Chapter 4

Vásquez theorem

In Chapter 2, we studied the Gauss curvature equation $\Delta u=e^{2 u}+\mu$ with $\mu \geq 0$. In this chapter, we consider what happens when μ is negative. We have already encountered the metrics

$$
u_{\alpha}=\log \left(z^{\alpha}\right)^{*} \lambda_{\mathbb{D}}=\log \frac{2 \alpha}{|z|^{1-\alpha}\left(1-|z|^{2 \alpha}\right)}, \quad 0<\alpha<1
$$

and

$$
u_{0}=\log \lambda_{\mathbb{D} \backslash\{0\}}=\log \frac{1}{|z| \log |1 / z|},
$$

which solve GCE_{μ} with $\mu=-2 \pi(1-\alpha) \delta_{0}$. When $\alpha=1$, the angle at the origin is 2π. As α decreases, the cone angle at the origin shrinks. Tending $\alpha \rightarrow 0$, the u_{α} converge to u_{0}, in which case, the cone angle at the origin is zero. Can one decrease the delta mass at the origin any further? A little thought shows that one cannot: if there were a solution of GCE_{μ} with $\mu=-\alpha \delta_{0}$ with $\alpha>2 \pi$, then by the comparison principle, the maximal solution of GCE_{μ} would be larger than u_{0} on $\mathbb{D}^{*}=\mathbb{D} \backslash\{0\}$, however, the hyperbolic metric of the punctured disk is the largest conformal metric on \mathbb{D}^{*} with curvature -1 .

Alternatively, one can argue as follows: if there were a solution u with $\mu(\{0\})<$ -2π, then u would have to grow very quickly near the origin. This would prevent the function $e^{2 u}$ from being in $L_{\text {loc }}^{1}$, which is one of the requirements for u to be considered a solution.

As a second example, take the unit disk minus a discrete set of points C. Let $\lambda_{\mathbb{D} \backslash C}$ be the hyperbolic metric on $\mathbb{D} \backslash C$ and $u_{\mathbb{D} \backslash C}=\log \lambda_{\mathbb{D} \backslash C}$. As we have seen in Chapter 3 on Liouville's theorem, $u_{\mathbb{D} \backslash C}$ satisfies

$$
\Delta u=e^{2 u}-2 \pi \sum_{c \in C} \delta_{c} .
$$

In this chapter, we prove the following remarkable theorem due to Vásquez which says that GCE_{μ} has a solution if and only if all the measure of any point is at least -2π.

Theorem 4.1. Let $\mu \leq 0$ be a finite measure on the unit disk. The Gauss curvature equation

$$
\left\{\begin{array}{lr}
\Delta u=e^{2 u}+\mu, & \text { in } \mathbb{D}, \tag{4.1}\\
u=0, & \text { on } \partial \mathbb{D},
\end{array}\right.
$$

admits a solution if and only if $\mu(\{z\}) \geq-2 \pi$ for all $z \in \mathbb{D}$.
The existence part of the theorem can be proved using the Schauder fixed point theorem. The argument proceeds in two steps. We first assume that $\mu(\{z\}) \geq-2 \pi \alpha$ for all $z \in \mathbb{D}$ and obtain the general case with a limiting argument.

4.1 Brezis-Merle inequality

The existence of solutions of GCE_{μ} when $\mu(\{z\})>-2 \pi$ for every $z \in \Omega$ relies on the Brezis-Merle inequality:

Lemma 4.2 (Brezis-Merle inequality). Suppose $\mu \leq 0$ is a measure on the complex plane whose total mass $|\mu(\mathbb{C})|=\alpha<2 \pi$. If

$$
G_{\mu}^{\mathbb{C}}(z)=\frac{1}{2 \pi} \int \log \frac{1}{|\zeta-z|} d \mu(\zeta),
$$

then

$$
\left\|e^{2 G_{\mu}^{\mathbb{C}}}\right\|_{L^{1}(\mathbb{D})} \leq C
$$

where the constant $C>0$ depends only on α.

Proof. By Jensen's inequality,

$$
\begin{aligned}
2 G_{\mu}^{\mathbb{C}}(z) & =\int_{\mathbb{C}} \frac{\alpha}{\pi} \log \frac{1}{|\zeta-z|} \frac{d \mu(\zeta)}{\alpha} \\
& =\int_{\mathbb{C}} \log \frac{1}{|\zeta-z|^{\frac{\alpha}{\pi}}} \frac{d \mu(\zeta)}{\alpha} \\
& \leq \log \int_{\mathbb{C}} \frac{1}{|\zeta-z|^{\frac{\alpha}{\pi}}} \frac{d \mu(\zeta)}{\alpha}
\end{aligned}
$$

In other words,

$$
e^{2 G_{\mu}^{\mathbb{C}}(z)} \leq \int_{\mathbb{C}} \frac{1}{|\zeta-z|^{\frac{\alpha}{\pi}}} \frac{d \mu(\zeta)}{\alpha}
$$

By Fubini's theorem,

$$
\int_{\mathbb{D}} e^{2 G_{\mu}(z)}|d z|^{2} \leq \int_{\mathbb{C}}\left(\int_{\mathbb{D}} \frac{|d z|^{2}}{|\zeta-z|^{\frac{\alpha}{\pi}}}\right) \frac{d \mu(\zeta)}{\alpha}<\infty
$$

since $\alpha<2 \pi$.
Corollary 4.3. Suppose $\mu \leq 0$ is a finite measure on the disk such that $\mu(\{z\})>$ $-\alpha>-2 \pi$ for every $z \in \mathbb{D}$. Then, $e^{2 G_{\mu}^{\mathbb{C}}} \in L^{1}(\mathbb{D})$.

Proof. Pick an $\alpha^{\prime} \in(\alpha, 2 \pi)$ and cover $\overline{\mathbb{D}}$ by finitely many balls $\left\{B\left(z_{i}, r_{i}\right)\right\}_{i=1}^{n}$ with

$$
\left|\mu\left(B\left(z_{i}, 2 r_{i}\right)\right)\right|<\alpha^{\prime}<2 \pi
$$

Set $\mu_{i}=\mu \cdot \chi_{B\left(z_{i}, 2 r_{i}\right)}$. Clearly,

$$
2 G_{\mu}^{\mathbb{C}} \leq 2 G_{\mu_{i}}^{\mathbb{C}}+C_{i}, \quad z \in B\left(z_{i}, r_{i}\right)
$$

where $C_{i}=\frac{|\mu(\mathbb{D})|}{\pi} \log ^{+} \frac{1}{r_{i}}$. Since the number of balls is finite, so is $C=\max C_{i}$. By the Brezis-Merle inequality,

$$
\int_{\mathbb{D}} e^{2 G_{\mu}^{\mathbb{C}}} \leq e^{C} \sum_{i=1}^{n} \int_{\mathbb{D}} e^{2 G_{\mu_{i}}^{\mathbb{C}}}<\infty
$$

The proof is complete.

4.2 Method of subsolutions and supersolutions

Theorem 4.4. Let u_{*} be a subsolution of GCE_{μ} and u^{*} be a supersolution. We now show there exists a solution between $u_{*} \leq u \leq u^{*}$.

Proof. By working in a disk \mathbb{D}_{r} with $r<1$ and taking $r \rightarrow 1$, we can assume that $u_{*}, u^{*} \in L^{1}(\partial \mathbb{D})$. Pick $u_{*} \leq h \leq u^{*}$. Consider the closed convex set

$$
\mathscr{K}=\left\{v \in L^{1}\left(\mathbb{D},|d z|^{2}\right), u_{*} \leq v \leq u^{*}\right\} \subset L^{1}\left(\mathbb{D},|d z|^{2}\right)
$$

For $v \in \mathscr{K}$, let u be the solution of the linear Dirichlet problem $\Delta u=e^{2 v}+\mu$ in \mathbb{D} with $u=h$ on $\partial \mathbb{D}$ and

$$
T v(z)=\left\{\begin{array}{lr}
u_{*}(z), & u<u_{*} \\
u(z), & u_{*} \leq u \leq u^{*} \\
u^{*}(z), & u>u_{*}
\end{array}\right.
$$

The definition of $T v$ is cooked up so that T maps \mathscr{K} into itself.
Step 1. We first show that if $T v=v$ is a fixed point, then v solves GCE_{μ}. Consider $g=\left(u-u^{*}\right)_{+}$. By Kato's inequality,

$$
\Delta g \geq \chi_{\left\{u>u^{*}\right\}}\left(e^{2 v}-e^{2 u^{*}}\right)
$$

From the definition of truncation, if $u>u^{*}$, then $v=u^{*}$. Since g is a non-negative subharmonic function which has zero boundary data, it is identically 0 . Then, $u \leq u^{*}$. A similar argument shows that $u \geq u^{*}$.

Step 2. We now check that the operator T is continuous on \mathscr{K}, that is if $v_{n} \rightarrow v$ in $L^{1}\left(\mathbb{D},|d z|^{2}\right)$, then $T v_{n} \rightarrow T v$. We have the estimate:

$$
\left\|T v_{n}-T v\right\|_{L^{1}} \leq\left\|u_{n}-u\right\|_{L^{1}} \leq\left\|e^{2 v_{n}}-e^{2 v}\right\|_{L^{1}}
$$

Pass to a subsequence such that $v_{n} \rightarrow v$ converges pointwise a.e. Along this subsequence, $e^{2 v_{n}}-e^{2 v} \rightarrow 0$ and is dominated by $2 e^{2 u^{*}}$. Continuity of T now follows from the dominated convergence theorem.

Step 3. It remains to show that T is compact. Suppose v_{1}, v_{2}, \ldots is a sequence in \mathscr{K} which is bounded in L^{1}. Since

$$
\left\|u_{n}\right\|_{W_{0}^{1,1}} \leq C\left\|e^{2 v_{n}}+\mu\right\|_{M} \leq C\left\|e^{2 u_{n}^{*}}+\mu\right\|_{M} \leq C^{\prime}
$$

and $W_{0}^{1,1}$ sits compactly inside L^{1}, we can choose a subsequence of v_{n} such that the correpsonding sequence of solutions u_{n} converges in L^{1}. However, then the sequence of truncations $T v_{n}$ also converge in L^{1}. The proof is complete.

We can now show:
Proof of Theorem 4.1, when μ has no point masses of size -2π. It is enough to provide a subsolution and supersolution of GCE_{μ} with zero boundary values. For a subsolution, let u_{*} be the solution of the Gauss curvature equation $\Delta u=e^{2 \mu}$ with zero boundary values. For a supersolution, take $u^{*}=G_{\mu}$.

4.3 Limiting argument

Lemma 4.5. (Contraction estimate) Let $\mu \leq 0$ be a negative measure on the unit disk and u be a solution of the Gauss curvature equation $\Delta u=e^{2 u}+\mu$ with zero boundary values. Then,

$$
\left\|e^{2 u}\right\|_{L^{1}(\mathbb{D})} \leq\|\mu\|_{M(\mathbb{D})}+C
$$

Proof. Choose a sequence of measures $\mu_{n} \in C_{c}^{\infty}(\mathbb{D})$ such that $\mu_{n} \rightarrow \mu$ weakly and $\mu_{n}(\Omega) \rightarrow \mu(\Omega)$. Let $f_{n} \geq 0$ be any sequence of smooth functions that tend to $e^{2 u}$ in $L^{1}(\mathbb{D})$ and $u_{n} \in C^{\infty}(\mathbb{D})$ be the solution of the linear Dirichlet problem $\Delta u_{n}=f_{n}+\mu_{n}$ with zero boundary values. We know that for any test function $\phi \in C_{c}^{\infty}(\mathbb{D})$,

$$
\begin{equation*}
\int_{\mathbb{D}} f_{n} \phi|d z|^{2}-\int_{\mathbb{D}} u_{n} \Delta \phi|d z|^{2}=-\int_{\mathbb{D}} \phi d \mu_{n} \tag{4.2}
\end{equation*}
$$

Let $S^{\varepsilon}(t)$ be a smooth increasing function that is 0 for $t<-\varepsilon$ and 1 for $t>\varepsilon$. Taking $\phi(z)=S^{\varepsilon}\left(u_{n}(z)\right)$ and integrating by parts, we get

$$
\begin{equation*}
\int_{\mathbb{D}} f_{n} \phi|d z|^{2}+\int_{\mathbb{D}}\left|\nabla u_{n}\right|^{2} S_{\varepsilon}^{\prime}\left(u_{n}(z)\right)|d z|^{2} \leq\left\|\mu_{n}\right\|_{M(\mathbb{D})} \tag{4.3}
\end{equation*}
$$

Since the second term in the above equation is positive,

$$
\begin{equation*}
\left\|f_{n} \cdot \chi_{u>0}\right\|_{L^{1}(\mathbb{D})} \leq\left\|\mu_{n}\right\|_{M(\mathbb{D})} \tag{4.4}
\end{equation*}
$$

Fatou's lemma shows that

$$
\begin{equation*}
\left\|e^{2 u} \cdot \chi_{u>0}\right\|_{L^{1}(\mathbb{D})} \leq\|\mu\|_{M(\mathbb{D})} . \tag{4.5}
\end{equation*}
$$

Since $\left\|e^{2 u} \cdot \chi_{u<0}\right\|_{L^{1}(\mathbb{D})} \leq \pi$, the proof is complete.
Proof of Theorem 4.1, when μ has point masses of size -2π. For $n \geq 1$, let $\mu_{n}=$ $(1-1 / n) \mu$ and u_{n} be the solution of $\Delta u=e^{2 u}+\mu_{n}$ with zero boundary data. By the comparison principle, the u_{n} 's form an increasing family of solutions. Let u be their pointwise limit. The contraction estimate

$$
\left\|e^{2 u_{n}}\right\|_{L^{1}(\mathbb{D})} \leq\left\|\mu_{n}\right\|_{M(\mathbb{D})}+C
$$

tells us that

$$
\left\|\Delta u_{n}\right\|_{M(\mathbb{D})}=\left\|e^{2 u_{n}}+\mu_{n}\right\|_{M(\mathbb{D})} \leq 2\left\|\mu_{n}\right\|_{M(\mathbb{D})}+C
$$

Since $\left\|\Delta u_{n}\right\|_{M(\Omega)}$ are uniformly bounded, the $u_{n}=-\frac{1}{2 \pi} \int_{\mathbb{D}} G(z, \zeta) \Delta u_{n}(\zeta)$ are bounded in L^{1} :

$$
\sup _{n}\left\|u_{n}\right\|_{L^{1}(\Omega)}<\infty
$$

As the u_{n} form increasing sequence, $u \in L^{1}$ and $u_{n} \rightarrow u$ in L^{1}. The contraction estimate shows that $e^{2 u} \in L^{1}$ and $e^{2 u_{n}} \rightarrow e^{2 u}$ in L^{1}. By the dominated convergence theorem (applied to the definition of a weak solution), u solves $\Delta u=e^{2 u}+\mu$ as desired.

