Brownian motion

Oleg Ivrii

October 21, 2020

Brownian motion

Here is a summary of last class:

- Brownian motion models the path of a drunk person. Its the most natural way to draw a random self-intersecting curve.

Brownian motion

Here is a summary of last class:

- Brownian motion models the path of a drunk person. Its the most natural way to draw a random self-intersecting curve.
- Since Brownian motion models the motion of a physical process, it is almost surely continuous.

Brownian motion

Here is a summary of last class:

- Brownian motion models the path of a drunk person. Its the most natural way to draw a random self-intersecting curve.
- Since Brownian motion models the motion of a physical process, it is almost surely continuous.
- Brownian motion can be constructed as the scaling limit of simple random walk on $\delta \mathbb{Z}^{n} \subset \mathbb{R}^{n}$.

Brownian motion

Here is a summary of last class:

- Brownian motion models the path of a drunk person. Its the most natural way to draw a random self-intersecting curve.
- Since Brownian motion models the motion of a physical process, it is almost surely continuous.
- Brownian motion can be constructed as the scaling limit of simple random walk on $\delta \mathbb{Z}^{n} \subset \mathbb{R}^{n}$.
- The construction can be used to show that one can solve the continuous Dirichlet problem by discrete approximation.

Brownian motion

Here is a summary of last class:

- Brownian motion models the path of a drunk person. Its the most natural way to draw a random self-intersecting curve.
- Since Brownian motion models the motion of a physical process, it is almost surely continuous.
- Brownian motion can be constructed as the scaling limit of simple random walk on $\delta \mathbb{Z}^{n} \subset \mathbb{R}^{n}$.
- The construction can be used to show that one can solve the continuous Dirichlet problem by discrete approximation.
- Last class, we did not use this construction of Brownian motion in the proofs. Instead, we relied on the fact that Brownian motion is conformally invariant.

Conformal invariance

- Actually, Brownian motion is not truly conformally invariant: it is conformally invariant up to a time change: When $\left|f^{\prime}\left(B_{t}\right)\right|$ is large, the drunk speeds up. When $\left|f^{\prime}\left(B_{t}\right)\right|$ is small, the drunk slows down.

Conformal invariance

- Actually, Brownian motion is not truly conformally invariant: it is conformally invariant up to a time change: When $\left|f^{\prime}\left(B_{t}\right)\right|$ is large, the drunk speeds up. When $\left|f^{\prime}\left(B_{t}\right)\right|$ is small, the drunk slows down.
- The internal clock of the image of Brownian motion is given by

$$
\int_{0}^{t}\left|f^{\prime}\left(B_{s}\right)\right|^{2} d s
$$

Conformal invariance

- Actually, Brownian motion is not truly conformally invariant: it is conformally invariant up to a time change: When $\left|f^{\prime}\left(B_{t}\right)\right|$ is large, the drunk speeds up. When $\left|f^{\prime}\left(B_{t}\right)\right|$ is small, the drunk slows down.
- The internal clock of the image of Brownian motion is given by

$$
\int_{0}^{t}\left|f^{\prime}\left(B_{s}\right)\right|^{2} d s
$$

- For some applications like to Liouville's theorem, this whole time change business is important. For many other things, it is not: we only care about the destination and not the journey.

Recurrence of BM

- In dimensions 1 and 2, BM is recurrent. This means that BM visits any ball $B(x, r)$ infinitely many times. In dimension 1 , it is an experimental fact.

Recurrence of BM

- In dimensions 1 and 2, BM is recurrent. This means that BM visits any ball $B(x, r)$ infinitely many times. In dimension 1 , it is an experimental fact.
- In dimension 2, one argues as follows: suppose you are located on $S_{n}=\left\{y:|y-x|=2^{n}\right\}$. Brownian motion cannot stay in $\left\{y: 2^{n-1}<|y-x|<2^{n+1}\right\}$ forever, so it must eventually hit either S_{n-1} or S_{n+1}.

Recurrence of BM

- In dimensions 1 and 2, BM is recurrent. This means that BM visits any ball $B(x, r)$ infinitely many times. In dimension 1 , it is an experimental fact.
- In dimension 2, one argues as follows: suppose you are located on $S_{n}=\left\{y:|y-x|=2^{n}\right\}$. Brownian motion cannot stay in $\left\{y: 2^{n-1}<|y-x|<2^{n+1}\right\}$ forever, so it must eventually hit either S_{n-1} or S_{n+1}.
- The annulus $\left\{y: 2^{n-1}<|y-x|<2^{n+1}\right\}$ has a conformal involution which changes the two boundary components and fixes S_{n}.

Recurrence of BM

- Conformal invariance dictates that Brownian motion hits S_{n-1} and S_{n+1} with equal probability.

Recurrence of BM

- Conformal invariance dictates that Brownian motion hits S_{n-1} and S_{n+1} with equal probability.
- This reduces BM in dimension 2 to simple random walk on \mathbb{Z}.

Recurrence of BM

- Conformal invariance dictates that Brownian motion hits S_{n-1} and S_{n+1} with equal probability.
- This reduces BM in dimension 2 to simple random walk on \mathbb{Z}.
- Since simple random walk on the integer line hits arbitrarily large negative numbers infinitely often, BM in dimension 2 eventually hits $B(x, r)$ no matter how small r is.

Polar sets

- The above reasoning shows that BM in dimension 2 almost surely (with probability 1) misses any particular point x in the plane.

Polar sets

- The above reasoning shows that BM in dimension 2 almost surely (with probability 1) misses any particular point x in the plane.
- Since probability is a measure, BM misses countable sets.

Polar sets

- The above reasoning shows that BM in dimension 2 almost surely (with probability 1) misses any particular point x in the plane.
- Since probability is a measure, BM misses countable sets.
- A set is called polar if BM misses it almost surely. Countable sets are polar.
- The above reasoning shows that BM in dimension 2 almost surely (with probability 1) misses any particular point x in the plane.
- Since probability is a measure, BM misses countable sets.
- A set is called polar if BM misses it almost surely. Countable sets are polar.
- Suppose f is a holomorphic function. Since BM almost surely misses the critical points of f, BM is actually invariant under all holomorphic maps.

Dirichlet's problem

- Suppose Ω is a bounded domain in \mathbb{R}^{n} and we want to solve Dirichlet's problem with boundary data $f \in C(\partial \Omega)$.

Dirichlet's problem

- Suppose Ω is a bounded domain in \mathbb{R}^{n} and we want to solve Dirichlet's problem with boundary data $f \in C(\partial \Omega)$.
- Let $x \in \Omega$. To define $u(x)$, we run BM started at x until we hit $\partial \Omega$. We record the value of $f\left(B_{\tau}\right)$ at the point where we hit $\partial \Omega$.

Dirichlet's problem

- Suppose Ω is a bounded domain in \mathbb{R}^{n} and we want to solve Dirichlet's problem with boundary data $f \in C(\partial \Omega)$.
- Let $x \in \Omega$. To define $u(x)$, we run BM started at x until we hit $\partial \Omega$. We record the value of $f\left(B_{\tau}\right)$ at the point where we hit $\partial \Omega$.
- We run this experiment 1000000 times and take the average of the values we have written down. Taking 1000000 to infinity, we get:

$$
u(x):=\mathbb{E}^{x} f\left(B_{\tau}\right)
$$

The subscript x refers to the fact that BM is started at x.

Dirichlet's problem

- The definition

$$
u(x):=\mathbb{E}^{x} f\left(B_{\tau}\right) .
$$

always lead to a harmonic function since it is easy to test the mean-value property.

Dirichlet's problem

- The definition

$$
u(x):=\mathbb{E}^{x} f\left(B_{\tau}\right) .
$$

always lead to a harmonic function since it is easy to test the mean-value property.

- The issue is that $u(x)$ may not have the right boundary values. I gave the example of $\Omega=\mathbb{D} \backslash\{0\}, f(0)=1$ and $f(z)=1$ on the unit circle. In fact, the Dirichlet's problem does not have a solution in this case.

Dirichlet's problem

- If Ω is bounded by a Jordan curve, then $u(x)$ defined above does satisfy the Dirichlet's problem: if x is close to the boundary, then with high probability, BM won't travel far before hitting the boundary.
- If Ω is bounded by a Jordan curve, then $u(x)$ defined above does satisfy the Dirichlet's problem: if x is close to the boundary, then with high probability, BM won't travel far before hitting the boundary.
- Suppose $\operatorname{dist}(x, \partial \Omega)=r$ where $r=\varepsilon / 2^{n}$. We want to show that if n is large, then the probability that BM escapes $B(x, \varepsilon)$ before hitting $\partial \Omega$ is small.

Dirichlet's problem

- If Ω is bounded by a Jordan curve, then $u(x)$ defined above does satisfy the Dirichlet's problem: if x is close to the boundary, then with high probability, BM won't travel far before hitting the boundary.
- Suppose $\operatorname{dist}(x, \partial \Omega)=r$ where $r=\varepsilon / 2^{n}$. We want to show that if n is large, then the probability that BM escapes $B(x, \varepsilon)$ before hitting $\partial \Omega$ is small.
- In order for BM to escape $B(x, \varepsilon)$ and not hit $\partial \Omega$ it must accomplish many miracles: it must pass through n dyadic annuli without hitting the fence $\partial \Omega$.

Dirichlet's problem

- If Ω is bounded by a Jordan curve, then $u(x)$ defined above does satisfy the Dirichlet's problem: if x is close to the boundary, then with high probability, BM won't travel far before hitting the boundary.
- Suppose $\operatorname{dist}(x, \partial \Omega)=r$ where $r=\varepsilon / 2^{n}$. We want to show that if n is large, then the probability that BM escapes $B(x, \varepsilon)$ before hitting $\partial \Omega$ is small.
- In order for BM to escape $B(x, \varepsilon)$ and not hit $\partial \Omega$ it must accomplish many miracles: it must pass through n dyadic annuli without hitting the fence $\partial \Omega$.
- But there is always a definite chance that BM does hit $\partial \Omega$ when crossing each of the dyadic annuli. This makes the probability of escape small.

Thank you for your attention!

