Potential theory

Do as many questions as you can, partial answers welcome!

- 1. Show that $\Delta \log^+ |z|$ is Lebesgue measure on the unit circle.
- 2. Suppose $f_n \to f$ in $W^{1,2}(\Omega)$. Show that after passing to a subsequence, the f_n converge pointwise to f outside a polar set (i.e. outside a set of $W^{1,2}$ -capacity 0).
- 3. Suppose v(z) is a subharmonic function on a domain $\Omega \subset \mathbb{C}$. Show that for a point $a \in \Omega$,

$$\Delta v(\{a\}) = \lim_{r \to 0} \frac{2\pi}{\log r} \oint_{\partial B(a,r)} v(z) |dz|.$$

4. Suppose F is a finite Blaschke product with F(0) = 0.

1

- (a) Use Brownian motion to show that the Lebesgue measure on the unit circle is invariant under F.
- (b) Let $G(z) = \log \frac{1}{|z|}$ be the Green's function of the unit disk with a pole at the origin. Use Brownian motion to show that

$$\sum_{F(w)=z} G(w) = G(z), \qquad z \neq 0,$$

where the sum on the left is counted with multiplicity.

5. Show that the universal covering map $\mathbb{D} \to \mathbb{D} \setminus E$ is an inner function if and only if the set E is polar.

Note. A holomorphic function F on the unit is called *inner* if for almost every $\theta \in [0, 2\pi)$, the radial limit

$$\lim_{z \to e^{i\theta}} F(z)$$

exists and has absolute value 1.

6. Suppose u is a subharmonic function defined on a domain $\Omega \subset \mathbb{C}$. Show that

$$\underline{\Delta}u(z) = \liminf_{r \to 0} \frac{4}{r^2} \left(\int_{|z|=r} u(z) |dz| - u(0) \right) \ge e^{2u(z)}, \qquad z \in \Omega,$$

is satisfied if and only if $\Delta u \ge e^{2u}$ in the sense of distributions.

7. Let B(0,1) be the unit ball in \mathbb{R}^n . Call a finite measure $\mu \ge 0$ good if the equation

$$\Delta u = u^2 - \mu$$

has at least one solution in B(0, 1).

According to the method of sub- and super- solutions, there is at least one solution between any subsolution u_* and supersolution $u^* \ge u_*$.

- (a) Show that if μ is good, then any measure $0 < \nu \leq \mu$ is good.
- (b) Show that the sum of two good measures is good.
- (c) Show that $\mu = \delta_0$ is good in dimensions n = 2, 3. In fact, show that any measure is good in dimensions 2 and 3.
- (d) Show that $\mu = \delta_0$ is bad when $n \ge 4$.

Hint. Let $\varphi \in C_c^{\infty}(\mathbb{D})$ be a test function such that $\varphi(0) \neq 0$. Define $\varphi_n(x) := \varphi(nx)$. By the definition of a weak solution,

$$\int_{B(0,1)} u\Delta\varphi_n = \int_{B(0,1)} u^2\varphi_n + \varphi(0)$$

Taking $n \to \infty$ to derive a contradiction. Note that by the definition of a weak solution u^2 is locally integrable.

- (e) Show that if μ is good, then there exists a solution u_{μ} with zero boundary values, in the sense that the measures $u(r\zeta)dS_{\zeta} \to 0$ converge in the weak-* topology.
- 8. Let B(0,1) be the unit ball in \mathbb{R}^n . In this problem, we study the PDE

$$\begin{cases} \Delta u = u^2, & \text{in } B(0,1), \\ u = \mu, & \text{on } \partial B(0,1), \end{cases}$$
(1)

where $\mu \ge 0$ is a finite measure on $\partial B(0, 1)$.

For u to be qualify as a solution of (1), we require that

(i) the equation $\Delta u = u^2$ holds weakly in the sense of distributions,

(ii) the measures $u(r\zeta)dS_{\zeta} \to \mu$ converge in the weak-* topology.

We say that $\mu \ge 0$ is a good measure if the PDE (1) admits at least one solution. We write P_{μ} for the Poisson extension of μ to the disk. In other words, P_{μ} is a harmonic function whose boundary measure is μ .

- (a) Show that the PDE (1) admits at most one solution. If it exists, we will denote it by u_{μ} .
- (b) Show that if $\mu_1 \ge \mu_2$ are good measures, then $u_{\mu_1} \ge u_{\mu_2}$.
- (c) Check that for any positive measure $\mu \geq 0$,
 - (i) 0 is a subsolution and
 - (ii) P_{μ} is a supersolution of $\Delta u = u^2$.
- (d) Given a positive measure $\mu \ge 0$, let u be the pointwise-maximal solution that lies below P_{μ} . Show that $u = u_{\nu}$ for some $0 \le \nu \le \mu$, and $\mu = \nu$ if and only if μ is good.
- (e) Show that if μ is good, then any measure $0 < \nu \leq \mu$ is also good.
- (f) Show that the sum of two good measures is good.