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Harmonic measure in one dimension

Given three integers, a < x < b, run simple random walk on Z
started at x until you hit a or b:

Begin at S0 = x .

If you flip heads, Sn+1 = Sn + 1.

If you flip tails, Sn+1 = Sn − 1.

Since u(x) = x is discrete harmonic,

u(x) =
u(x − 1) + u(x + 1)

2

=
u(x−2)+u(x)

2 + u(x)+u(x+2)
2

2
.
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Harmonic measure in one dimension

Keep substituting this formula into itself. At each stage, you have

a formula of the form

u(x) =
∑

a≤y≤b
Px ,y ,n · u(y),

where 0 ≤ Px ,y ,n ≤ 1 are some coefficients.

Since Px ,y ,n measures the probability that SRW goes from x to y

in n steps, ∑
a≤y≤x

Px ,y ,n = 1, n = 0, 1, 2, 3, . . . .
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Harmonic measure in one dimension

As n→∞, the formulas

u(x) =
∑

a≤y≤b
Px ,y ,n · u(y),

tend to

u(x) = P(Sτ = a)u(a) + P(Sτ = b)u(b).

Remembering that u(x) = x , we obtain h1(x) = P(Sτ = a) = b−x
b−a

and h2(x) = P(Sτ = b) = x−a
b−a .

Remark. This was to be expected since h2(x) should be harmonic

in x and satisfy h2(a) = 0 and h2(b) = 1.
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Occupation time in one dimension

To figure out the average amount of time it takes SRW started

from x to hit either a or b, you would instead use the function

u(x) = x2, which is not harmonic:

∆discu(x) =
u(x − 1) + u(x + 1)

2
− u(x) = 1.

Remark. The positivity of the Laplacian indicates the average of

the neighbours is larger than the value in the middle.

Question. What happens when you substitute

u(x) =
u(x − 1) + u(x + 1)

2
− 1

into itself many times and take n→∞?

Oleg Ivrii Some martingale arguments



Occupation time in one dimension

To figure out the average amount of time it takes SRW started

from x to hit either a or b, you would instead use the function

u(x) = x2, which is not harmonic:

∆discu(x) =
u(x − 1) + u(x + 1)

2
− u(x) = 1.

Remark. The positivity of the Laplacian indicates the average of

the neighbours is larger than the value in the middle.

Question. What happens when you substitute

u(x) =
u(x − 1) + u(x + 1)

2
− 1

into itself many times and take n→∞?

Oleg Ivrii Some martingale arguments



Occupation time in one dimension

To figure out the average amount of time it takes SRW started

from x to hit either a or b, you would instead use the function

u(x) = x2, which is not harmonic:

∆discu(x) =
u(x − 1) + u(x + 1)

2
− u(x) = 1.

Remark. The positivity of the Laplacian indicates the average of

the neighbours is larger than the value in the middle.

Question. What happens when you substitute

u(x) =
u(x − 1) + u(x + 1)

2
− 1

into itself many times and take n→∞?

Oleg Ivrii Some martingale arguments



Occupation time in one dimension

Answer. You get

u(x) = P(Sτ = a)u(a) + P(Sτ = b)u(b)− Eτ .

Hence,

Eτ = x2 − a2 · b − x

b − a
− b2 · x − a

b − a
.

If x = 0, this simplifies to Eτ = ab.
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Occupation time in one dimension

More generally, if ∆discu was not constant, the limit would be

u(x) = P(Sτ = a)u(a) + P(Sτ = b)u(b)−
∑

a<y<b

G (x , y)∆discu(y).

Remark. Passing to the limit as n→∞ can be justified using the

fact that

P(τ > n) . e−β0n

for some β0 > 0.

(We have to be a bit careful since ∆disc can change sign and we

don’t want to be canceling infinities.)
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Poisson-Green’s formula

The continuous version of the above equation is called the

Poisson-Green formula.

Suppose Ω ⊂ Rn is a smoothly bounded domain, u ∈ C 2(Ω) with

∆u = g in Ω and u = f on ∂Ω.

u(x) =

ˆ
∂Ω

f (ζ)dωx(ζ)− 1

2

ˆ
∂Ω

g(y)Gprob(x , y)|dy |n.

It gives the unique solution to{
∆u = g , in Ω,

u = f , on ∂Ω.
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Discrete Martingales

A mathematician might want to work with the function

u(x , n) = un(x) = x2 − n

since

un−1(x) =
un(x − 1) + un(x + 1)

2
.

Being a martingale is equivalent to

−∂disc
n u(x , n) := u(x , n − 1)− u(x , n) = ∆disc

x u(x , n).
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Optional stopping time theorem

If u(x , n) solves ∂disc
n + ∆disc

x = 0 and |u(x , n)| . eβn with β < β0,

we can pass to the limit to obtain

u(x , 0) = Eu(x , τ).

In continuous time, B2
t − t is a martingale since

u(x , t) = x2 − t satisfies ∂tu(x , t) =
1

2
∆u(x , t).

This martingale can be used to compute the average amount of

time BM started at x spends in an interval [a, b]. One obtains the

same answer as in the discrete case.
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Continuous Martingales

By the same reasoning,

B3
t − 3tBt ,

B4
t − 6tB2

t + 3t2, . . .

are also martingales.

These martingales can be used to compute Eτn for n ≥ 1. For

example, if you run BM started at 0 until you hit ∂[−a, a],

E0[τ2] = (1/3)E0[−B4
τ + 6τB2

τ ] = (5/3)a4.
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Exponential Transform

Run BM started at 0 until you hit ∂(−∞, a]. Since

exp(
√

2λ · Bt − λ · t), λ > 0

is a martingale,

E0
[
exp(
√

2λ · Bτ − λ · τ)
]

= 1

or E0
[
exp(−λτ)

]
= exp(−a

√
2λ). Inverting the Laplace transform

gives

P0(τ ∈ ds) = (2πs3)1/2ae−a
2/2s .
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Two dimensions

Run BM starting from 0 until it reaches the unit circle in C. Since

|Bt |2 − 2t = x2 + y2 − 2t

is a perfectly reasonable martingale,

0 = E0[1− 2τ ] = 1− 2E0[τ ] =⇒ E0[τ ] =
1

2
.

Remark. Alternatively, E0[τ ] =
´
D

1
π log 1

|z| |dz |
2 = 1

2 .

(You can compute this directly or apply Green’s formula with

u(z) = |z |2.)
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Thank you for your attention!
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