, we are now ready to prove Theorem 12.1:

Proof of Theorem 12.1. For simplicity, we assume that there is a repelling fixed point

r ∈ X, which is not contained in the grand orbit of any critical point of F . (In the

general case involving a repelling periodic orbit, an additional argument is required.

We refer to Mayer’s paper for details.) We denote the multiplier of the repelling fixed

point by λ = F ′(r). Let r be the constant inverse orbit associated to r, i.e. r−n = r

for all n ≥ 0, and Ψ(ζ) = F−∞
r (ζ) be the rescaling limit at r, defined in Section 4.1.

The map Ψ is just the inverse of the linearizing coordinate at r.

Being the Julia set of a rational function, J = J (F ) is a perfect set. Con-

sequently, so is K = Ψ−1(J ). In view of the normalization of Ψ, the point 0 ∈
Ψ−1(r) ⊂ K. The relation

F (Ψ(w)) = Ψ(λw), w ∈ C,

tells us that the set K is invariant under multiplication by λ. By assumption on

the point r, the fiber Ψ−1(r) is discrete and Ψ is a local homeomorphism from a

neighbourhood Uξ of any ξ ∈ Ψ−1(r) to a neighbourhood V of r ∈ X. (In fact, a

point in Ψ−1(r) corresponds to a “homoclinic” orbit x = Ĵ with x0 = r and x−n → r

as n→ ∞.)

Consequently, for any ξ ∈ Ψ−1(r), the composition γ = γξ = Φ−1 ◦ Φ is a

conformal map from U0 to Uξ. Absolute-value alignment implies∣∣∣∣Ψ′(ζ)

Ψ′(0)

∣∣∣∣ = ∣∣∣∣(Ψ ◦ γ)′(ζ)
(Ψ ◦ γ)′(0)

∣∣∣∣, ζ ∈ K ∩ U0.

By the chain rule, there exists a real constant C ∈ R so that

log |γ′(ζ)| = C, ζ ∈ K ∩ U0.

As log |γ′(ζ)| is a harmonic function on U0, the set where it is equal to C is an analytic

set. Consequently, log |γ′(ζ)| = C holds on the minimal analytic set containing

K ∩ U0. There are two cases:

1. The set K∩U0 is not contained in a proper analytic set near the origin. In this

case, log |γ′(ζ)| = C on all of U0 and γ(ζ) is an affine map.
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2. Suppose that K is contained in a proper analytic set near the origin. As K is

invariant under multiplication by λ, by Lemma 12.3, the multiplier λ is real

and K is contained in a union of finitely many lines passing through the origin.

Actually, as γ is invertible near the origin, K ⊂ {log |γ′(ξ)| = C} must be

contained in a single line near the origin. As K is a perfect set, log |γ′(ξ)| = C

on this line, and so γ(ζ) is affine on U0 in this case as well.

To summarize, we have proved that every “local symmetry” γ of K which maps

a neighbourhood of 0 ∈ K to a neighbourhood of ξ ∈ Ψ−1(r) extends to a “global

symmetry” defined on all of C. In other words, Ψ is automorphic with respect to

the group of automorphisms

Γ = {γ affine with Ψ ◦ γ = Ψ}.

By Lemma 12.4, Γ must actually be a group of isometries. In view of Lemma 12.2,

F must be one of the exceptional rational maps listed in the introduction.

13 Orbit counting with rotation

In this section, we prove Theorem 1.4. As the strategy is similar to that of Theorem

1.3, we only sketch the differences. We equip the space

Ĵ × R+ × ∂D,

with the measure µ̂ × (dt/t) × (dθ/2π) and consider the quotient Ĵρ,θ with respect

to the equivalence relation

(x, t, eiθ) →
(
F̂ (x), |F ′(x0)|t,

F ′(x0)

|F ′(x0)|
· eiθ

)
.

Theorem 13.1. Let F : Ĉ → Ĉ be a rational map which satisfies the hypotheses in

the introduction. The suspension flow gs : (x, t, e
iθ) → (x, est, eiθ) is mixing on Ĵρ,θ

unless F is in the extended list of exceptional list of rational maps. In this case, the

Orbit Counting Theorem with Rotation holds.
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For brevity, we write

αx(y0) = log |(F−∞
x )′(y0)|, βx(y0) = arg(F−∞

x )′(y0).

We say that two UAL inverse branches z(·) and z′(·) are weakly aligned on U if there

are constants C1, C2 ∈ R (not both zero) such that

C1αx(y0) + C2βx(y0) = C1αx′(y0) + C2βx′(y0), y0 ∈ U,

i.e. if the linear span of the vectors(
αx(y0)− αx′(y0), βx(y0)− βx′(y0)

)
, (13.1)

as y0 varies over U is all of R2.

Following the discussion in Section 12, we see that if all UAL inverse branches

are weakly aligned, then the local symmetries γ : U0 → Uξ of the set K satisfy

C1 log |γ′(ζ)|+ C2 arg γ
′(ζ) = C, z ∈ K ∩ U0. (13.2)

As C1 log |γ′(ζ)| + C2 arg γ
′(ζ) is a harmonic function on U0, (13.2) should continue

to hold on the minimal analytic set containing K ∩ U0. As before, we consider two

cases:

1. If K is not contained in a proper analytic set near 0, then

C1 log |γ′(ζ)|+ C2 arg γ
′(ζ) = C, ζ ∈ U0,

which forces γ′(ζ) to be constant on U0 by Lemma 13.2 below. In other words,

γ is an affine mapping. (The proof now continues as in Section 12).

2. Suppose that K is contained in a proper analytic set near the origin. Since K is

invariant under multiplication by λ, the multiplier λ is real and K is contained

in a union of finitely many lines passing through the origin. As Ψ is a local

homeomorphism between a neighbourhood of 0 ∈ K and a neighbourhood of

r ∈ J , we see that J contains a real analytic curve as a relatively open subset.

By the paragraph below the statement of [EvS11, Corollary 1.1], the Julia set

J is contained in a circle or a line.
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We now show the elementary lemma used in the above proof:

Lemma 13.2. Let u : Ω → R be a harmonic function and v be its harmonic conju-

gate. Suppose that

C1u(z) + C2v(z) = K, (13.3)

for some real constants C1, C2, K ∈ R. If C1, C2 are not both zero, then u and v are

constant functions.

Proof. If C2 is not zero, then i(C1/C2)u+ iv and u+ iv are analytic functions, which

implies that (iC1/C2 − 1)u is analytic. Consequently, u itself is analytic. Since u

is real-valued, it is constant. As the harmonic conjugate of a constant function is

constant, v is also constant. The case that C1 ̸= 0 is similar.

We now comment on why weak non-alignment implies mixing. This time, h is a

uniformly continuous function on Ĵρ,θ. As in Section 6.2, we assume that tn → ∞
is a sequence of increasing real numbers such that g±tnh → ψ weakly. We want to

show that ψ is a constant function.

Using the backward geodesic flow as before shows that the limiting function ψ

depends only on the zero-th coordinate of x ∈ Ĵ . The argument with the forward

geodesic flow shows that if the vectors in (13.1) span the plane, as y0 varies over U ,

then gt : Ĵρ,θ → Ĵρ,θ is mixing.

Part IV

14 Orbit counting for Adler maps

We now turn to one-dimensional dynamics. In this section, we show Theorem 1.5 on

orbit counting for Adler maps acting on the unit circle. (Adler maps were defined in

Section 1.2.)
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14.1 Anatomy on an Adler map

Adler maps resemble one component inner functions, see [IU23, Section 7], but are

more general since there are no “holomorphy” requirements. Nevertheless, Adler

maps possess many of the same properties that one component inner functions do,

with identical proofs. For the convenience of the reader, we repeat some of the

arguments to give a self-contained exposition. Below, we write I(x, r) for the arc of

the unit circle centered at x of length 2r.

Lemma 14.1. Let F be an Adler map. For any ε > 0, there exists a constant

c = c(M, ε) > 0 such that if x ∈ ∂D \ Σ is a point on the unit circle, then F is

injective on I(x, c/|F ′(x)|) and

e−ε|F ′(x)| ≤ |F ′(y)| ≤ eε|F ′(x)|, y ∈ I

(
x,

c

|F ′(x)|

)
.

In particular, F
(
I(x, c/|F ′(x)|)

)
is an arc on the unit circle of length ≍ 1.

Proof. The lemma follows from Grönwall’s inequality applied to F ′.

The above lemma implies that there exists a constant r0 > 0 so that if F (y) = x,

y ∈ ∂D \ Σ, then F−1 admits a continuous inverse branch on I(x, r0) which takes

x → y. Consequently, F is a covering map from ∂D \ Σ → ∂D. Furthermore, if the

singular set Σ is empty, then F is a finite covering map, while if Σ is not empty, then

for any p ∈ ∂D, the set Ep = F−1(p) divides each connected component J ⊂ ∂D \ Σ
into countably many subarcs.

Since F is expanding on the unit circle, F−1(I(x, r0)) ⊂ I(y, r0), allowing us to

take an arbitrary number of inverse iterates:

Corollary 14.2. For any ε > 0, there exists an r0 > 0 so that inverse iteration is

ε-linear on I(x, r0) along any inverse orbit x = (x−n)
∞
n=0 with x0 = x.

As the unit circle can be covered by finitely many arcs of the form I(x, r0), the

above lemma has the following consequence:
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Corollary 14.3. For any p ∈ ∂D, the set Ep = F−1(p) partitions ∂D \ Σ into

countably many arcs Ik, each of which is mapped homeomorphically onto ∂D \ {p}
and

|F ′(x)| ≍ 1/|Ik|, x ∈ Ik,

where the implicit constant depends only on F .

In particular, Corollary 14.3 implies that
ˆ
∂D

log |F ′|dm <∞ ⇐⇒
∑

|Ij| log
1

|Ij|
<∞, (14.1)

where the sum ranges over the complementary arcs in ∂D \ Ep.

14.2 Conformal and invariant measures

Clearly, the normalized Lebesgue measure m on the unit circle is a 1-dimensional

conformal measure for F : ∂D → ∂D. Using thermodynamic formalism, one can

construct an ergodic absolutely continuous invariant probability measure µ = γ dm,

e.g. see [Rych83] or [URM22, Theorem 14.3.1]. As explained in these references, the

Radon-Nikodym derivative γ is a non-negative Hölder continuous function on the

unit circle. It is not difficult to see that γ does not vanish: the transfer relation

γ(x) =
∑

F (y)=x

|F ′(y)|−1γ(y)

implies that the set Z = {x ∈ ∂D : γ(x) = 0} is backward-invariant. If Z were

not empty, ergodicity would imply that Z is dense in the unit circle, and since γ

is continuous, γ would be identically zero, which contradicts the fact that µ is a

probability measure.

14.3 Adler maps satisfy (OC1)–(OC7)

Let F be an Adler map satisfying (1.5). We take a moment to verify that F satisfies

the conditions (OC1)–(OC7):

• (OC1), (OC2) hold trivially since m is a 1-dimensional conformal measure.
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• For (OC3), (OC6), we have constructed an absolutely continuous invariant

measure µ using thermodynamic formalism. We saw that the density γ ∈
dµ/dm was continuous on X and bounded away from zero.

• Since the density γ is bounded above, we have log |F ′(x)| ∈ L1(X,µ). As

|F ′(x)| > 1 for Lebesgue a.e. x ∈ ∂D, the Lyapunov exponent is positive, so

(OC4) holds.

• (OC5) holds in view of the uniform hyperbolicity of F (Corollary 14.2).

• Since Adler maps are expanding, they cannot be homeomorphisms of the unit

circle. Consequently, there exist at least two intervals I1, I2 which get mapped

to the unit circle under F . By Corollary 14.3, |F ′| is bounded above on I1∪ I2.
Consequently,∑

F (y)=x

|F ′(y)|−α − max
F (y)=x

|F ′(y)|−α > min
F (y)=x
y∈I1∪I2

|F ′(y)|−α > 0.

Having checked the above properties, we see that the Orbit Counting Theorem holds

up to a Cesàro average for any Adler map satisfying (1.5).

14.4 Mixing of the suspension flow

To complete the proof of Theorem 1.5, it remains to show the Orbit Counting The-

orem holds for any infinite-to-one Adler map. By Theorem 1.2, one needs to check

that the suspension flow X̂ρ is mixing. Since the Pesin set Xlin = ∂D, this amounts

to showing the following statement:

Lemma 14.4. Let F be an infinite-degree Adler map. For any a ∈ R \ {0},

w(F (x)) = eia log |F
′(x)| · w(x). (14.2)

has no continuous solutions w : ∂D → ∂D.

Proof. Let d be the topological degree of w. Since F is an infinite Adler map, the

singular set Σ ̸= ∅. Pick an arbitrary complementary arc J =
⋃

k∈Z Ik in ∂D \ Σ.
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Since J is simply-connected, the arguments of w(x) and w(F (x)) admit continuous

branches on J . We consider two cases:

Case I. d = 0. Let Ik = [zk, zk+1]. As z moves from zk to zk+1, the argument

of w does not change. Consequently, argw(F (z)) is bounded on J . As argw(x) is

bounded on J , equation (14.2) implies that a log |F ′(z)| must also be bounded on

J . This contradicts the definition of an Adler map, which asks that |F ′(z)| → ∞ as

z → Σ.

Case II. d ̸= 0. Below, we assume that d > 0, as the case d < 0 is similar. As z

moves from zk to zk+1, the argument of w(F (z)) increases by d, so that

argw(F (zk))− argw(F (z0)) = kd+O(1).

In particular, this implies that log |F ′(zk)| → −∞ as k → −∞. This once again

contradicts the definition of an Adler map.
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[URM22] M. Urbański, M. Roy, S. Munday, Non-Invertible Dynamical Systems:

Finer Thermodynamic Formalism – Distance Expanding Maps and Countable

State Subshifts of Finite Type, Conformal GDMSs, Lasota-Yorke Maps and

Fractal Geometry , de Gruyter Expositions in Mathematics 69, Vol. 2, De

Gruyter, Berlin, 2022.

[Zdu90] A. Zdunik, Parabolic orbifolds and the dimension of the maximal measure

for rational maps , Invent. Math. 99 (1990), 627–649.

52


	Introduction
	Application to rational functions
	Applications to one-dimensional dynamics
	On periodic orbits and critical points
	Notes and references
	Acknowledgements

	I 
	Preliminaries
	Natural extensions
	The suspension flow
	Almost-invariant functions

	Linear distortion
	Background on Pesin theory
	Hyberbolic dynamical systems
	Non-uniform hyperbolicity
	Cumulative distortion
	Example: Gauss map
	Example: Rational maps

	A measurable atlas
	Abundance of good pre-images
	Uniformly continuous functions

	When is the suspension flow mixing?
	Basic observations
	Non-alignment implies mixing
	Mixing and the functional equation


	II 
	A rough estimate
	Orbit Counting up to a Cesàro average
	Some assumptions on x X
	Asymptotic counting of good pre-images
	Estimating the number of bad pre-images

	Mixing implies Orbit Counting

	III 
	On the Radon-Nikodym derivative
	On alignment of inverse branches
	Alignment implies rigidity
	Orbit counting with rotation

	IV 
	Orbit counting for Adler maps
	Anatomy on an Adler map
	Conformal and invariant measures
	Adler maps satisfy (OC1)–(OC7)
	Mixing of the suspension flow



