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Harmonic measure

Suppose 2 C R" is a bounded domain. If f € L*°(0Q), we call

the generalized solution of the Dirichlet problem.

If AC 0f2, define the harmonic measure of A as viewed from x

wx(A) := EXxa(B;) = PX(B; € A).
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Harmonic measure

An analyst would say that the correspondence f — u(x) defines a
positive bounded linear operator

Ly: C(0Q) — R

of norm 1:
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Harmonic measure

An analyst would say that the correspondence f — u(x) defines a
positive bounded linear operator

Ly: C(0Q) — R
of norm 1:
L.f >0, for f > 0.
ILxf| = u(x) < [[f|oos 1Ll =u(l) =1=|1]cc.
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Harmonic measure

An analyst would say that the correspondence f — u(x) defines a
positive bounded linear operator

Ly: C(0Q) — R
of norm 1:
L.f >0, for f > 0.
ILxf| = u(x) < [[f|oos 1Ll =u(l) =1=|1]cc.

Thus, 3! probability measure w. s.t. u(x) = [, f(¢)
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Harmonic measures on the disk

Let Q =D. The harmonic measure as viewed from the origin
_do
S o
An analyst would cite the mean-value property, while a probabilist
would cite the rotation invariance of BM.
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Harmonic measures on the disk

Let Q =D. The harmonic measure as viewed from the origin
_do
S o
An analyst would cite the mean-value property, while a probabilist
would cite the rotation invariance of BM.

More generally, the harmonic measure at

do
2
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Harmonic measure of an annulus

Let Q = A(0,r,R) = {x € RY: r < |x| < R}.

Denote the boundary components by S, and Sg.

An easy computation shows that is harmonic in dimension 2
while is harmonic for d > 3.

The harmonic measure of S, as viewed from a point x € A(0, r, R)

is
1 1
log R — log | x| RI=2 — [x]d=2
—— o ——.
1 1
log R — log r =7 — 2
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Recurrence of BM in dimension 2

Theorem. Suppose the BM particle is at x. Almost surely, BM
visits B(0, r), no matter how small r is.

Proof. Eventually, BM will leave the ball B(0, R).
The probability that BM visits B(x, r) before that is

log R — log | x|
logR —logr

Taking R — oo, this quantity tends to 1.
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Transience of BM in dimension d > 3

Theorem. Given any r > 0, almost surely, B; ¢ B(0,r) for all t
sufficiently large.

Observation. Suppose the BM is located at a point x ¢ B(x, r).

The probability that BM escapes B(x, R) without ever hitting

B(0,r) is
R~
Ra— =
1_lirl‘

Rd—2 rd—2
Taking R — oo, we see that this quantity is bounded below by a
definite constant independent of R.
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Transience of BM in dimension d > 3

To turn this observation into a proof, define the event A, as:

After the first time that BM escapes B,o, it hits
S(n41)0 before hitting S, if ever.
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Transience of BM in dimension d > 3

To turn this observation into a proof, define the event A, as:

After the first time that BM escapes B,o, it hits
S(n41)0 before hitting S, if ever.

Simple computation: P(AS) < 1/n?. Miracle
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Transience of BM in dimension d > 3

To turn this observation into a proof, define the event A, as:
After the first time that BM escapes B,o, it hits
S(n41)0 before hitting S, if ever.
Simple computation: P(AS) < 1/n?. Miracle
Thus,

o

> P(A5) < oo

n=1

Oleg lvrii Harmonic measure and Green's functions



Transience of BM in dimension d > 3

To turn this observation into a proof, define the event A, as:

After the first time that BM escapes B,o, it hits
S(n41)0 before hitting S, if ever.

Simple computation: P(AS) < 1/n?. Miracle
Thus,

> P(A5) < oo

n=1

Lemma of many miracles: only finitely many miracles can occur.

Oleg lvrii Harmonic measure and Green's functions



Removable singularities

Lemma. lIsolated singularities of bounded harmonic functions are
removable.
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Removable singularities

Lemma. lIsolated singularities of bounded harmonic functions are
removable.

Proof. Suppose u: B(0,1+¢)\ {0} — R is harmonic. We claim

that
u(x) = / u(e™) , x € D.
oD
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Removable singularities

Lemma. lIsolated singularities of bounded harmonic functions are
removable.

Proof. Suppose u: B(0,1+¢)\ {0} — R is harmonic. We claim

that
u(x) = / u(e™) , x € D.
oD

However, we know that

u(x) = /BIDJ u(e™) + /|z|:E u(e™)

for all x € A. = A(0,¢,1).
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Removable singularities

Lemma. lIsolated singularities of bounded harmonic functions are
removable.

Proof. Suppose u: B(0,1+¢)\ {0} — R is harmonic. We claim

that
u(x) = / u(e™) , x € D.
oD

However, we know that

u(x) = /BIDJ u(e™) + /|z|:E u(e™)

for all x € A = A(0,£,1). The second term tends to 0 as € — 0.
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Removable singularities

Lemma. lIsolated singularities of bounded harmonic functions are
removable.

Proof. Suppose u: B(0,1+¢)\ {0} — R is harmonic. We claim

that
u(x) = / u(e™) , x € D.
oD

However, we know that

u(x) = /BIDJ u(e™) + /|z|:E u(e™)

for all x € A = A(0,£,1). The second term tends to 0 as € — 0.
The proof also shows that compact polar sets are removable.
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More on harmonic measure

Let v be a harmonic function. | will now give another proof of the

formula
o) = [ u(©)

For simplicity, we work in the discrete setting: let Q be a discrete
domain in Z2, Q denote the interior vertices and 9 denote the
boundary vertices.

Begin with the martingale property of SRW:

u(xp) = % Z u(xy).

X1~X0
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More on harmonic measure

If x; is a boundary vertex, don't touch the term u(xy).

If x1 is an interior vertex, replace

u(x1) with % Z u(x2).
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More on harmonic measure

If x; is a boundary vertex, don't touch the term u(xy).

If x1 is an interior vertex, replace

u(x1) with % Z u(x2).

X2~ X1

After repeating this procedure n times, we get an equation of the
form

u(xo) = Z u(x)Pg(xo, x, n).

xeQ

Oleg lvrii Harmonic measure and Green's functions



More on harmonic measure

If x; is a boundary vertex, don't touch the term u(xy).

If x1 is an interior vertex, replace

_ 1
u(x1) with 2 X;ﬁ u(x2).
After repeating this procedure n times, we get an equation of the
form
u(xo) = Z u(x)Pg(xo, x, n).
x€eQ
The weight 0 < Pg(xp,x, n) < 1 measures the probability of going
from xg to x in n steps. Taking n — oo gives us the desired
formula.
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Green's function

Define the discrete Green's function , X0, X € Q
as the occupation density of SRW. More precisely, simulate SRW
X0, X1, X2, . . . until it hits the boundary and set

=E(#{n>0:x, = x}).
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Green's function

Define the discrete Green's function , X0, X € Q
as the occupation density of SRW. More precisely, simulate SRW
X0, X1, X2, . . . until it hits the boundary and set

=E(#{n>0:x, = x}).

The Green's function is uniquely determined by the following

properties:
° is zero on 0f2.
° is harmonic in x except at xg.

Py Adisc = {}1 lewxo } — = —1.
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Discrete Green's formula

For a function u: Q — R (not necessarily harmonic), defines its
discrete Laplacian as

A%y (x) = {1 > u(x)} — u(x).

yrx
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Discrete Green's formula

For a function u: Q — R (not necessarily harmonic), defines its
discrete Laplacian as

A%y (x) = {1 > u(x)} — u(x).

yrx

Begin with u(xp) = %waxo u(xy) — A9 u(xp).
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Discrete Green's formula

For a function u: Q — R (not necessarily harmonic), defines its
discrete Laplacian as

1

A%y (x) = {4 > u(x)} — u(x).

yrx

Begin with u(xp) = %waxo u(xy) — A9 u(xp).
Keep replacing u(x,) with 1 >° u(xpi1) — A%u(x,) as

before.

Xn4+1~Xn
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Discrete Green's formula

For a function u: Q — R (not necessarily harmonic), defines its
discrete Laplacian as

A%y (x) = E u(x) p — u(x).
)
u(xy) — A9 u(xp).

u(xpi1) — A%u(x,) as

Begin with u(xp) = 2 >°

X1~X0
Keep replacing u(x,) with %ZXmHNXn
before.

Taking n — oo, we obtain

u(x0) = /8 u(0) =3 A%(y)

yeQ
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Thank you for your attention!
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