Chapter 4

Vásquez theorem

In Chapter 2, we studied the Gauss curvature equation $\Delta u = e^{2u} + \mu$ with $\mu \ge 0$. In this chapter, we consider what happens when μ is negative. We have already encountered the metrics

$$u_{\alpha} = \log(z^{\alpha})^* \lambda_{\mathbb{D}} = \log \frac{2\alpha}{|z|^{1-\alpha}(1-|z|^{2\alpha})}, \qquad 0 < \alpha < 1,$$

and

$$u_0 = \log \lambda_{\mathbb{D}\setminus\{0\}} = \log \frac{1}{|z|\log|1/z|},$$

which solve GCE_{μ} with $\mu = -2\pi(1-\alpha)\delta_0$. When $\alpha = 1$, the angle at the origin is 2π . As α decreases, the cone angle at the origin shrinks. Tending $\alpha \to 0$, the u_{α} converge to u_0 , in which case, the cone angle at the origin is zero. Can one decrease the delta mass at the origin any further? A little thought shows that one cannot: if there were a solution of GCE_{μ} with $\mu = -\alpha\delta_0$ with $\alpha > 2\pi$, then by the comparison principle, the maximal solution of GCE_{μ} would be larger than u_0 on $\mathbb{D}^* = \mathbb{D} \setminus \{0\}$, however, the hyperbolic metric of the punctured disk is the largest conformal metric on \mathbb{D}^* with curvature -1.

Alternatively, one can argue as follows: if there were a solution u with $\mu(\{0\}) < -2\pi$, then u would have to grow very quickly near the origin. This would prevent the function e^{2u} from being in L^1_{loc} , which is one of the requirements for u to be considered a solution.

As a second example, take the unit disk minus a discrete set of points C. Let $\lambda_{\mathbb{D}\backslash C}$ be the hyperbolic metric on $\mathbb{D} \setminus C$ and $u_{\mathbb{D}\backslash C} = \log \lambda_{\mathbb{D}\backslash C}$. As we have seen in Chapter 3 on Liouville's theorem, $u_{\mathbb{D}\backslash C}$ satisfies

$$\Delta u = e^{2u} - 2\pi \sum_{c \in C} \delta_c.$$

In this chapter, we prove the following remarkable theorem due to Vásquez which says that GCE_{μ} has a solution if and only if all the measure of any point is at least -2π .

Theorem 4.1. Let $\mu \leq 0$ be a finite measure on the unit disk. The Gauss curvature equation

$$\begin{cases} \Delta u = e^{2u} + \mu, & \text{in } \mathbb{D}, \\ u = 0, & \text{on } \partial \mathbb{D}, \end{cases}$$
(4.1)

admits a solution if and only if $\mu(\{z\}) \geq -2\pi$ for all $z \in \mathbb{D}$.

The existence part of the theorem can be proved using the Schauder fixed point theorem. The argument proceeds in two steps. We first assume that $\mu(\{z\}) \ge -2\pi\alpha$ for all $z \in \mathbb{D}$ and obtain the general case with a limiting argument.

4.1 Brezis-Merle inequality

The existence of solutions of GCE_{μ} when $\mu(\{z\}) > -2\pi$ for every $z \in \Omega$ relies on the Brezis-Merle inequality:

Lemma 4.2 (Brezis-Merle inequality). Suppose $\mu \leq 0$ is a measure on the complex plane whose total mass $|\mu(\mathbb{C})| = \alpha < 2\pi$. If

$$G^{\mathbb{C}}_{\mu}(z) = \frac{1}{2\pi} \int \log \frac{1}{|\zeta - z|} d\mu(\zeta),$$

then

 $\|e^{2G^{\mathbb{C}}_{\mu}}\|_{L^1(\mathbb{D})} \le C,$

where the constant C > 0 depends only on α .

Proof. By Jensen's inequality,

$$2G^{\mathbb{C}}_{\mu}(z) = \int_{\mathbb{C}} \frac{\alpha}{\pi} \log \frac{1}{|\zeta - z|} \frac{d\mu(\zeta)}{\alpha},$$
$$= \int_{\mathbb{C}} \log \frac{1}{|\zeta - z|^{\frac{\alpha}{\pi}}} \frac{d\mu(\zeta)}{\alpha},$$
$$\leq \log \int_{\mathbb{C}} \frac{1}{|\zeta - z|^{\frac{\alpha}{\pi}}} \frac{d\mu(\zeta)}{\alpha}.$$

In other words,

$$e^{2G^{\mathbb{C}}_{\mu}(z)} \leq \int_{\mathbb{C}} \frac{1}{|\zeta - z|^{\frac{\alpha}{\pi}}} \frac{d\mu(\zeta)}{\alpha}$$

By Fubini's theorem,

$$\int_{\mathbb{D}} e^{2G_{\mu}(z)} |dz|^2 \leq \int_{\mathbb{C}} \left(\int_{\mathbb{D}} \frac{|dz|^2}{|\zeta - z|^{\frac{\alpha}{\pi}}} \right) \frac{d\mu(\zeta)}{\alpha} < \infty,$$

since $\alpha < 2\pi$.

Corollary 4.3. Suppose $\mu \leq 0$ is a finite measure on the disk such that $\mu(\{z\}) > -\alpha > -2\pi$ for every $z \in \mathbb{D}$. Then, $e^{2G_{\mu}^{\mathbb{C}}} \in L^{1}(\mathbb{D})$.

Proof. Pick an $\alpha' \in (\alpha, 2\pi)$ and cover $\overline{\mathbb{D}}$ by finitely many balls $\{B(z_i, r_i)\}_{i=1}^n$ with

$$|\mu(B(z_i, 2r_i))| < \alpha' < 2\pi.$$

Set $\mu_i = \mu \cdot \chi_{B(z_i, 2r_i)}$. Clearly,

$$2G^{\mathbb{C}}_{\mu} \le 2G^{\mathbb{C}}_{\mu_i} + C_i, \qquad z \in B(z_i, r_i).$$

where $C_i = \frac{|\mu(\mathbb{D})|}{\pi} \log^+ \frac{1}{r_i}$. Since the number of balls is finite, so is $C = \max C_i$. By the Brezis-Merle inequality,

$$\int_{\mathbb{D}} e^{2G_{\mu}^{\mathbb{C}}} \leq e^{C} \sum_{i=1}^{n} \int_{\mathbb{D}} e^{2G_{\mu_{i}}^{\mathbb{C}}} < \infty.$$

The proof is complete.

4.2 Method of subsolutions and supersolutions

Theorem 4.4. Let u_* be a subsolution of GCE_{μ} and u^* be a supersolution. We now show there exists a solution between $u_* \leq u \leq u^*$.

Proof. By working in a disk \mathbb{D}_r with r < 1 and taking $r \to 1$, we can assume that $u_*, u^* \in L^1(\partial \mathbb{D})$. Pick $u_* \leq h \leq u^*$. Consider the closed convex set

$$\mathscr{K} = \left\{ v \in L^1(\mathbb{D}, |dz|^2), \ u_* \le v \le u^* \right\} \subset L^1(\mathbb{D}, |dz|^2).$$

For $v \in \mathscr{K}$, let u be the solution of the linear Dirichlet problem $\Delta u = e^{2v} + \mu$ in \mathbb{D} with u = h on $\partial \mathbb{D}$ and

$$Tv(z) = \begin{cases} u_*(z), & u < u_*, \\ u(z), & u_* \le u \le u^*, \\ u^*(z), & u > u_*. \end{cases}$$

The definition of Tv is cooked up so that T maps \mathscr{K} into itself.

Step 1. We first show that if Tv = v is a fixed point, then v solves GCE_{μ} . Consider $g = (u - u^*)_+$. By Kato's inequality,

$$\Delta g \ge \chi_{\{u > u^*\}}(e^{2v} - e^{2u^*}).$$

From the definition of truncation, if $u > u^*$, then $v = u^*$. Since g is a non-negative subharmonic function which has zero boundary data, it is identically 0. Then, $u \le u^*$. A similar argument shows that $u \ge u^*$.

Step 2. We now check that the operator T is continuous on \mathscr{K} , that is if $v_n \to v$ in $L^1(\mathbb{D}, |dz|^2)$, then $Tv_n \to Tv$. We have the estimate:

$$||Tv_n - Tv||_{L^1} \le ||u_n - u||_{L^1} \le ||e^{2v_n} - e^{2v}||_{L^1}.$$

Pass to a subsequence such that $v_n \to v$ converges pointwise a.e. Along this subsequence, $e^{2v_n} - e^{2v} \to 0$ and is dominated by $2e^{2u^*}$. Continuity of T now follows from the dominated convergence theorem.

Step 3. It remains to show that T is compact. Suppose v_1, v_2, \ldots is a sequence in \mathscr{K} which is bounded in L^1 . Since

$$||u_n||_{W_0^{1,1}} \le C ||e^{2v_n} + \mu||_M \le C ||e^{2u_n^*} + \mu||_M \le C'$$

and $W_0^{1,1}$ sits compactly inside L^1 , we can choose a subsequence of v_n such that the corresponding sequence of solutions u_n converges in L^1 . However, then the sequence of truncations Tv_n also converge in L^1 . The proof is complete.

We can now show:

Proof of Theorem 4.1, when μ has no point masses of size -2π . It is enough to provide a subsolution and supersolution of GCE_{μ} with zero boundary values. For a subsolution, let u_* be the solution of the Gauss curvature equation $\Delta u = e^{2\mu}$ with zero boundary values. For a supersolution, take $u^* = G_{\mu}$.

4.3 Limiting argument

Lemma 4.5. (Contraction estimate) Let $\mu \leq 0$ be a negative measure on the unit disk and u be a solution of the Gauss curvature equation $\Delta u = e^{2u} + \mu$ with zero boundary values. Then,

$$||e^{2u}||_{L^1(\mathbb{D})} \le ||\mu||_{M(\mathbb{D})} + C.$$

Proof. Choose a sequence of measures $\mu_n \in C_c^{\infty}(\mathbb{D})$ such that $\mu_n \to \mu$ weakly and $\mu_n(\Omega) \to \mu(\Omega)$. Let $f_n \geq 0$ be any sequence of smooth functions that tend to e^{2u} in $L^1(\mathbb{D})$ and $u_n \in C^{\infty}(\mathbb{D})$ be the solution of the linear Dirichlet problem $\Delta u_n = f_n + \mu_n$ with zero boundary values. We know that for any test function $\phi \in C_c^{\infty}(\mathbb{D})$,

$$\int_{\mathbb{D}} f_n \phi |dz|^2 - \int_{\mathbb{D}} u_n \Delta \phi |dz|^2 = -\int_{\mathbb{D}} \phi \, d\mu_n.$$
(4.2)

Let $S^{\varepsilon}(t)$ be a smooth increasing function that is 0 for $t < -\varepsilon$ and 1 for $t > \varepsilon$. Taking $\phi(z) = S^{\varepsilon}(u_n(z))$ and integrating by parts, we get

$$\int_{\mathbb{D}} f_n \phi |dz|^2 + \int_{\mathbb{D}} |\nabla u_n|^2 S_{\varepsilon}'(u_n(z))|dz|^2 \le \|\mu_n\|_{M(\mathbb{D})}.$$
(4.3)

Since the second term in the above equation is positive,

$$\|f_n \cdot \chi_{u>0}\|_{L^1(\mathbb{D})} \le \|\mu_n\|_{M(\mathbb{D})}.$$
(4.4)

Fatou's lemma shows that

$$\|e^{2u} \cdot \chi_{u>0}\|_{L^1(\mathbb{D})} \le \|\mu\|_{M(\mathbb{D})}.$$
(4.5)

Since $||e^{2u} \cdot \chi_{u<0}||_{L^1(\mathbb{D})} \leq \pi$, the proof is complete.

Proof of Theorem 4.1, when μ has point masses of size -2π . For $n \geq 1$, let $\mu_n = (1 - 1/n)\mu$ and u_n be the solution of $\Delta u = e^{2u} + \mu_n$ with zero boundary data. By the comparison principle, the u_n 's form an increasing family of solutions. Let u be their pointwise limit. The contraction estimate

$$||e^{2u_n}||_{L^1(\mathbb{D})} \le ||\mu_n||_{M(\mathbb{D})} + C$$

tells us that

$$\|\Delta u_n\|_{M(\mathbb{D})} = \|e^{2u_n} + \mu_n\|_{M(\mathbb{D})} \le 2\|\mu_n\|_{M(\mathbb{D})} + C.$$

Since $\|\Delta u_n\|_{M(\Omega)}$ are uniformly bounded, the $u_n = -\frac{1}{2\pi} \int_{\mathbb{D}} G(z,\zeta) \Delta u_n(\zeta)$ are bounded in L^1 :

$$\sup \|u_n\|_{L^1(\Omega)} < \infty.$$

As the u_n form increasing sequence, $u \in L^1$ and $u_n \to u$ in L^1 . The contraction estimate shows that $e^{2u} \in L^1$ and $e^{2u_n} \to e^{2u}$ in L^1 . By the dominated convergence theorem (applied to the definition of a weak solution), u solves $\Delta u = e^{2u} + \mu$ as desired.