Some martingale arguments

Oleg Ivrii

October 28, 2020

Harmonic measure in one dimension

Given three integers, $a<x<b$, run simple random walk on \mathbb{Z} started at x until you hit a or b :

Harmonic measure in one dimension

Given three integers, $a<x<b$, run simple random walk on \mathbb{Z} started at x until you hit a or b :

Begin at $S_{0}=x$.

- If you flip heads, $S_{n+1}=S_{n}+1$.
- If you flip tails, $S_{n+1}=S_{n}-1$.

Harmonic measure in one dimension

Given three integers, $a<x<b$, run simple random walk on \mathbb{Z} started at x until you hit a or b :

Begin at $S_{0}=x$.

- If you flip heads, $S_{n+1}=S_{n}+1$.
- If you flip tails, $S_{n+1}=S_{n}-1$.

Since $u(x)=x$ is discrete harmonic,

$$
\begin{aligned}
u(x) & =\frac{u(x-1)+u(x+1)}{2} \\
& =\frac{\frac{u(x-2)+u(x)}{2}+\frac{u(x)+u(x+2)}{2}}{2}
\end{aligned}
$$

Harmonic measure in one dimension

Keep substituting this formula into itself. At each stage, you have a formula of the form

$$
u(x)=\sum_{a \leq y \leq b} P_{x, y, n} \cdot u(y)
$$

where $0 \leq P_{x, y, n} \leq 1$ are some coefficients.

Harmonic measure in one dimension

Keep substituting this formula into itself. At each stage, you have a formula of the form

$$
u(x)=\sum_{a \leq y \leq b} P_{x, y, n} \cdot u(y)
$$

where $0 \leq P_{x, y, n} \leq 1$ are some coefficients.
Since $P_{x, y, n}$ measures the probability that SRW goes from x to y in n steps,

$$
\sum_{a \leq y \leq x} P_{x, y, n}=1, \quad n=0,1,2,3, \ldots
$$

Harmonic measure in one dimension

As $n \rightarrow \infty$, the formulas

$$
u(x)=\sum_{a \leq y \leq b} P_{x, y, n} \cdot u(y)
$$

tend to

$$
u(x)=\mathbb{P}\left(S_{\tau}=a\right) u(a)+\mathbb{P}\left(S_{\tau}=b\right) u(b)
$$

Harmonic measure in one dimension

As $n \rightarrow \infty$, the formulas

$$
u(x)=\sum_{a \leq y \leq b} P_{x, y, n} \cdot u(y)
$$

tend to

$$
u(x)=\mathbb{P}\left(S_{\tau}=a\right) u(a)+\mathbb{P}\left(S_{\tau}=b\right) u(b)
$$

Remembering that $u(x)=x$, we obtain $h_{1}(x)=\mathbb{P}\left(S_{\tau}=a\right)=\frac{b-x}{b-a}$ and $h_{2}(x)=\mathbb{P}\left(S_{\tau}=b\right)=\frac{x-a}{b-a}$.

Harmonic measure in one dimension

As $n \rightarrow \infty$, the formulas

$$
u(x)=\sum_{a \leq y \leq b} P_{x, y, n} \cdot u(y)
$$

tend to

$$
u(x)=\mathbb{P}\left(S_{\tau}=a\right) u(a)+\mathbb{P}\left(S_{\tau}=b\right) u(b)
$$

Remembering that $u(x)=x$, we obtain $h_{1}(x)=\mathbb{P}\left(S_{\tau}=a\right)=\frac{b-x}{b-a}$ and $h_{2}(x)=\mathbb{P}\left(S_{\tau}=b\right)=\frac{x-a}{b-a}$.

Remark. This was to be expected since $h_{2}(x)$ should be harmonic in x and satisfy $h_{2}(a)=0$ and $h_{2}(b)=1$.

Occupation time in one dimension

To figure out the average amount of time it takes SRW started from x to hit either a or b, you would instead use the function $u(x)=x^{2}$, which is not harmonic:

$$
\Delta^{\mathrm{disc}} u(x)=\frac{u(x-1)+u(x+1)}{2}-u(x)=1
$$

Occupation time in one dimension

To figure out the average amount of time it takes SRW started from x to hit either a or b, you would instead use the function $u(x)=x^{2}$, which is not harmonic:

$$
\Delta^{\mathrm{disc}} u(x)=\frac{u(x-1)+u(x+1)}{2}-u(x)=1
$$

Remark. The positivity of the Laplacian indicates the average of the neighbours is larger than the value in the middle.

Occupation time in one dimension

To figure out the average amount of time it takes SRW started from x to hit either a or b, you would instead use the function $u(x)=x^{2}$, which is not harmonic:

$$
\Delta^{\mathrm{disc}} u(x)=\frac{u(x-1)+u(x+1)}{2}-u(x)=1
$$

Remark. The positivity of the Laplacian indicates the average of the neighbours is larger than the value in the middle.

Question. What happens when you substitute

$$
u(x)=\frac{u(x-1)+u(x+1)}{2}-1
$$

into itself many times and take $n \rightarrow \infty$?

Occupation time in one dimension

Answer. You get

$$
u(x)=\mathbb{P}\left(S_{\tau}=a\right) u(a)+\mathbb{P}\left(S_{\tau}=b\right) u(b)-\mathbb{E} \tau
$$

Occupation time in one dimension

Answer. You get

$$
u(x)=\mathbb{P}\left(S_{\tau}=a\right) u(a)+\mathbb{P}\left(S_{\tau}=b\right) u(b)-\mathbb{E} \tau
$$

Hence,

$$
\mathbb{E} \tau=x^{2}-a^{2} \cdot \frac{b-x}{b-a}-b^{2} \cdot \frac{x-a}{b-a}
$$

Occupation time in one dimension

Answer. You get

$$
u(x)=\mathbb{P}\left(S_{\tau}=a\right) u(a)+\mathbb{P}\left(S_{\tau}=b\right) u(b)-\mathbb{E} \tau
$$

Hence,

$$
\mathbb{E} \tau=x^{2}-a^{2} \cdot \frac{b-x}{b-a}-b^{2} \cdot \frac{x-a}{b-a}
$$

If $x=0$, this simplifies to $\mathbb{E} \tau=a b$.

Occupation time in one dimension

More generally, if $\Delta^{\text {disc }} u$ was not constant, the limit would be

$$
u(x)=\mathbb{P}\left(S_{\tau}=a\right) u(a)+\mathbb{P}\left(S_{\tau}=b\right) u(b)-\sum_{a<y<b} G(x, y) \Delta^{\operatorname{disc}} u(y)
$$

Remark. Passing to the limit as $n \rightarrow \infty$ can be justified using the fact that

$$
\mathbb{P}(\tau>n) \lesssim e^{-\beta_{0} n}
$$

for some $\beta_{0}>0$.
(We have to be a bit careful since $\Delta^{\text {disc }}$ can change sign and we don't want to be canceling infinities.)

Poisson-Green's formula

The continuous version of the above equation is called the Poisson-Green formula.

Suppose $\Omega \subset \mathbb{R}^{n}$ is a smoothly bounded domain, $u \in C^{2}(\Omega)$ with $\Delta u=g$ in Ω and $u=f$ on $\partial \Omega$.

$$
u(x)=\int_{\partial \Omega} f(\zeta) d \omega_{x}(\zeta)-\frac{1}{2} \int_{\partial \Omega} g(y) G_{\text {prob }}(x, y)|d y|^{n}
$$

It gives the unique solution to

$$
\left\{\begin{array}{l}
\Delta u=g, \quad \text { in } \Omega, \\
u=f, \quad \text { on } \partial \Omega .
\end{array}\right.
$$

Discrete Martingales

A mathematician might want to work with the function

$$
u(x, n)=u_{n}(x)=x^{2}-n
$$

since

$$
u_{n-1}(x)=\frac{u_{n}(x-1)+u_{n}(x+1)}{2}
$$

Being a martingale is equivalent to

$$
-\partial_{n}^{\text {disc }} u(x, n):=u(x, n-1)-u(x, n)=\Delta_{x}^{\text {disc }} u(x, n) .
$$

Optional stopping time theorem

If $u(x, n)$ solves $\partial_{n}^{\text {disc }}+\Delta_{x}^{\text {disc }}=0$ and $|u(x, n)| \lesssim e^{\beta n}$ with $\beta<\beta_{0}$, we can pass to the limit to obtain

$$
u(x, 0)=\mathbb{E} u(x, \tau)
$$

Optional stopping time theorem

If $u(x, n)$ solves $\partial_{n}^{\text {disc }}+\Delta_{x}^{\text {disc }}=0$ and $|u(x, n)| \lesssim e^{\beta n}$ with $\beta<\beta_{0}$, we can pass to the limit to obtain

$$
u(x, 0)=\mathbb{E} u(x, \tau)
$$

In continuous time, $B_{t}^{2}-t$ is a martingale since

$$
u(x, t)=x^{2}-t \quad \text { satisfies } \quad \partial_{t} u(x, t)=\frac{1}{2} \Delta u(x, t) .
$$

Optional stopping time theorem

If $u(x, n)$ solves $\partial_{n}^{\text {disc }}+\Delta_{x}^{\text {disc }}=0$ and $|u(x, n)| \lesssim e^{\beta n}$ with $\beta<\beta_{0}$, we can pass to the limit to obtain

$$
u(x, 0)=\mathbb{E} u(x, \tau)
$$

In continuous time, $B_{t}^{2}-t$ is a martingale since

$$
u(x, t)=x^{2}-t \quad \text { satisfies } \quad \partial_{t} u(x, t)=\frac{1}{2} \Delta u(x, t) .
$$

This martingale can be used to compute the average amount of time BM started at x spends in an interval $[a, b]$. One obtains the same answer as in the discrete case.

Continuous Martingales

By the same reasoning,

$$
\begin{gathered}
B_{t}^{3}-3 t B_{t} \\
B_{t}^{4}-6 t B_{t}^{2}+3 t^{2}, \ldots
\end{gathered}
$$

are also martingales.

These martingales can be used to compute $\mathbb{E} \tau^{n}$ for $n \geq 1$. For example, if you run BM started at 0 until you hit $\partial[-a, a]$,

$$
\mathbb{E}^{0}\left[\tau^{2}\right]=(1 / 3) \mathbb{E}^{0}\left[-B_{\tau}^{4}+6 \tau B_{\tau}^{2}\right]=(5 / 3) a^{4}
$$

Exponential Transform

Run BM started at 0 until you hit $\partial(-\infty, a]$. Since

$$
\exp \left(\sqrt{2 \lambda} \cdot B_{t}-\lambda \cdot t\right), \quad \lambda>0
$$

is a martingale,

Exponential Transform

Run BM started at 0 until you hit $\partial(-\infty, a]$. Since

$$
\exp \left(\sqrt{2 \lambda} \cdot B_{t}-\lambda \cdot t\right), \quad \lambda>0
$$

is a martingale,

$$
\mathbb{E}^{0}\left[\exp \left(\sqrt{2 \lambda} \cdot B_{\tau}-\lambda \cdot \tau\right)\right]=1
$$

Exponential Transform

Run BM started at 0 until you hit $\partial(-\infty, a]$. Since

$$
\exp \left(\sqrt{2 \lambda} \cdot B_{t}-\lambda \cdot t\right), \quad \lambda>0
$$

is a martingale,

$$
\mathbb{E}^{0}\left[\exp \left(\sqrt{2 \lambda} \cdot B_{\tau}-\lambda \cdot \tau\right)\right]=1
$$

or $\mathbb{E}^{0}[\exp (-\lambda \tau)]=\exp (-a \sqrt{2 \lambda})$.

Exponential Transform

Run BM started at 0 until you hit $\partial(-\infty, a]$. Since

$$
\exp \left(\sqrt{2 \lambda} \cdot B_{t}-\lambda \cdot t\right), \quad \lambda>0
$$

is a martingale,

$$
\mathbb{E}^{0}\left[\exp \left(\sqrt{2 \lambda} \cdot B_{\tau}-\lambda \cdot \tau\right)\right]=1
$$

or $\mathbb{E}^{0}[\exp (-\lambda \tau)]=\exp (-a \sqrt{2 \lambda})$. Inverting the Laplace transform gives

$$
\mathbb{P}^{0}(\tau \in d s)=\left(2 \pi s^{3}\right)^{1 / 2} a e^{-a^{2} / 2 s}
$$

Run BM starting from 0 until it reaches the unit circle in \mathbb{C}. Since

$$
\left|B_{t}\right|^{2}-2 t=x^{2}+y^{2}-2 t
$$

is a perfectly reasonable martingale,

Run BM starting from 0 until it reaches the unit circle in \mathbb{C}. Since

$$
\left|B_{t}\right|^{2}-2 t=x^{2}+y^{2}-2 t
$$

is a perfectly reasonable martingale,

$$
0=\mathbb{E}^{0}[1-2 \tau]=1-2 \mathbb{E}^{0}[\tau] \quad \Longrightarrow \quad \mathbb{E}^{0}[\tau]=\frac{1}{2}
$$

Run BM starting from 0 until it reaches the unit circle in \mathbb{C}. Since

$$
\left|B_{t}\right|^{2}-2 t=x^{2}+y^{2}-2 t
$$

is a perfectly reasonable martingale,

$$
0=\mathbb{E}^{0}[1-2 \tau]=1-2 \mathbb{E}^{0}[\tau] \quad \Longrightarrow \quad \mathbb{E}^{0}[\tau]=\frac{1}{2}
$$

Remark. Alternatively, $\mathbb{E}^{0}[\tau]=\int_{\mathbb{D}} \frac{1}{\pi} \log \frac{1}{|z|}|d z|^{2}=\frac{1}{2}$.

Run BM starting from 0 until it reaches the unit circle in \mathbb{C}. Since

$$
\left|B_{t}\right|^{2}-2 t=x^{2}+y^{2}-2 t
$$

is a perfectly reasonable martingale,

$$
0=\mathbb{E}^{0}[1-2 \tau]=1-2 \mathbb{E}^{0}[\tau] \quad \Longrightarrow \quad \mathbb{E}^{0}[\tau]=\frac{1}{2}
$$

Remark. Alternatively, $\mathbb{E}^{0}[\tau]=\int_{\mathbb{D}} \frac{1}{\pi} \log \frac{1}{|z|}|d z|^{2}=\frac{1}{2}$.
(You can compute this directly or apply Green's formula with $u(z)=|z|^{2}$.)

Thank you for your attention!

