Chapter 4

Vasquez theorem

In Chapter 2, we studied the Gauss curvature equation Au = e + p with u > 0.
In this chapter, we consider what happens when g is negative. We have already

encountered the metrics

2x
|21 (1 — |2]%)’

Uy = log(2%)" A\p = log 0<a<l,

and
1

|2|log [1/z]’
which solve GCE,, with p1 = —27(1 — a))dp. When a = 1, the angle at the origin is

2m. As a decreases, the cone angle at the origin shrinks. Tending v — 0, the u,

up = log Ap\j0y = log

converge to ug, in which case, the cone angle at the origin is zero. Can one decrease
the delta mass at the origin any further? A little thought shows that one cannot: if
there were a solution of GCE,, with 1 = —ady with o > 27, then by the comparison
principle, the maximal solution of GCE,, would be larger than v, on D* = D\ {0},
however, the hyperbolic metric of the punctured disk is the largest conformal metric
on D* with curvature —1.

Alternatively, one can argue as follows: if there were a solution v with u({0}) <

—27, then u would have to grow very quickly near the origin. This would prevent

1

1oc, Which is one of the requirements for u to be

the function e** from being in L

considered a solution.
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As a second example, take the unit disk minus a discrete set of points C. Let
Ap\¢ be the hyperbolic metric on D\ C' and up\¢ = log Ap\¢. As we have seen in

Chapter 3 on Liouville’s theorem, up\ ¢ satisfies

Ay = e — 2772(50.
ceC
In this chapter, we prove the following remarkable theorem due to Vasquez which
says that GCE,, has a solution if and only if all the measure of any point is at least

—27.
Theorem 4.1. Let p < 0 be a finite measure on the unit disk. The Gauss curvature
equation

{ Au=e*+pu, inD, (4.1)

u =0, on 0D,
admits a solution if and only if p({z}) > =2 for all z € D.

The existence part of the theorem can be proved using the Schauder fixed point
theorem. The argument proceeds in two steps. We first assume that u({z}) > —27r«a

for all z € D and obtain the general case with a limiting argument.

4.1 Brezis-Merle inequality

The existence of solutions of GCE,, when pu({z}) > —27 for every z € Q relies on
the Brezis-Merle inequality:

Lemma 4.2 (Brezis-Merle inequality). Suppose p < 0 is a measure on the complex

plane whose total mass |u(C)| = a < 2. If

cy_ L 1
G,u,(z) - 27T/10g |<—_Z|dlu(<)7

then
C
1€* || L1y < C,

where the constant C' > 0 depends only on .
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Proof. By Jensen’s inequality,
o} 1 du
QGS(Z) = / — log (C)7

cT |C—Z| «Q

1 du(Q)

p— ]_ —C!—7
/(c°g|<—z|w a
L du(()

Slog/«:—\c—zﬁ o

02652 < / 1 du(¢)
C

C—2F a

In other words,

By Fubini’s theorem,

2G,.(2) 2 |dz|? >dﬂ(<)
/De |dz| S/C(/]D)K—Zﬁ o <%,

since a < 2. O

Corollary 4.3. Suppose u < 0 is a finite measure on the disk such that u({z}) >
—a > =27 for every z € D. Then, €265 € L'(D).

Proof. Pick an o/ € (a,27) and cover D by finitely many balls {B(z;, ;) }7, with
|(B(z,2r;))] < o < 2.
Set j; = ft* XB(z2r,)- Clearly,
QGE < QGfi + C;, z € Bz, ;).

l2(D)]

where C; = log* Ti Since the number of balls is finite, so is C' = max C;. By

the Brezis-Merle inequality,

n
C C
/eQGﬂ < e’ g /€2G“i < 00.
D —1 /D

The proof is complete. O
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4.2 Method of subsolutions and supersolutions

Theorem 4.4. Let u, be a subsolution of GCE,, and u* be a supersolution. We now

show there exists a solution between u, < u < u*.

Proof. By working in a disk I, with » < 1 and taking » — 1, we can assume that
Uy, u* € LY(OD). Pick u, < h < wu*. Consider the closed convex set

H = {v e LMD, |dz[?), u, < v < u} c LMD, |dz[?).

For v € J#, let u be the solution of the linear Dirichlet problem Au = e? + p in D
with v = h on JD and

u(2), u < Uy,
To(z) =< u(z), u, <u<u,
u*(2), U > Us.

The definition of T is cooked up so that T" maps %" into itself.

Step 1. We first show that if Tv = v is a fixed point, then v solves GCE,.
Consider g = (u — u*),. By Kato’s inequality,

Ag Z X{u>u*}<€2v o 62““*)'

From the definition of truncation, if v > u*, then v = u*. Since g is a non-negative
subharmonic function which has zero boundary data, it is identically 0. Then, u < u*.

A similar argument shows that u > u*.

Step 2. We now check that the operator 1" is continuous on ¢, that is if v, — v
in L'(D, |dz|?), then Tv,, — Tv. We have the estimate:

[Tvn = Tolls < flun = ullzr < fle® = €|l

Pass to a subsequence such that v, — v converges pointwise a.e. Along this subse-
quence, e? —¢2¥ — ( and is dominated by 2¢**". Continuity of T' now follows from

the dominated convergence theorem.
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Step 3. It remains to show that 7" is compact. Suppose vy, vy, ... is a sequence
in %" which is bounded in L'. Since

lunllyas < Clle** + pllar < Clle*™ + pllar < €'

L1 o
and W,’" sits compactly inside L', we can choose a subsequence of v,, such that the
correpsonding sequence of solutions wu, converges in L'. However, then the sequence

of truncations T, also converge in L'. The proof is complete. ]
We can now show:

Proof of Theorem /.1, when i has no point masses of size —2m. It is enough to pro-
vide a subsolution and supersolution of GCE, with zero boundary values. For a
subsolution, let u, be the solution of the Gauss curvature equation Au = e** with

zero boundary values. For a supersolution, take v* = G/,. ]

4.3 Limiting argument

Lemma 4.5. (Contraction estimate) Let y < 0 be a negative measure on the unit
disk and u be a solution of the Gauss curvature equation Au = e** + u with zero
boundary values. Then,

le* vy < llellaw) + C.

Proof. Choose a sequence of measures p,, € C2°(D) such that u, — p weakly and
pn(2) = (). Let f,, > 0 be any sequence of smooth functions that tend to e** in
L'(D) and u,, € C*(D) be the solution of the linear Dirichlet problem Au,, = f,+ i,
with zero boundary values. We know that for any test function ¢ € C(D),

/D fudlda]? - / unAG|dzf? = — /  djin (42)

Let S%(t) be a smooth increasing function that is 0 for ¢ < —e and 1 for ¢ > . Taking
¢(z) = S°(un(z)) and integrating by parts, we get

/fncbIdZI2 +/ |V | Sz (un(2))dz]* < [l | ar ). (4.3)
D D
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Since the second term in the above equation is positive,

[ fn* XusollLr) < [lpnllar)- (4.4)
Fatou’s lemma shows that

e - Xusoll i) < [lptll ). (4.5)
Since ||€* - xu<ollz1) < 7, the proof is complete. O

Proof of Theorem 4.1, when p has point masses of size —2mw. For n > 1, let p, =
(1 —1/n)u and u, be the solution of Au = e** + u, with zero boundary data. By
the comparison principle, the w,’s form an increasing family of solutions. Let u be

their pointwise limit. The contraction estimate

le** N2y < llptnllarmy + €

tells us that
1A ) = 1€* + pnllwy < 2llpnllae) + C.
Since || Au, || p(q) are uniformly bounded, the u,, = —5- [ G(z, ()Aw,(¢) are bounded
in L
sup [t 21 (o) < oo.
As the u, form increasing sequence, v € L' and u, — w in L'. The contraction
estimate shows that e?* € L! and e?“» — 2 in L'. By the dominated convergence

theorem (applied to the definition of a weak solution), u solves Au = e** + u as
desired. ]
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