Harmonic functions and Brownian Motion

Oleg lvrii

October 19, 2020

Oleg lvrii Harmonic functions and Brownian Motion



What is potential theory?

Potential theory lies in the intersection of
@ complex analysis,
@ probability,

@ partial differential equations.

The main objects we will study are
@ harmonic and subharmonic functions,
@ Brownian motion,

@ Sobolev spaces.
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Harmonic functions

Let Q C R". A function v : Q2 — R is harmonic if it continuous
and satisfies the mean-value property (MVP)

u(x) = fa 015

provided B(x, r) C Q.

Alternatively, a function is harmonic if it is C? and satisfies

A d%u  D%u R d%u
u—=—- P
Ox3

2 —0.
8X12 + 8x22
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Harmonic functions

Remark. There are 6 different versions of the MVP. One can
require the MVP on

@ Spheres,

@ Small spheres,

© A sequence of arbitrarily small spheres,
Q Balls,

© Small balls,

O A sequence of arbitrarily small balls.

In fact, all 6 versions of the MVP are equivalent.
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Harmonic functions

Lemma. The first definition requires u to be continuous, while the
second definition requires u to be C2. In fact, any harmonic
function is C*°.
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Harmonic functions

Lemma. The first definition requires u to be continuous, while the
second definition requires u to be C2. In fact, any harmonic

function is C°.

Proof. Given ¢ > 0, construct a bump function

e C™, P(x) >0, ¢(x) only depends on |x|,

supp¢ C B(0,¢), - o(x) |dx|" = 1.
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Harmonic functions

Lemma. The first definition requires u to be continuous, while the
second definition requires u to be C2. In fact, any harmonic
function is C*°.

Proof. Given ¢ > 0, construct a bump function
e C™, P(x) >0, ¢(x) only depends on |x|,
supp ¢ C B(0,¢), B(x) |dx|" = 1.
]Rn

If dist(x,08Q) > ¢,

) = | uly)otx=y)ldyl" € c>.
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Harmonic functions

Lemma. For C2 functions, MVP <— Au = 0.
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Harmonic functions

Lemma. For C2 functions, MVP <— Au = 0.

Green's formula. If u € C?(B(x,r)), then

][ u(y)dS(y) — u(x) = / Au(y) dy
0B(x,r) B(x,r)

(A similar formula holds in higher dimensions.)
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Harmonic functions

Lemma. For C2 functions, MVP <— Au = 0.

Green's formula. If u € C?(B(x,r)), then

F o wdsp)-u = [ au) dy?
OB(x,r) B(x,r)
(A similar formula holds in higher dimensions.)

Exercise. Au(y) = lim,_o(4/r?) - {faB(x,r) u(y)dS(y) — u(x)}.
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Subharmonic functions

The same argument shows that for C? functions, the sub-mean
value property

u(y)dS(y) = u(x)
OB(x,r)

is equivalent to Au > 0.
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Subharmonic functions

The same argument shows that for C? functions, the sub-mean
value property
u(y)dS(y) > u(x)
OB(x,r)

is equivalent to Au > 0.

Warning! Typically when discussing subharmonic functions, one
asks that they are merely upper semi-continuous. Thus, the
equation Au > 0 needs to be understood weakly in the sense of
distributions.
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Maximum modulus principle

Maximum modulus principle. Suppose v : 2 — R is a harmonic
function. If it achieves its maximum value in the interior, then u is
constant.
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Maximum modulus principle

Maximum modulus principle. Suppose v : 2 — R is a harmonic
function. If it achieves its maximum value in the interior, then u is
constant.

Dirichlet’s problem. Suppose €2 is a bounded domain. Given a
continuous function f : 9Q — R, find a harmonic function
u: Q — R which continuously to 02 and agrees with f.
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Maximum modulus principle

Maximum modulus principle. Suppose v : 2 — R is a harmonic
function. If it achieves its maximum value in the interior, then u is

constant.

Dirichlet’s problem. Suppose €2 is a bounded domain. Given a
continuous function f : 9Q — R, find a harmonic function
u: Q — R which continuously to 02 and agrees with f.

The maximum-modulus principle shows that if the solution exists,

then it is unique.
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Poisson Integral Formula

Poisson Integral Formula. If u: B(0,1) — R is harmonic and
continuous up to the boundary, then

u(x) = 7@ o O d5(¢).
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Poisson Integral Formula

Poisson Integral Formula. If u: B(0,1) — R is harmonic and
continuous up to the boundary, then

u(x) = 7@ o O d5(¢).

Dirichlet’s problem on the ball. Since the Poisson kernel is
harmonic, for any cts. function f : 9B(0,1) — R,

u(x) = P[f](x) = ][ F(0) d5(¢)

8B(0,1)

defines a harmonic function.
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Properties of the Poisson kernel

To see that P[f] extends f, notice that the Poisson kernel

satisfies the following properties:
° > 0,

e faB(O,l) dS(()=1for0<r<1,

@ Ve >030 >0s.t.
<eg,

provided 1 — |x| < ¢ and |x — (| > ¢.
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Harnack's inequality

Suppose u is a positive harmonic function defined on a

neighbourhood of B(0,1). Since

G < < G, x € B(0,1), (¢ €090B(0,1),
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Harnack's inequality

Suppose u is a positive harmonic function defined on a

neighbourhood of B(0,1). Since
G < < G, x € B(0,1), (¢ €090B(0,1),

there exists universal constants ¢, C > 0 such that

< C, x1,x2 € B(0,1/2).
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Harnack's inequality

Suppose u is a positive harmonic function defined on a

neighbourhood of B(0,1). Since
G < < G, x € B(0,1), (¢ €090B(0,1),

there exists universal constants ¢, C > 0 such that

< C, x1,x2 € B(0,1/2).

If u is harmonic on a domain € and K is a compact subset, then

u(x1)

c(K,Q) < o)

<C(K,Q), x1,x € K.
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Harnack's Theorem

Theorem. Suppose

n<uwmw<---<uy, <...

is an increasing sequence of positive harmonic functions defined on
a domain €. Either they converge uniformly on compact subsets of
Q or they converge to +oc.

The proof is left as an exercise.
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Green's identities

Suppose Q C R" is a bounded domain with C! boundary. Let 7 be
the outward pointing normal. If u € C1(Q), then

/ux,dvz/ un'ds, i=1,2,...n.
Q 0N
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Green's identities

Suppose Q C R" is a bounded domain with C! boundary. Let 7 be
the outward pointing normal. If u € C1(Q), then

/ux,dvz/ un'ds, i=1,2,...n.
Q 0N

To see this, just apply Stokes theorem

/dw:/w
Q a0

w:u(x)dxldxz...c//;,-...dxn.

to the differential form
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Green's identities
Substituting uv instead of u into

/uX,dV:/ un'ds,
Q o0

we get the integration-by-parts formula:

/(uxl.v—l—vx,.u)dV:/ uvn'dS.
Q o
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Green's identities
Substituting uv instead of u into

/uX,dV:/ un'ds,
Q o0

we get the integration-by-parts formula:

/(uxl.v—l—vx,.u)dV:/ uvn'dS.
Q o

If u€ C%(Q), we can plug in uy, instead of u:

/(uX,.X,.v—i— Vi, Uy, )dV :/ Uy, v1)' dS.
Q o0
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Green's identities

Summing over i =1,2,...,n, we get

/(Au-v+Vu-Vv)dV:/ Dyu-vdS.
Q o
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Green's identities

Summing over i =1,2,...,n, we get

/(Au' v+Vu-Vv)dV:/ Dyu-vdS.
Q a0
Switching the roles of v and v, we obtain

/(Av-u+Vu-Vv)dV:/ Dyv - udS.
Q o
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Green's identities

Summing over i =1,2,...,n, we get
/(Au' v+Vu-Vv)dV:/ Dyu-vdS.
Q o0
Switching the roles of v and v, we obtain
/(Av-u+Vu-Vv)dV:/ Dyv - udS.
Q o0
Subtracting, we arrive at:

/Q(Au-vAv-u)dV:/mz(Dnu-vDnv-u)dS.
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Green's formula

We now apply Green's identity in n =2, Q =D\ B(0, ¢),
v(z) = and take ¢ — 0%:

/ (Au-v—Av-u)|dz|2:/ Au- |dz|?. (1)
e<]z|<1

e<|z|<1

As ¢ — 07T, this tends to

/Au- |dz|?.
D
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Green's formula

We now apply Green's identity in n =2, Q =D\ B(0, ¢),
v(z) = and take ¢ — 0%:

/ (Au-v—Av-u)|dz|2:/ Au- |dz|?. (1)
e<]z|<1

e<|z|<1

As ¢ — 07T, this tends to

/Au- |dz|?.
D

Oleg lvrii Harmonic functions and Brownian Motion



Green's formula

Finally,

/ (Dyu- v — Dyv - u)|dz] = o(1) 1/ u(z)|dz| (3)
0B(0,¢) 0B(0,¢)

3

tends to —2m u(0) as e — 0.
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Green's formula

Finally,

/ (Dyu- v — Dyv - u)|dz] = o(1) 1/ u(z)|dz| (3)
0B(0,¢) 0B(0,¢)

3

tends to —2m u(0) as e — 0.

Putting everything together, we arrive at:

/DAU- \dz|2:/8D u(z) |dz| — 27 u(0).

Oleg lvrii Harmonic functions and Brownian Motion



Alog |z| = 2mdy

If Q is an arbitrary domain in the plane with C! boundary, the
above reasoning shows:

/Au dV:/ {Dnu- - D, 'u}dS—
Q a0
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Alog |z| = 2mdy

If Q is an arbitrary domain in the plane with C! boundary, the
above reasoning shows:

/Au dV:/ {Dnu- - D, 'u}dS—
Q a0

If u=¢ e CX(C), then

/Au dv = —
C
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Alog |z| = 2mdy

If Q is an arbitrary domain in the plane with C! boundary, the
above reasoning shows:

/Au dV:/ {Dnu- - D, 'u}dS—
Q a0

If u=¢ e CX(C), then

/Au dv = —
C

One summarizes this as A log|z| = 27dp in the sense of
distributions.
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Green's formula via Brownian Motion

Run Brownian motion starting from the origin, stopped at time 7
when it hits the unit circle.

The Green's function has the probabilistic interpretation as the
occupation density of Brownian motion.

That is, for any measurable set E C D,

E(time BM spends in E) = / |dz|?.
E

Remark. [p dz|? = 1.
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Green's formula via Brownian Motion

If f were harmonic then f(B;) would be a martingale with respect
to the Brownian filtration, so that

1
or [ FQ)dC ~ £(0) = Ef(B,) ~ £(0) = 0.

Of course, if f is not harmonic, then f(B;) isn't martingale.
The correct formula is:

1

t1
3 [ A~ F(0) = EA(B) - £0) = B [ Sar(B)d:

1 1
= /Af' |dz|? = /Af- |dz|?.
2 D 27T D
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Greens functions for C* domains

In the analytic proof of Green's formula, we used that the Green's
function with singularity at zp satisfies the following properties:

(1 is zero on 0f2.
(2] on Q\ {z} is harmonic.
(3] — Iog|2771ZOI is harmonic in a neighbourhood of z.
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Greens functions for C* domains

In the analytic proof of Green's formula, we used that the Green's
function with singularity at zp satisfies the following properties:

(1 is zero on 0f2.
(2] on Q\ {z} is harmonic.
(3] — Iog|2771ZOI is harmonic in a neighbourhood of z.

By the maximum-modulus principle, if such a function exists, then
it is unique.
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Greens functions for C* domains

In the analytic proof of Green's formula, we used that the Green's
function with singularity at zp satisfies the following properties:

(1 is zero on 0f2.
(2] on Q\ {z} is harmonic.
(3] — Iog|2771ZOI is harmonic in a neighbourhood of z.

By the maximum-modulus principle, if such a function exists, then
it is unique.

Conversely, let u(z) be the solution of Dirichlet's problem with
boundary values log |z — zy|. Then, = u(z) + log ﬁ
satisfies the above properties.
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Conformal invariance of Green's function

Lemma. If f:Q — Q' is holomorphic and uv: Q' — R is ,
then uof :Q — R is also
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Conformal invariance of Green's function

Lemma. If f:Q — Q' is holomorphic and uv: Q' — R is ,
then uof :Q — R is also

Lemma. If o : Q — Q' is conformal, then
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Conformal invariance of Green's function

Lemma. If f:Q — Q' is holomorphic and uv: Q' — R is ,
then uof :Q — R is also

Lemma. If o : Q — Q' is conformal, then

Examples.
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Subordination principle

Lemma. If f: Q — Q is a holomorphic function, then

<
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Subordination principle

Lemma. If f: Q — Q is a holomorphic function, then

<

Proof. For a fixed z € Q, the difference
u(w) = —

is a function whose boundary values are negative in
lim sup sense.
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Subordination principle

Lemma. If f: Q — Q is a holomorphic function, then

<

Proof. For a fixed z € Q, the difference
u(w) = —

is a function whose boundary values are negative in
lim sup sense.

Corollary. If Q C €, then

IN
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Symmetry of the Green's function

Lemma. For any domain Q C C with C! boundary,
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Symmetry of the Green's function

Lemma. For any domain Q C C with C! boundary,

Proof. For a fixed z € €, the difference

u(w) = —

1 1
= — log + log .
oo 16— 2| w—z

is and has negative boundary values in lim sup sense.
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Symmetry of the Green's function

Lemma. For any domain Q C C with C! boundary,

Proof. For a fixed z € €, the difference

u(w) = —

1 1
= — log + log .
oo 16— 2| w—z

is and has negative boundary values in lim sup sense.
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Positive Harmonic Functions

For a function u on the disk, write u,(¢) := u(r().

For f(¢) € C(ID), form the Poisson extension

) = PIAG) = 5= [ A0l
Define P,[f] := u,.
Lemma. For f € C(0D),

P.[f] — f, asr— 1", uniformly on dD.
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Positive Harmonic Functions

Theorem. There is a bijection between positive harmonic functions
and measures on the unit circle given by integration against the
Poisson kernel:

1

u(x) = 3 |

dp(¢)

Examples. Lebesgue measure corresponds to the function 1, while
the Poisson kernel corresponds to 27 d.
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Positive Harmonic Functions

Proof. Let u be a positive harmonic function on the disk with
u(0) = 1. We want to find a measure p such that u = P[pu].
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Positive Harmonic Functions

Proof. Let u be a positive harmonic function on the disk with
u(0) = 1. We want to find a measure p such that u = P[pu].

@ For 0 < r < 1, consider the probability measure
wr = u(0)(d6/27).
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Positive Harmonic Functions

Proof. Let u be a positive harmonic function on the disk with
u(0) = 1. We want to find a measure p such that u = P[pu].

@ For 0 < r < 1, consider the probability measure
pr = ur(0)(d6/2m).

@ Since the space of probability measures is weak-* compact,
there exist r, — 17 such that pu, — p.
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Positive Harmonic Functions

Proof. Let u be a positive harmonic function on the disk with
u(0) = 1. We want to find a measure p such that u = P[pu].

@ For 0 < r < 1, consider the probability measure
pr = ur(0)(d6/2m).

@ Since the space of probability measures is weak-* compact,
there exist r, — 17 such that pu, — p.

© Weak-* convergence implies that for any x € D,

Plur(x) = Plpl(x),  asr—1.
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Positive Harmonic Functions

Proof. Let u be a positive harmonic function on the disk with
u(0) = 1. We want to find a measure p such that u = P[pu].

@ For 0 < r < 1, consider the probability measure
pr = ur(0)(d6/2m).

@ Since the space of probability measures is weak-* compact,
there exist r, — 17 such that pu, — p.

© Weak-* convergence implies that for any x € D,
Plu(x) = Plul(x),  asr—1.

Q As Plu,] = u(rx), we see that P[u](x) = u(x) as desired.
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Positive Harmonic Functions

We now show that the measures p, := u,(0)(d6/2m) converge to
W, as r— 1.
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Positive Harmonic Functions

We now show that the measures p, := u,(0)(d6/2m) converge to
i, as r — 1. Unwinding definitions, we want to show that

/f-Pr[u]~;/§—>/fdu, f € C(D).

By Fubini's theorem,

/f P[] - ;’—i = / P[f]dp.

Oleg lvrii Harmonic functions and Brownian Motion



Positive Harmonic Functions

We now show that the measures p, := u,(0)(d6/2m) converge to
i, as r — 1. Unwinding definitions, we want to show that

/f-Pr[u]~;/§—>/fdu, f € C(D).

By Fubini's theorem,

/f P[] - ;’—i = / P[f]dp.

Remark. We have seen any positive harmonic function u can be
represented as P[u] for some measure . The above convergence
result shows that the measure u is unique.
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Weyl's lemma

1

Lemma. A function u: Q — R is harmonic if and only if u € L .

/QuAgb:O

and

for all ¢ € C°(Q).
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Weyl's lemma

1

Lemma. A function u: Q — R is harmonic if and only if u € L .

/QuAgb:O

Proof. If u was C?, we could integrate by parts to see that
g Yy

and

for all ¢ € C°(Q).

/Au~¢:0, for all ¢ € C°(Q),
Q

which would imply that Au = 0.
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Weyl's lemma

For the general case, form the functions u® = u*n®. The functions

1

u® are smooth and converge to u in L.
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Weyl's lemma

For the general case, form the functions u® = u*n®. The functions

1

u® are smooth and converge to u in L.

Since

[wto= [usirno= [ u-(ag) ) -

Q

each u, satisfies the MVP on balls.
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Weyl's lemma

For the general case, form the functions u® = u*n®. The functions

1

u® are smooth and converge to u in L.

Since

[wto= [usirno= [ u-(ag) ) -

Q
each u, satisfies the MVP on balls.

Therefore, u itself satisfies the MVP on balls.
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Thank you for your attention!
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