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Harmonic measure

Suppose Ω ⊂ Rn is a bounded domain. If f ∈ L∞(∂Ω), we call

u(x) := Ex f (Bτ ).

the generalized solution of the Dirichlet problem.

If A ⊂ ∂Ω, define the harmonic measure of A as viewed from x

ωx(A) := ExχA(Bτ ) = Px(Bτ ∈ A).
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Harmonic measure

An analyst would say that the correspondence f → u(x) defines a

positive bounded linear operator

Lx : C (∂Ω)→ R

of norm 1:

Lx f ≥ 0, for f ≥ 0.

|Lx f | = u(x) ≤ ‖f ‖∞, |Lx1| = u(1) = 1 = ‖1‖∞.

Thus, ∃! probability measure ωx s.t. u(x) =
´
∂Ω f (ζ)dωx .
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Harmonic measures on the disk

Let Ω = D. The harmonic measure as viewed from the origin

ω0 =
dθ

2π
.

An analyst would cite the mean-value property, while a probabilist

would cite the rotation invariance of BM.

More generally, the harmonic measure at

ωx = Px(e iθ)
dθ

2π
.
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Harmonic measure of an annulus

Let Ω = A(0, r ,R) = {x ∈ Rd : r < |x | < R}.

Denote the boundary components by Sr and SR .

An easy computation shows that log |x | is harmonic in dimension 2

while 1
|x |d−2 is harmonic for d ≥ 3.

The harmonic measure of Sr as viewed from a point x ∈ A(0, r ,R)

is
logR − log |x |
logR − log r

or

1
Rd−2 − 1

|x |d−2

1
Rd−2 − 1

rd−2

.
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Recurrence of BM in dimension 2

Theorem. Suppose the BM particle is at x . Almost surely, BM

visits B(0, r), no matter how small r is.

Proof. Eventually, BM will leave the ball B(0,R).

The probability that BM visits B(x , r) before that is

logR − log |x |
logR − log r

.

Taking R →∞, this quantity tends to 1.
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Transience of BM in dimension d ≥ 3

Theorem. Given any r > 0, almost surely, Bt /∈ B(0, r) for all t

sufficiently large.

Observation. Suppose the BM is located at a point x /∈ B(x , r).

The probability that BM escapes B(x ,R) without ever hitting

B(0, r) is

1−
1

Rd−2 − 1
rd−2

1
Rd−2 − 1

rd−2

.

Taking R →∞, we see that this quantity is bounded below by a

definite constant independent of R.

Oleg Ivrii Harmonic measure and Green’s functions



Transience of BM in dimension d ≥ 3

To turn this observation into a proof, define the event An as:

After the first time that BM escapes Bn10, it hits

S(n+1)10 before hitting Sn if ever.

Simple computation: P(Ac
n) . 1/n2. Miracle

Thus,
∞∑
n=1

P(Ac
n) <∞.

Lemma of many miracles: only finitely many miracles can occur.
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Removable singularities

Lemma. Isolated singularities of bounded harmonic functions are

removable.

Proof. Suppose u : B(0, 1 + ε) \ {0} → R is harmonic. We claim

that

u(x) =

ˆ
∂D

u(e iθ)dωD,x , x ∈ D.

However, we know that

u(x) =

ˆ
∂D

u(e iθ)dωAε,x +

ˆ
|z|=ε

u(e iθ)dωAε,x .

for all x ∈ Aε = A(0, ε, 1). The second term tends to 0 as ε→ 0.

The proof also shows that compact polar sets are removable.
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More on harmonic measure

Let u be a harmonic function. I will now give another proof of the

formula

u(x0) =

ˆ
∂Ω

u(ζ)dωx0 .

For simplicity, we work in the discrete setting: let Ω be a discrete

domain in Z2, Ω denote the interior vertices and ∂Ω denote the

boundary vertices.

Begin with the martingale property of SRW:

u(x0) =
1

4

∑
x1∼x0

u(x1).
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More on harmonic measure

If x1 is a boundary vertex, don’t touch the term u(x1).

If x1 is an interior vertex, replace

u(x1) with
1

4

∑
x2∼x1

u(x2).

After repeating this procedure n times, we get an equation of the

form

u(x0) =
∑
x∈Ω

u(x)PΩ(x0, x , n).

The weight 0 ≤ PΩ(x0, x , n) ≤ 1 measures the probability of going

from x0 to x in n steps. Taking n→∞ gives us the desired

formula.
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Green’s function

Define the discrete Green’s function G (x) = GΩ(x0, x), x0, x ∈ Ω

as the occupation density of SRW. More precisely, simulate SRW

x0, x1, x2, . . . until it hits the boundary and set

G (x) := Ex0
(
#{n ≥ 0 : xn = x}

)
.

The Green’s function is uniquely determined by the following

properties:

G (x) is zero on ∂Ω.

G (x) is harmonic in x except at x0.

∆discG (x) :=

{
1
4

∑
x1∼x0

G (x1)

}
− G (x0) = −1.
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Discrete Green’s formula

For a function u : Ω→ R (not necessarily harmonic), defines its

discrete Laplacian as

∆discu(x) :=

{
1

4

∑
y∼x

u(x)

}
− u(x).

Begin with u(x0) = 1
4

∑
x1∼x0

u(x1)−∆discu(x0).

Keep replacing u(xn) with 1
4

∑
xn+1∼xn u(xn+1)−∆discu(xn) as

before.

Taking n→∞, we obtain

u(x0) =

ˆ
∂Ω

u(ζ)dωx0(ζ)−
∑
y∈Ω

∆disc(y0)G (x0, y).
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Thank you for your attention!
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