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Brownian motion

Here is a summary of last class:

Brownian motion models the path of a drunk person. Its the

most natural way to draw a random self-intersecting curve.

Since Brownian motion models the motion of a physical

process, it is almost surely continuous.

Brownian motion can be constructed as the scaling limit of

simple random walk on δZn ⊂ Rn.

The construction can be used to show that one can solve the

continuous Dirichlet problem by discrete approximation.

Last class, we did not use this construction of Brownian

motion in the proofs. Instead, we relied on the fact that

Brownian motion is conformally invariant.
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Conformal invariance

Actually, Brownian motion is not truly conformally invariant:

it is conformally invariant up to a time change: When |f ′(Bt)|
is large, the drunk speeds up. When |f ′(Bt)| is small, the

drunk slows down.

The internal clock of the image of Brownian motion is given

by ˆ t

0
|f ′(Bs)|2ds.

For some applications like to Liouville’s theorem, this whole

time change business is important. For many other things, it

is not: we only care about the destination and not the journey.
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Recurrence of BM

In dimensions 1 and 2, BM is recurrent. This means that BM

visits any ball B(x , r) infinitely many times. In dimension 1, it

is an experimental fact.

In dimension 2, one argues as follows: suppose you are located

on Sn = {y : |y − x | = 2n}. Brownian motion cannot stay in

{y : 2n−1 < |y − x | < 2n+1} forever, so it must eventually hit

either Sn−1 or Sn+1.

The annulus {y : 2n−1 < |y − x | < 2n+1} has a conformal

involution which changes the two boundary components and

fixes Sn.
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Recurrence of BM

Conformal invariance dictates that Brownian motion hits Sn−1
and Sn+1 with equal probability.

This reduces BM in dimension 2 to simple random walk on Z.

Since simple random walk on the integer line hits arbitrarily

large negative numbers infinitely often, BM in dimension 2

eventually hits B(x , r) no matter how small r is.
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Polar sets

The above reasoning shows that BM in dimension 2 almost

surely (with probability 1) misses any particular point x in the

plane.

Since probability is a measure, BM misses countable sets.

A set is called polar if BM misses it almost surely. Countable

sets are polar.

Suppose f is a holomorphic function. Since BM almost surely

misses the critical points of f , BM is actually invariant under

all holomorphic maps.
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Dirichlet’s problem

Suppose Ω is a bounded domain in Rn and we want to solve

Dirichlet’s problem with boundary data f ∈ C (∂Ω).

Let x ∈ Ω. To define u(x), we run BM started at x until we

hit ∂Ω. We record the value of f (Bτ ) at the point where we

hit ∂Ω.

We run this experiment 1000000 times and take the average

of the values we have written down. Taking 1000000 to

infinity, we get:

u(x) := Ex f (Bτ ).

The subscript x refers to the fact that BM is started at x .
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Dirichlet’s problem

The definition

u(x) := Ex f (Bτ ).

always lead to a harmonic function since it is easy to test the

mean-value property.

The issue is that u(x) may not have the right boundary

values. I gave the example of Ω = D \ {0}, f (0) = 1 and

f (z) = 1 on the unit circle. In fact, the Dirichlet’s problem

does not have a solution in this case.
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Dirichlet’s problem

If Ω is bounded by a Jordan curve, then u(x) defined above

does satisfy the Dirichlet’s problem: if x is close to the

boundary, then with high probability, BM won’t travel far

before hitting the boundary.

Suppose dist(x , ∂Ω) = r where r = ε/2n. We want to show

that if n is large, then the probability that BM escapes B(x , ε)

before hitting ∂Ω is small.

In order for BM to escape B(x , ε) and not hit ∂Ω it must

accomplish many miracles: it must pass through n dyadic

annuli without hitting the fence ∂Ω.

But there is always a definite chance that BM does hit ∂Ω

when crossing each of the dyadic annuli. This makes the

probability of escape small.
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Thank you for your attention!
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