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What is potential theory?

Potential theory lies in the intersection of

complex analysis,

probability,

partial differential equations.

The main objects we will study are

harmonic and subharmonic functions,

Brownian motion,

Sobolev spaces.
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Harmonic functions

Let Ω ⊂ Rn. A function u : Ω→ R is harmonic if it continuous

and satisfies the mean-value property (MVP)

u(x) =

 
∂B(x ,r)

u(y)dS(y),

provided B(x , r) ⊂ Ω.

Alternatively, a function is harmonic if it is C 2 and satisfies

∆u =
∂2u

∂x2
1

+
∂2u

∂x2
2

+ · · ·+ ∂2u

∂x2
n

= 0.
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Harmonic functions

Remark. There are 6 different versions of the MVP. One can

require the MVP on

1 Spheres,

2 Small spheres,

3 A sequence of arbitrarily small spheres,

4 Balls,

5 Small balls,

6 A sequence of arbitrarily small balls.

In fact, all 6 versions of the MVP are equivalent.
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Harmonic functions

Lemma. The first definition requires u to be continuous, while the

second definition requires u to be C 2. In fact, any harmonic

function is C∞.

Proof. Given ε > 0, construct a bump function

φ ∈ C∞, φ(x) ≥ 0, φ(x) only depends on |x |,

suppφ ⊂ B(0, ε),

ˆ
Rn

φ(x) |dx |n = 1.

If dist(x , ∂Ω) > ε,

u(x) =

ˆ
Rn

u(y)φ(x − y) |dy |n ∈ C∞.
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Harmonic functions

Lemma. For C 2 functions, MVP ⇐⇒ ∆u = 0.

Green’s formula. If u ∈ C 2
(
B(x , r)

)
, then

 
∂B(x ,r)

u(y)dS(y)− u(x) =
1

2π

ˆ
B(x ,r)

∆u(y) log
r

|y − x |
|dy |2

(A similar formula holds in higher dimensions.)

Exercise. ∆u(y) = limr→0(4/r2) ·
{ffl

∂B(x ,r) u(y)dS(y)− u(x)
}

.
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Subharmonic functions

The same argument shows that for C 2 functions, the sub-mean

value property  
∂B(x ,r)

u(y)dS(y) ≥ u(x)

is equivalent to ∆u ≥ 0.

Warning! Typically when discussing subharmonic functions, one

asks that they are merely upper semi-continuous. Thus, the

equation ∆u ≥ 0 needs to be understood weakly in the sense of

distributions.
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Maximum modulus principle

Maximum modulus principle. Suppose u : Ω→ R is a harmonic

function. If it achieves its maximum value in the interior, then u is

constant.

Dirichlet’s problem. Suppose Ω is a bounded domain. Given a

continuous function f : ∂Ω→ R, find a harmonic function

u : Ω→ R which continuously to ∂Ω and agrees with f .

The maximum-modulus principle shows that if the solution exists,

then it is unique.
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Poisson Integral Formula

Poisson Integral Formula. If u : B(0, 1)→ R is harmonic and

continuous up to the boundary, then

u(x) =

 
∂B(0,1)

u(ζ)
1− |x |2

|x − ζ|n
dS(ζ).

Dirichlet’s problem on the ball. Since the Poisson kernel is

harmonic, for any cts. function f : ∂B(0, 1)→ R,

u(x) := P[f ](x) =

 
∂B(0,1)

f (ζ)
1− |x |2

|x − ζ|n
dS(ζ)

defines a harmonic function.
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Properties of the Poisson kernel

To see that P[f ] extends f , notice that the Poisson kernel

Px(ζ) =
1− |x |2

|x − ζ|n

satisfies the following properties:

Px(ζ) > 0,ffl
∂B(0,1) Px(rζ)dS(ζ) = 1 for 0 < r < 1,

∀ε > 0 ∃δ > 0 s.t.

Px(ζ) < ε,

provided 1− |x | < δ and |x − ζ| > δ.
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Harnack’s inequality

Suppose u is a positive harmonic function defined on a

neighbourhood of B(0, 1). Since

C1 <
1− |x |2

|x − ζ|n
< C2, x ∈ B(0, 1), ζ ∈ ∂B(0, 1),

there exists universal constants c,C > 0 such that

c <
u(x1)

u(x2)
< C , x1, x2 ∈ B(0, 1/2).

If u is harmonic on a domain Ω and K is a compact subset, then

c(K ,Ω) <
u(x1)

u(x2)
< C (K ,Ω), x1, x2 ∈ K .
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Harnack’s Theorem

Theorem. Suppose

u1 ≤ u2 ≤ · · · ≤ un ≤ . . .

is an increasing sequence of positive harmonic functions defined on

a domain Ω. Either they converge uniformly on compact subsets of

Ω or they converge to +∞.

The proof is left as an exercise.
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Green’s identities

Suppose Ω ⊂ Rn is a bounded domain with C 1 boundary. Let η be

the outward pointing normal. If u ∈ C 1(Ω), then

ˆ
Ω
uxidV =

ˆ
∂Ω

uηidS , i = 1, 2, . . . n.

To see this, just apply Stokes theorem

ˆ
Ω
dω =

ˆ
∂Ω
ω

to the differential form

ω = u(x) dx1 dx2 . . . d̂xi . . . dxn.
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Green’s identities

Substituting uv instead of u into

ˆ
Ω
uxidV =

ˆ
∂Ω

uηidS ,

we get the integration-by-parts formula:

ˆ
Ω

(uxi v + vxiu)dV =

ˆ
∂Ω

uvηidS .

If u ∈ C 2(Ω), we can plug in uxi instead of u:

ˆ
Ω

(uxixi v + vxiuxi )dV =

ˆ
∂Ω

uxi vη
idS .
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Green’s identities

Summing over i = 1, 2, . . . , n, we get

ˆ
Ω

(∆u · v +∇u · ∇v)dV =

ˆ
∂Ω

Dηu · v dS .

Switching the roles of u and v , we obtain

ˆ
Ω

(∆v · u +∇u · ∇v)dV =

ˆ
∂Ω

Dηv · u dS .

Subtracting, we arrive at:

ˆ
Ω

(∆u · v −∆v · u)dV =

ˆ
∂Ω

(Dηu · v − Dηv · u) dS .
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Green’s formula

We now apply Green’s identity in n = 2, Ω = D \ B(0, ε),

v(z) = log 1
|z| and take ε→ 0+:

ˆ
ε<|z|<1

(∆u · v −∆v · u)|dz |2 =

ˆ
ε<|z|<1

∆u · log
1

|z |
|dz |2. (1)

As ε→ 0+, this tends to
ˆ
D

∆u · log
1

|z |
|dz |2.

ˆ
∂D

(Dηu · v − Dηv · u) |dz | =

ˆ
∂D

u(z) |dz |. (2)
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Green’s formula

Finally,

ˆ
∂B(0,ε)

(Dηu · v − Dηv · u) |dz | = o(1)− 1

ε

ˆ
∂B(0,ε)

u(z) |dz | (3)

tends to −2π u(0) as ε→ 0+.

Putting everything together, we arrive at:

ˆ
D

∆u · log
1

|z |
|dz |2 =

ˆ
∂D

u(z) |dz | − 2π u(0).
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∆ log |z | = 2πδ0

If Ω is an arbitrary domain in the plane with C 1 boundary, the

above reasoning shows:

ˆ
Ω

∆u log
1

|z |
dV =

ˆ
∂Ω

{
Dηu · log

1

|z |
−Dη log

1

|z |
·u
}
dS−2π u(0).

If u = φ ∈ C∞c (C), then

ˆ
C

∆u log
1

|z |
dV = −2π u(0).

One summarizes this as ∆ log |z | = 2πδ0 in the sense of

distributions.
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Green’s formula via Brownian Motion

Run Brownian motion starting from the origin, stopped at time τ

when it hits the unit circle.

The Green’s function has the probabilistic interpretation as the

occupation density of Brownian motion.

That is, for any measurable set E ⊂ D,

E0(time BM spends in E ) =

ˆ
E

1

π
log

1

|z |
|dz |2.

Remark.
´
D

1
π log 1

|z| |dz |
2 = 1

2 .
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Green’s formula via Brownian Motion

If f were harmonic then f (Bt) would be a martingale with respect

to the Brownian filtration, so that

1

2π

ˆ
f (ζ)|dζ| − f (0) = Ef (Bτ )− f (0) = 0.

Of course, if f is not harmonic, then f (Bt) isn’t martingale.

The correct formula is:

1

2π

ˆ
f (ζ)|dζ| − f (0) = Ef (Bτ )− f (0) = E

ˆ t

0

1

2
∆f (Bt)dt

=
1

2

ˆ
D

∆f · 1

π
log

1

|z |
|dz |2 =

1

2π

ˆ
D

∆f · log
1

|z |
|dz |2.
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Greens functions for C 1 domains

In the analytic proof of Green’s formula, we used that the Green’s

function with singularity at z0 satisfies the following properties:

1 G (z) is zero on ∂Ω.

2 G (z) on Ω \ {z0} is harmonic.

3 G (z)− log 1
|z−z0| is harmonic in a neighbourhood of z0.

By the maximum-modulus principle, if such a function exists, then

it is unique.

Conversely, let u(z) be the solution of Dirichlet’s problem with

boundary values log |z − z0|. Then, G (z) = u(z) + log 1
|z−z0|

satisfies the above properties.
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Conformal invariance of Green’s function

Lemma. If f : Ω→ Ω′ is holomorphic and u : Ω′ → R is harmonic,

then u ◦ f : Ω→ R is also harmonic.

Lemma. If ϕ : Ω→ Ω′ is conformal, then

GΩ(z ,w) = GΩ′
(
ϕ(z), ϕ(w)

)
.

Examples.

GD(z ,w) = log

∣∣∣∣1− zw

z − w

∣∣∣∣, GH(z ,w) = log

∣∣∣∣w − z

w − z

∣∣∣∣ = log

∣∣∣∣z − w

z − w

∣∣∣∣.

Oleg Ivrii Harmonic functions and Brownian Motion



Conformal invariance of Green’s function

Lemma. If f : Ω→ Ω′ is holomorphic and u : Ω′ → R is harmonic,

then u ◦ f : Ω→ R is also harmonic.

Lemma. If ϕ : Ω→ Ω′ is conformal, then

GΩ(z ,w) = GΩ′
(
ϕ(z), ϕ(w)

)
.

Examples.

GD(z ,w) = log

∣∣∣∣1− zw

z − w

∣∣∣∣, GH(z ,w) = log

∣∣∣∣w − z

w − z

∣∣∣∣ = log

∣∣∣∣z − w

z − w

∣∣∣∣.

Oleg Ivrii Harmonic functions and Brownian Motion



Conformal invariance of Green’s function

Lemma. If f : Ω→ Ω′ is holomorphic and u : Ω′ → R is harmonic,

then u ◦ f : Ω→ R is also harmonic.

Lemma. If ϕ : Ω→ Ω′ is conformal, then

GΩ(z ,w) = GΩ′
(
ϕ(z), ϕ(w)

)
.

Examples.

GD(z ,w) = log

∣∣∣∣1− zw

z − w

∣∣∣∣, GH(z ,w) = log

∣∣∣∣w − z

w − z

∣∣∣∣ = log

∣∣∣∣z − w

z − w

∣∣∣∣.

Oleg Ivrii Harmonic functions and Brownian Motion



Subordination principle

Lemma. If f : Ω→ Ω′ is a holomorphic function, then

GΩ(z ,w) ≤ GΩ′
(
f (z), f (w)

)
.

Proof. For a fixed z ∈ Ω, the difference

u(w) = GΩ(z ,w)− GΩ′
(
f (z), f (w)

)
.

is a harmonic function whose boundary values are negative in

lim sup sense.

Corollary. If Ω ⊂ Ω′, then GΩ(z ,w) ≤ GΩ′
(
z ,w

)
.
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Symmetry of the Green’s function

Lemma. For any domain Ω ⊂ C with C 1 boundary,

GΩ(z ,w) = GΩ

(
w , z

)
.

Proof. For a fixed z ∈ Ω, the difference

u(w) = GΩ(z ,w)− GΩ(w , z)

= GΩ(z ,w)−
ˆ
∂Ω

log
1

|ζ − z |
dωw (ζ) + log

1

w − z
.

is harmonic and has negative boundary values in lim sup sense.

Hence, GΩ(z ,w) ≤ GΩ(w , z).
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Positive Harmonic Functions

For a function u on the disk, write ur (ζ) := u(rζ).

For f (ζ) ∈ C (∂D), form the Poisson extension

u(x) = P[f ](x) =
1

2π

ˆ
∂D

1− |x |2

|x − ζ|2
f (ζ)|dζ|.

Define Pr [f ] := ur .

Lemma. For f ∈ C (∂D),

Pr [f ]→ f , as r → 1−, uniformly on ∂D.
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Positive Harmonic Functions

Theorem. There is a bijection between positive harmonic functions

and measures on the unit circle given by integration against the

Poisson kernel:

u(x) =
1

2π

ˆ
∂D

1− |x |2

|x − ζ|2
dµ(ζ)

Examples. Lebesgue measure corresponds to the function 1, while

the Poisson kernel Pζ(x) corresponds to 2π δζ .

Oleg Ivrii Harmonic functions and Brownian Motion



Positive Harmonic Functions

Proof. Let u be a positive harmonic function on the disk with

u(0) = 1. We want to find a measure µ such that u = P[µ].

1 For 0 < r < 1, consider the probability measure

µr := ur (θ)(dθ/2π).

2 Since the space of probability measures is weak-∗ compact,

there exist rk → 1− such that µr → µ.

3 Weak-∗ convergence implies that for any x ∈ D,

P[µr ](x)→ P[µ](x), as r → 1.

4 As P[µr ] = u(rx), we see that P[µ](x) = u(x) as desired.
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Positive Harmonic Functions

We now show that the measures µr := ur (θ)(dθ/2π) converge to

µ, as r → 1.

Unwinding definitions, we want to show that

ˆ
f · Pr [µ] · dθ

2π
→

ˆ
f dµ, f ∈ C (∂D).

By Fubini’s theorem,

ˆ
f · Pr [µ] · dθ

2π
=

ˆ
Pr [f ] dµ.

Remark. We have seen any positive harmonic function u can be

represented as P[µ] for some measure µ. The above convergence

result shows that the measure µ is unique.
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Weyl’s lemma

Lemma. A function u : Ω→ R is harmonic if and only if u ∈ L1
loc

and ˆ
Ω
u∆φ = 0

for all φ ∈ C∞c (Ω).

Proof. If u was C 2, we could integrate by parts to see that

ˆ
Ω

∆u · φ = 0, for all φ ∈ C∞c (Ω),

which would imply that ∆u = 0.
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Weyl’s lemma

For the general case, form the functions uε = u ∗ ηε. The functions

uε are smooth and converge to u in L1
loc.

Since ˆ
Ω
uε∆ϕ =

ˆ
Ω
u ∗ ηε ·∆ϕ =

ˆ
Ω
u · ((∆ϕ) ∗ ηε) =

=

ˆ
Ω
u ·∆(ϕ ∗ ηε) = 0,

each uε satisfies the MVP on balls.

Therefore, u itself satisfies the MVP on balls.
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Thank you for your attention!
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