Chapter 3

Liouville's theorem

In this chapter, we prove Liouville's theorem which says that a conformal metric of curvature -1 on a simply-connected domain Ω arises as the pullback of the hyperbolic metric by some locally univalent holomorphic map $F: \Omega \rightarrow \mathbb{D}$. We then generalize Liouville's theorem to conformal metrics of curvature -1 with isolated singularities by carefully studying the monodromy of F around each singularity.

In Liouville's theorem, F is determined uniquely up to post-composition with an element of Aut \mathbb{D}. We first study a related object called the Schwarzian derivative which uniquely determines a holomorphic function up to Aut $\hat{\mathbb{C}}$. The discrepancy between the two groups Aut \mathbb{D} and Aut $\widehat{\mathbb{C}}$ plays an important role in this chapter.

3.1 Schwarzian derivatives of functions

It is well known that a Möbius transformation $m \in$ Aut $\hat{\mathbb{C}}$ is determined by the images of three points

$$
p_{1} \rightarrow q_{1}, \quad p_{2} \rightarrow q_{2}, \quad p_{3} \rightarrow q_{3} .
$$

One can also uniquely prescribe a Möbius transformation by specifying its 2-jet at a point $p \in \hat{\mathbb{C}}$, that is, the values $m(p), m^{\prime}(p), m^{\prime \prime}(p)$. The values $m(p), m^{\prime}(p), m^{\prime \prime}(p)$ may be prescribed arbitrarily with the provisio that $m^{\prime}(p) \neq 0$ to ensure that m is locally injective. For example, the unique Möbius transformation whose power series
expansion at the origin begins with

$$
m=a_{0}+a_{1} z+a_{2} z^{2}+\ldots
$$

is

$$
m(z)=\frac{\left(a_{1}^{2}-a_{2} a_{0}\right) z+a_{0} a_{1}}{-a_{2} z+a_{1}} .
$$

As usual, if p or $m(p)$ is infinity, one would have to compute the derivatives in terms of the coordinates at infinity.

Suppose $\Omega \subset \mathbb{C}$ be a domain and $F: \Omega \rightarrow \hat{\mathbb{C}}$ be a locally univalent meromorphic function. Given a point $p \in \Omega$, there exists a Möbius transformation $m_{p}(z)$ which osculates F to order 2 at p. Loosely speaking, the Schwarzian derivative S_{F} measures how $m_{p}(z)$ varies with p. If $m_{p}(z)$ is the identity mapping, then $S_{F}(p)$ is just the third derivative $F^{\prime \prime \prime}(p)$. In the general case, one has the expression

$$
\begin{equation*}
S_{F}=\left(\frac{F^{\prime \prime}}{F^{\prime}}\right)^{\prime}-\frac{1}{2}\left(\frac{F^{\prime \prime}}{F^{\prime}}\right)^{2} \tag{3.1}
\end{equation*}
$$

Lemma 3.1. The Schwarzian derivative $S_{F}=0$ if and only if F is a Möbius transformation.

Proof. To see that the Schwarzian derivative annihilates Möbius transformations, note that $S_{a z+b}=0$ and $S_{F}=S_{1 / F}$.

Conversely, suppose that $S_{F}=0$. Setting $y=F^{\prime \prime} / F^{\prime}$ gives $y^{\prime}=y^{2} / 2$. Integration shows that either $y(z)=0$ or $y(z)=\frac{2}{z-c}$ for some $c \in \mathbb{C}$. In the first case, $F(z)=$ $a z+b$ is linear, while in the second case, F is a non-linear Möbius transformation.

One of the most important properties of the Schwarzian derivative is the cocycle condition

$$
S_{F \circ G}(z)=S_{F}(G(z)) G^{\prime}(z)^{2}+S_{G}(z)
$$

If we take $F \in \operatorname{Aut} \hat{\mathbb{C}}$, we see that post-composition with Möbius transformations does not change the Schwarzian derivative. If we instead take $G \in \operatorname{Aut} \hat{\mathbb{C}}$, then we see the Schwarzian derivative transforms like a quadratic differential.

Lemma 3.2. If $\Omega \subset \mathbb{C}$ is simply-connected and $g: \Omega \rightarrow \mathbb{C}$ is a holomorphic function, then $S_{F}=g$ has a locally meromorphic solution, which is unique up to postcomposition with a Möbius transformation in Aut $\hat{\mathbb{C}}$.

In other words, to recover F uniquely from its Schwarzian, it is enough to prescribe a Möbius transformation $m \in$ Aut $\widehat{\mathbb{C}}$ that matches the 2-jet of F at a given point. In other words, one can prescribe $F\left(z_{0}\right), F^{\prime}\left(z_{0}\right), F^{\prime \prime}\left(z_{0}\right)$ with $F^{\prime}\left(z_{0}\right) \neq 0$.

Proof. A computation shows that $w=\left(F^{\prime}\right)^{1 / 2}$ satisfies the Ricatti equation

$$
\begin{equation*}
w^{\prime \prime}+\frac{1}{2} \cdot g w=0 \tag{3.2}
\end{equation*}
$$

Near any point $z_{0} \in \Omega$, the (3.2) has two linearly independent holomorphic solutions. There are two ways to see this: if the initial function in Picard iteration is holomorphic, then all functions in the process of Picard iteration will also be holomorphic, and the solution to the ODE will be a uniform limit of holomorphic functions. Alternatively, one can show that the ODE has two formal power series solutions $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ and then verify that both formal power series have a positive radius of convergence by estimating the rate of growth of the coefficients.

Since the domain Ω is simply-connected, analytic continuation shows us that (3.2) possesses two linearly-independent global holomorphic solutions v_{1}, v_{2}. Consider the Wronskian $W=v_{1}^{\prime} v_{2}-v_{1} v_{2}^{\prime}$. Since $W^{\prime}=w_{1}^{\prime \prime} w_{2}-w_{1} w_{2}^{\prime \prime}=0, W$ is constant. As v_{1}, v_{2} are linearly independent, $W \neq 0$.

We now check that $F=v_{1} / v_{2}$ solves $S_{F}=g$: since $F^{\prime \prime} / F^{\prime}=-2 v_{2}^{\prime} / v_{2}$,

$$
S_{F}=-2 \cdot \frac{v_{2}^{\prime \prime} v_{2}-\left(v_{2}^{\prime}\right)^{2}}{v_{2}^{2}}-2 \cdot \frac{\left(v_{2}^{\prime}\right)^{2}}{v_{2}^{2}}=-2 \cdot \frac{v_{2}^{\prime \prime}}{v_{2}}=g
$$

We have proved that the equation $S_{F}=g$ has at least one solution. Conversely, suppose that F, G are two functions with the same Schwarzian derivative g. Since g is holomorphic, F, G are locally univalent, so $G \circ F^{-1}$ is defined locally. Comparing

$$
\begin{aligned}
& S_{G \circ F^{-1}}=S_{G}\left(F^{-1}(z)\right)\left(F^{-1}\right)^{\prime}(z)^{2}+S_{F}, \\
& S_{F \circ F^{-1}}=S_{F}\left(F^{-1}(z)\right)\left(F^{-1}\right)^{\prime}(z)^{2}+S_{F},
\end{aligned}
$$

one sees that $G \circ F^{-1}$ is a Möbius transformation as desired.
Remark. If F is not locally univalent, then S_{F} has a pole of order 2. For instance, if $F(z)=z^{\alpha} H(z)$ where $H(z)$ is a holomorphic function with $H(0) \neq 0$, then

$$
N_{F}(z):=\frac{F^{\prime \prime}(z)}{F^{\prime}(z)}=\frac{\alpha(\alpha-1) z^{\alpha-2} H(z)+\ldots}{\alpha z^{\alpha-1} H(z)+\ldots}=\frac{\alpha-1}{z}+\ldots
$$

and

$$
S_{F}(z)=\frac{1-\alpha}{z^{2}}-\frac{(\alpha-1)^{2}}{2 z^{2}}+\ldots=\frac{1-\alpha^{2}}{2} \cdot \frac{1}{z^{2}}+\ldots
$$

3.2 Schwarzians of conformal metrics

Recall from Lemma 2.4 that solutions of the Gauss curvature equation $\Delta u=e^{2 u}$ are smooth. The Schwarzian derivative of the solution u is defined as

$$
S_{u}=2\left[\frac{\partial^{2} u}{\partial z^{2}}-\left(\frac{\partial u}{\partial z}\right)^{2}\right]
$$

Using the factorization $\Delta=4 \partial \bar{\partial}$, it is easy to check that $\bar{\partial} S_{u}=0$. In other words, S_{u} is holomorphic. Furthermore, if $u_{F}=\log \frac{2\left|F^{\prime}\right|}{1-|F|^{2}}$, then the two definitions $S_{u_{F}}=S_{F}$ agree.

Lemma 3.3. Suppose u, v are two solutions of the $G C E$

$$
\Delta u=e^{2 u}, \quad \text { on } \Omega
$$

which have the same Schwarzian derivative $S_{u}=S_{v}$ on Ω. If $u\left(z_{0}\right)=v\left(z_{0}\right)$ and $\frac{\partial u}{\partial z}\left(z_{0}\right)=\frac{\partial v}{\partial z}\left(z_{0}\right)$ agree at a single point $z_{0} \in \Omega$ then $u=v$.

The following elegant proof comes from the survey "Conformal metrics" by D. Kraus and O. Roth [14, Lemma 5.7].

Proof. The first step is to show that u and v have the same Taylor expansion at z_{0}, i.e. for any $j, k \geq 0$,

$$
\begin{equation*}
\partial^{j} \bar{\partial}^{k} u\left(z_{0}\right)=\partial^{j} \bar{\partial}^{k} v\left(z_{0}\right) \tag{3.3}
\end{equation*}
$$

By assumption, we know (3.3) for $k=0$ and $j=0,1$. The equality of the Schwarzians $S_{u}=S_{v}$,

$$
\frac{\partial^{2} u}{\partial z^{2}}-\left(\frac{\partial u}{\partial z}\right)^{2}=\frac{\partial^{2} v}{\partial z^{2}}-\left(\frac{\partial v}{\partial z}\right)^{2}
$$

expresses higher ∂_{z} derivatives of u in terms of lower ∂_{z} derivatives, which gives (3.3) for $k=0$ and all $j \geq 0$ by induction. Since u and v are real-valued, we automatically
have (3.3) for $j=0$ and all $k \geq 0$. Finally, the Gauss curvature equation $\Delta u=4 \partial \bar{\partial} u$ shows (3.3) for all other values of j, k.

The functions $v_{1}(z)=e^{-u(z)}$ and $v_{2}(z)=e^{-v(z)}$ solve

$$
v_{z z}+\frac{S_{u}(z)}{2} v=0
$$

Consider the analytic Wronskian

$$
W(z)=\frac{\partial v_{1}}{\partial z}(z) v_{2}(z)-v_{1}(z) \frac{\partial v_{2}}{\partial z}(z) .
$$

Since $S_{u}=S_{v}$,

$$
\frac{\partial W}{\partial z}=0
$$

i.e. W is antiholomorphic in Ω. By the first part of the proof, $\bar{\partial}^{k} W\left(z_{0}\right)=0$ for all $k \geq 0$. Hence, $W \equiv 0$. Hence,

$$
\partial_{z}\left(\frac{v_{1}(z)}{v_{2}(z)}\right)=\frac{W(z)}{v_{2}(z)^{2}}=0 .
$$

Since v_{1} / v_{2} is a real-valued function, v_{2} is a constant multiple of v_{1}. As v_{1} and v_{2} agree at $z_{0}, v_{1}=v_{2}$. In other words, $u=v$ as desired.

Using the above lemma, we can prove Liouville's theorem for regular solutions of the GCE.

Proof of Liouville's theorem for regular solutions. Suppose u is a regular solution of the GCE in Ω. The set of F 's such that $S_{F}=S_{u}$ are parametrized by Aut $(\hat{\mathbb{C}})$. We need to find an $F: \Omega \rightarrow \mathbb{D}$ which corresponds to u, i.e.

$$
u=u_{F}=\log \frac{2\left|F^{\prime}\right|}{1-|F|^{2}}
$$

Given a point $z_{0} \in \Omega$, we claim that there exists a unique holomorphic function F defined in a small ball $B\left(z_{0}, r\right)$ centered at z_{0} with $F\left(z_{0}\right)=0$ and $F^{\prime}\left(z_{0}\right)>0$ for which $u_{F}=u$ in $B\left(z_{0}, r\right)$.

If $u=\log \frac{2\left|F^{\prime}\right|}{1-|F|^{2}}$ in $B\left(z_{0}, r\right)$ with $F\left(z_{0}\right)=0$ and $F^{\prime}\left(z_{0}\right)>0$, then

$$
\begin{equation*}
F\left(z_{0}\right)=0, \quad F^{\prime}\left(z_{0}\right)=\frac{1}{2} e^{u\left(z_{0}\right)}, \quad F^{\prime \prime}\left(z_{0}\right)=e^{-u\left(z_{0}\right)} \cdot \frac{\partial u}{\partial z}\left(z_{0}\right) \tag{3.4}
\end{equation*}
$$

If F exists, then it is uniquely determined by its Schwarzian derivative and its 2-jet of F at z_{0}.

By Lemma 3.2, there exists a unique locally-univalent holomorphic function F with $S_{F}=S_{u}$ whose 2-jet at z_{0} is given by (3.4). We restrict our attention to a small ball $B\left(z_{0}, r\right)$ where $|F(z)|<1$ and $F^{\prime}(z) \neq 0$. By Lemma $3.3, u=\log \frac{2\left|F^{\prime}\right|}{1-|F|^{2}}$. This proves existence.

Let z_{0} be a fixed point in Ω, and let F be a holomorphic function defined in a small ball $B\left(z_{0}, r\right) \subset \Omega$ such that $S_{F}=S_{u}$. Given any path γ from z_{0} to z_{1}, we can develop F along this path (by the method of analytic continuation) to produce a holomorphic function F_{γ} defined in a neighbourhood of z_{1} with $S_{F}=S_{u}$. Since developing along homotopic paths leads to the same result, we can patch the elements to a global function F on Ω. Here, we crucially use the fact that Ω is simply-connected.

3.3 Dealing with singularities

Let $\Omega \subset \mathbb{C}$ be a domain and C be a discrete set. If λ is a conformal metric on $\Omega \backslash C$ of curvature -1 , the Liouville map F could be a multi-valued function: when we walk around one the singularities $c_{i} \in C, F$ could change by an element of Aut \mathbb{D}. In this section, we show that that $u=\log \lambda$ extends to a solution of $\Delta u=e^{2 \mu}+\mu$ on Ω for some measure $\mu=2 \pi \sum \alpha_{i} \delta_{c_{i}}$ with $\alpha_{i} \geq-1$ and the monodromy of the Liouville map F around a singularity $c_{i} \in C$ is trivial if and only if α_{i} is a non-negative integer. In particular, F is a single-valued function if and only if all the α_{i} are non-negative integers.

Since the monodromy around an isolated singularity is a local issue, it suffices to consider the case when λ has just one isolated singularity at $0 \in \Omega$. Write $\Omega^{*}=\Omega \backslash\{0\}$. If we walk around $0, F$ may change by a Möbius transformation $\phi \in \operatorname{Aut}(\mathbb{D})$, i.e. $F \rightarrow \phi \circ F$. An element of $\operatorname{Aut}(\mathbb{D})$ could be either hyperbolic, elliptic or parabolic. We consider these cases separately.

Hyperbolic monodromy

We show that this possibility does not occur, i.e. that ϕ cannot be a hyperbolic Möbius transformation. For this purpose, we make $F: \Omega^{*} \rightarrow \mathbb{D}$ single-valued by lifting it to the universal cover $\mathbb{H} \rightarrow \Omega^{*}$. We denote the lift by $\hat{F}: \mathbb{H} \rightarrow \mathbb{D}$. Going around a small loop $\partial B(0, \varepsilon)$ around 0 in Ω^{*} amounts to walking from ζ_{0} to ζ_{1} in the universal cover \mathbb{H} which lie above $\varepsilon \in \partial B(0, \varepsilon)$. By the Schwarz lemma,

$$
\begin{equation*}
d_{\mathbb{H}}\left(\zeta_{0}, \zeta_{1}\right) \geq d_{\mathbb{D}}\left(\hat{F}\left(\zeta_{0}\right), \hat{F}\left(\zeta_{1}\right)\right)=d_{\mathbb{D}}\left(\hat{F}\left(\zeta_{0}\right),(\phi \circ \hat{F})\left(\zeta_{0}\right)\right) \tag{3.5}
\end{equation*}
$$

Since the hyperbolic length of the loop $\partial B(0, \varepsilon)$ tends to 0 as $\varepsilon \rightarrow 0$, the left hand side of (3.5) can be made arbitrarily small. However the right hand side of (3.5) is bounded below since the hyperbolic translation length of a hyperbolic Möbius transformation is positive, i.e. $\inf _{z \in \mathbb{H}} d_{\mathbb{H}}(z, \phi(z))>c>0$. This gives the desired contradiction.

Elliptic monodromy

Suppose that ϕ is an elliptic transformation which rotates around the neutral point $z_{0} \in \mathbb{D}$. If $\psi(z)=\frac{z-z_{0}}{1-z_{0} z}$ is a Möbius transformation that sends $z_{0} \rightarrow 0$, then $\psi \circ F$: $\Omega^{*} \rightarrow \mathbb{D}$ is a multi-valued holomorphic function whose monodromy transformation is a rotation about 0 . In other words, if we go once around the origin, $\psi \circ F$ is multiplied by a unimodular constant:

$$
\psi \circ F \rightarrow e^{2 \pi i \alpha} \psi \circ F, \quad 0 \leq \alpha<1
$$

Since the quotient $(\psi \circ F)(z) / z^{\alpha-1}$ is bounded and single-valued near the origin, $(\psi \circ F)(z)=z^{\alpha-1} H(z)$ where H is a holomorphic function with $H(0)=0$. If H has a zero of order k at the origin, then $\psi \circ F=z^{\alpha+k-1}+\ldots$. Set $n=\alpha+k-1$. From this expansion, it follows that

$$
\Delta u_{F}=\Delta u_{\psi \circ F}=\Delta \log \frac{2\left|(\psi \circ F)^{\prime}(z)\right|}{1-|\psi \circ F(z)|^{2}}
$$

has a singularity $(n-1) \cdot 2 \pi \delta_{0}$ at the origin, while

$$
S_{F}=\frac{1-n^{2}}{2} \cdot \frac{1}{z^{2}}+\mathcal{O}(1 / z)
$$

Parabolic mondromy

Suppose that F has parabolic monodromy, i.e. $\phi \in \operatorname{Aut} \mathbb{D}$ has a parabolic fixed point on the unit circle. Let $\psi: \mathbb{D} \rightarrow \mathbb{H}$ be a Möbius transformation which takes this parabolic fixed point to infinity. The monodromy of $\psi \circ F$ is a translation $z \rightarrow z+c$ with $c \in \mathbb{R}$. We scale ψ to make $c=2 \pi$. Let \hat{F} be the composition

$$
\Omega^{*} \xrightarrow{F} \mathbb{D} \xrightarrow{\psi} \mathbb{H} \xrightarrow{\exp (i \tau)} \mathbb{D}^{*} .
$$

Thanks to the exponential, \hat{F} single-valued and takes the origin to itself (the singularity is removable because the image is bounded). Inspection shows that $\gamma=\hat{F}^{\prime}(0) \neq 0$. We use this information is work out the singularity of $\Delta \log \lambda$ at the origin, and the behaviour of the Schwarzian S_{F} near the origin.

Since $\psi:\left(\mathbb{D}, \rho_{\mathbb{D}}\right) \rightarrow\left(\mathbb{H}, \rho_{\mathbb{H}}\right)$ and $e^{i \tau}:\left(\mathbb{H}, \rho_{\mathbb{H}}\right) \rightarrow\left(\mathbb{D}^{*}, \rho_{\mathbb{D}^{*}}\right)$ are local isometries,

$$
\frac{2\left|F^{\prime}(z)\right|}{1-|F(z)|^{2}}=\frac{\left|\hat{F}^{\prime}(z)\right|}{|\hat{F}(z)| \log |1 / \hat{F}(z)|}
$$

which tells us that $u_{F}-u_{\mathbb{D}^{*}}=O(1)$ near the origin, from which we see that $\Delta u_{F}(\{0\})=\Delta u_{\mathbb{D}}(\{0\})=-2 \pi$. Here, we have used that if $v \in L_{\mathrm{loc}}^{1}$ such that Δv is a locally finite measure then

$$
\Delta v(\{a\})=\lim _{r \rightarrow 0} f_{\partial B(a, r)} v(z)|d z| .
$$

In particular, if v is bounded then Δv cannot charge points. (In this case, Δv is unable to charge sets of logarithmic capacity 0 .)

As $S_{\exp (i \tau)}=1 / 2$,

$$
\begin{equation*}
S_{\hat{F}}=\frac{1}{2} \cdot(\psi \circ F)^{\prime}(z)^{2}+S_{F} . \tag{3.6}
\end{equation*}
$$

Under $\psi \circ F$, the circle $\partial B(0, \varepsilon)$ is approximately mapped to the horizontal line $\left.\left\{\operatorname{Im} z=\log \frac{1}{\gamma \varepsilon}\right)\right\}$, which is then roughly mapped to $\partial B(0, \gamma \varepsilon)$ by $e^{i \tau}$. This means that $(\psi \circ F)^{\prime} \sim 1 / z$ near the origin. Putting this into (3.6), we obtain:

$$
S_{F}=-\frac{1}{2 z^{2}}+\ldots
$$

In other words, S_{F} which has a pole of order 2 with $a_{-2}=1 / 2$.

