
Chapter 4

Vásquez theorem

In Chapter 2, we studied the Gauss curvature equation �u = e2u + µ with µ � 0.

In this chapter, we consider what happens when µ is negative. We have already

encountered the metrics

u↵ = log(z↵)⇤�D = log
2↵

|z|1�↵(1� |z|2↵) , 0 < ↵ < 1,

and

u0 = log �D\{0} = log
1

|z| log |1/z| ,

which solve GCEµ with µ = �2⇡(1 � ↵)�0. When ↵ = 1, the angle at the origin is

2⇡. As ↵ decreases, the cone angle at the origin shrinks. Tending ↵ ! 0, the u↵

converge to u0, in which case, the cone angle at the origin is zero. Can one decrease

the delta mass at the origin any further? A little thought shows that one cannot: if

there were a solution of GCEµ with µ = �↵�0 with ↵ > 2⇡, then by the comparison

principle, the maximal solution of GCEµ would be larger than u0 on D
⇤ = D \ {0},

however, the hyperbolic metric of the punctured disk is the largest conformal metric

on D
⇤ with curvature �1.

Alternatively, one can argue as follows: if there were a solution u with µ({0}) <
�2⇡, then u would have to grow very quickly near the origin. This would prevent

the function e2u from being in L1
loc, which is one of the requirements for u to be

considered a solution.
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As a second example, take the unit disk minus a discrete set of points C. Let

�D\C be the hyperbolic metric on D \ C and uD\C = log �D\C . As we have seen in

Chapter 3 on Liouville’s theorem, uD\C satisfies

�u = e2u � 2⇡
X

c2C

�c.

In this chapter, we prove the following remarkable theorem due to Vásquez which

says that GCEµ has a solution if and only if all the measure of any point is at least

�2⇡.

Theorem 4.1. Let µ  0 be a finite measure on the unit disk. The Gauss curvature

equation (
�u = e2u + µ, in D,

u = 0, on @D,
(4.1)

admits a solution if and only if µ({z}) � �2⇡ for all z 2 D.

The existence part of the theorem can be proved using the Schauder fixed point

theorem. The argument proceeds in two steps. We first assume that µ({z}) � �2⇡↵

for all z 2 D and obtain the general case with a limiting argument.

4.1 Brezis-Merle inequality

The existence of solutions of GCEµ when µ({z}) > �2⇡ for every z 2 ⌦ relies on

the Brezis-Merle inequality:

Lemma 4.2 (Brezis-Merle inequality). Suppose µ  0 is a measure on the complex

plane whose total mass |µ(C)| = ↵ < 2⇡. If

GC

µ
(z) =

1

2⇡

ˆ
log

1

|⇣ � z|dµ(⇣),

then

ke2GC
µkL1(D)  C,

where the constant C > 0 depends only on ↵.
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Proof. By Jensen’s inequality,

2GC

µ
(z) =

ˆ
C

↵

⇡
log

1

|⇣ � z|
dµ(⇣)

↵
,

=

ˆ
C

log
1

|⇣ � z|↵⇡
dµ(⇣)

↵
,

 log

ˆ
C

1

|⇣ � z|↵⇡
dµ(⇣)

↵
.

In other words,

e2G
C
µ(z) 

ˆ
C

1

|⇣ � z|↵⇡
dµ(⇣)

↵

By Fubini’s theorem,

ˆ
D

e2Gµ(z)|dz|2 
ˆ
C

✓ˆ
D

|dz|2

|⇣ � z|↵⇡

◆
dµ(⇣)

↵
< 1,

since ↵ < 2⇡.

Corollary 4.3. Suppose µ  0 is a finite measure on the disk such that µ({z}) >
�↵ > �2⇡ for every z 2 D. Then, e2G

C
µ 2 L1(D).

Proof. Pick an ↵0 2 (↵, 2⇡) and cover D by finitely many balls {B(zi, ri)}ni=1 with

|µ(B(zi, 2ri))| < ↵0 < 2⇡.

Set µi = µ · �B(zi,2ri). Clearly,

2GC

µ
 2GC

µi
+ Ci, z 2 B(zi, ri).

where Ci =
|µ(D)|

⇡
log+ 1

ri
. Since the number of balls is finite, so is C = maxCi. By

the Brezis-Merle inequality,

ˆ
D

e2G
C
µ  eC

nX

i=1

ˆ
D

e2G
C
µi < 1.

The proof is complete.
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4.2 Method of subsolutions and supersolutions

Theorem 4.4. Let u⇤ be a subsolution of GCEµ and u⇤ be a supersolution. We now

show there exists a solution between u⇤  u  u⇤.

Proof. By working in a disk Dr with r < 1 and taking r ! 1, we can assume that

u⇤, u⇤ 2 L1(@D). Pick u⇤  h  u⇤. Consider the closed convex set

K =
n
v 2 L1(D, |dz|2), u⇤  v  u⇤

o
⇢ L1(D, |dz|2).

For v 2 K , let u be the solution of the linear Dirichlet problem �u = e2v + µ in D

with u = h on @D and

Tv(z) =

8
><

>:

u⇤(z), u < u⇤,

u(z), u⇤  u  u⇤,

u⇤(z), u > u⇤.

The definition of Tv is cooked up so that T maps K into itself.

Step 1. We first show that if Tv = v is a fixed point, then v solves GCEµ.

Consider g = (u� u⇤)+. By Kato’s inequality,

�g � �{u>u⇤}(e
2v � e2u

⇤
).

From the definition of truncation, if u > u⇤, then v = u⇤. Since g is a non-negative

subharmonic function which has zero boundary data, it is identically 0. Then, u  u⇤.

A similar argument shows that u � u⇤.

Step 2. We now check that the operator T is continuous on K , that is if vn ! v

in L1(D, |dz|2), then Tvn ! Tv. We have the estimate:

kTvn � TvkL1  kun � ukL1  ke2vn � e2vkL1 .

Pass to a subsequence such that vn ! v converges pointwise a.e. Along this subse-

quence, e2vn � e2v ! 0 and is dominated by 2e2u
⇤
. Continuity of T now follows from

the dominated convergence theorem.
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Step 3. It remains to show that T is compact. Suppose v1, v2, . . . is a sequence

in K which is bounded in L1. Since

kunkW 1,1
0

 Cke2vn + µkM  Cke2u⇤
n + µkM  C 0

and W 1,1
0 sits compactly inside L1, we can choose a subsequence of vn such that the

correpsonding sequence of solutions un converges in L1. However, then the sequence

of truncations Tvn also converge in L1. The proof is complete.

We can now show:

Proof of Theorem 4.1, when µ has no point masses of size �2⇡. It is enough to pro-

vide a subsolution and supersolution of GCEµ with zero boundary values. For a

subsolution, let u⇤ be the solution of the Gauss curvature equation �u = e2µ with

zero boundary values. For a supersolution, take u⇤ = Gµ.

4.3 Limiting argument

Lemma 4.5. (Contraction estimate) Let µ  0 be a negative measure on the unit

disk and u be a solution of the Gauss curvature equation �u = e2u + µ with zero

boundary values. Then,

ke2ukL1(D)  kµkM(D) + C.

Proof. Choose a sequence of measures µn 2 C1
c
(D) such that µn ! µ weakly and

µn(⌦) ! µ(⌦). Let fn � 0 be any sequence of smooth functions that tend to e2u in

L1(D) and un 2 C1(D) be the solution of the linear Dirichlet problem �un = fn+µn

with zero boundary values. We know that for any test function � 2 C1
c
(D),

ˆ
D

fn�|dz|2 �
ˆ
D

un��|dz|2 = �
ˆ
D

� dµn. (4.2)

Let S"(t) be a smooth increasing function that is 0 for t < �" and 1 for t > ". Taking

�(z) = S"(un(z)) and integrating by parts, we get

ˆ
D

fn�|dz|2 +
ˆ
D

|run|2S 0
"
(un(z))|dz|2  kµnkM(D). (4.3)
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Since the second term in the above equation is positive,

kfn · �u>0kL1(D)  kµnkM(D). (4.4)

Fatou’s lemma shows that

ke2u · �u>0kL1(D)  kµkM(D). (4.5)

Since ke2u · �u<0kL1(D)  ⇡, the proof is complete.

Proof of Theorem 4.1, when µ has point masses of size �2⇡. For n � 1, let µn =

(1 � 1/n)µ and un be the solution of �u = e2u + µn with zero boundary data. By

the comparison principle, the un’s form an increasing family of solutions. Let u be

their pointwise limit. The contraction estimate

ke2unkL1(D)  kµnkM(D) + C

tells us that

k�unkM(D) = ke2un + µnkM(D)  2kµnkM(D) + C.

Since k�unkM(⌦) are uniformly bounded, the un = � 1
2⇡

´
D
G(z, ⇣)�un(⇣) are bounded

in L1:

sup
n

kunkL1(⌦) < 1.

As the un form increasing sequence, u 2 L1 and un ! u in L1. The contraction

estimate shows that e2u 2 L1 and e2un ! e2u in L1. By the dominated convergence

theorem (applied to the definition of a weak solution), u solves �u = e2u + µ as

desired.
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