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Harmonic measure in one dimension

Given three integers, a < x < b, run simple random walk on Z
started at x until you hit a or b:
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Harmonic measure in one dimension

Given three integers, a < x < b, run simple random walk on Z
started at x until you hit a or b:

Begin at 59 = x.
@ If you flip heads, S,11 =5, + 1.
o If you flip tails, Sp41 = S, — 1.
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Harmonic measure in one dimension

Given three integers, a < x < b, run simple random walk on Z
started at x until you hit a or b:

Begin at 59 = x.
o If you flip heads, S,11 = S, + 1.
o If you flip tails, Sp41 = S, — 1.
Since u(x) = x is discrete harmonic,
ulx —1)+u(x+1)

2
u(x—2)4u(x u(x)4u(x+2
(x=2)+ulx) | ()+2(+)

2
2

u(x) =
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Harmonic measure in one dimension

Keep substituting this formula into itself. At each stage, you have
a formula of the form

U(X) = Z Px,y,n : u(Y)»

a<y<b

where 0 < P, , , <1 are some coefficients.
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Harmonic measure in one dimension

Keep substituting this formula into itself. At each stage, you have
a formula of the form

U(X) = Z Px,y,n : u(Y)»

a<y<b
where 0 < P, , , <1 are some coefficients.

Since Py, , measures the probability that SRW goes from x to y
in n steps,

Z Px7y,n:1, n:0,1,2,3,....

a<y<x
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Harmonic measure in one dimension

As n — oo, the formulas

U(X) = Z 'Dx,y,n : U(V)?

a<y<b

tend to
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Harmonic measure in one dimension

As n — oo, the formulas

u(x) =Y Peyn-uly),
a<y<b
tend to
u(x) =P(S; = a)u(a) + P(S; = b)u(b).

Remembering that u(x) = x, we obtain hi(x) = P(S; = a) = 3=
and hy(x) = P(S; = b) = 53

Py
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Harmonic measure in one dimension

As n — oo, the formulas

U(X) = Z 'Dx,y,n : U(V)?

a<y<b

tend to
u(x) =P(S; = a)u(a) + P(S; = b)u(b).

o
X

Remembering that u(x) = x, we obtain hi(x) = P(5; = a) = =
and hy(x) = P(S; = b) = 53

Py

L)

Remark. This was to be expected since hy(x) should be harmonic
in x and satisfy ha(a) = 0 and hy(b) = 1.
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Occupation time in one dimension

To figure out the average amount of time it takes SRW started
from x to hit either a or b, you would instead use the function
u(x) = x2, which is not harmonic:

u(x — 1)+ u(x + 1)
2

Adsey(x) = —u(x)=1.
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Occupation time in one dimension

To figure out the average amount of time it takes SRW started
from x to hit either a or b, you would instead use the function
u(x) = x2, which is not harmonic:

u(x — 1)+ u(x + 1)
2

Adsey(x) = —u(x)=1.

Remark. The positivity of the Laplacian indicates the average of
the neighbours is larger than the value in the middle.
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Occupation time in one dimension

To figure out the average amount of time it takes SRW started
from x to hit either a or b, you would instead use the function
u(x) = x2, which is not harmonic:

u(x — 1)+ u(x + 1)

Adisc —
u(x) :

—u(x) =1
Remark. The positivity of the Laplacian indicates the average of
the neighbours is larger than the value in the middle.

Question. What happens when you substitute

x—1)+u(x+1)
2

-1

u(x) = u(

into itself many times and take n — oco0?
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Occupation time in one dimension

Answer. You get

u(x) = _

Oleg lvrii Some martingale arguments



Occupation time in one dimension

Answer. You get

Hence,
5 2'b—x_b2‘x—a
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Occupation time in one dimension

Answer. You get

Hence,
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Occupation time in one dimension

More generally, if A9y was not constant, the limit would be
u(x) = -
Remark. Passing to the limit as n — oo can be justified using the

fact that
P(r > n) < e Fom

for some By > 0.

(We have to be a bit careful since AY¢ can change sign and we
don’t want to be canceling infinities.)
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Poisson-Green's formula

The continuous version of the above equation is called the
- formula.

Suppose  C R is a smoothly bounded domain, u € C?(Q2) with
Au=ginQand uv=f on 9Q.

u(x) = -
It gives the unique solution to

Au=g, inQ,
u=1"*, on L.
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Discrete Martingales

A mathematician might want to work with the function

u(x,n) = up(x) = x> —n

since
up(x — 1)+ up(x +1)

2

up—1(x) =
Being a martingale is equivalent to

—09u(x, n) := u(x,n — 1) — u(x, n) = A u(x, n).
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Optional stopping time theorem

If u(x, n) solves ddisc 1 Adisc — 0 and |u(x, n)| < eP" with 8 < fo,
we can pass to the limit to obtain

u(x,0) = Eu(x, 7).
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Optional stopping time theorem

If u(x, n) solves ddisc 1 Adisc — 0 and |u(x, n)| < eP" with 8 < fo,
we can pass to the limit to obtain

u(x,0) = Eu(x, 7).
In continuous time, Bt2 — t is a martingale since

1
u(x,t) =x>—t  satisfies  Qeu(x,t) = EAu(x, t).
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Optional stopping time theorem

If u(x, n) solves ddisc 1 Adisc — 0 and |u(x, n)| < eP" with 8 < fo,
we can pass to the limit to obtain

u(x,0) = Eu(x, 7).
In continuous time, Bt2 — t is a martingale since
5 e 1
u(x,t) =x—t  satisfies  Oru(x,t) = EAu(x, t).

This martingale can be used to compute the average amount of
time BM started at x spends in an interval [a, b]. One obtains the
same answer as in the discrete case.
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Continuous Martingales

By the same reasoning,
B} — 3tB,

B} —6tB?Z +3t2,...

are also martingales.

These martingales can be used to compute E7" for n > 1. For
example, if you run BM started at 0 until you hit 9[—a, 4],

E°[?] = (1/3) E°[- B + 67B?] = (5/3)a".
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Exponential Transform

Run BM started at 0 until you hit 9(—o0, a]. Since
exp(V2XA - By — A - t), A>0

is a martingale,
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Exponential Transform

Run BM started at 0 until you hit 9(—o0, a]. Since
exp(V2XA - By — A - t), A>0
is a martingale,

o [exp(\/Z)\ B, —A-7)| =1
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Exponential Transform

Run BM started at 0 until you hit 9(—o0, a]. Since
exp(V2XA - By — A - t), A>0
is a martingale,

o [exp(\/Z)\ B, —A-7)| =1

or E®[exp(—A7)] = exp(—av/2]).
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Exponential Transform

Run BM started at 0 until you hit 9(—o0, a]. Since
exp(V2X-B;—XA-t),  A>0

is a martingale,
Eo[exp(\/ﬁ'&—)\w—) =1

or E®[exp(—A7)] = exp(—av/2)). Inverting the Laplace transform

gives
PO(7 € ds) = (27rs3)1/2ae*a2/25.
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Two dimensions

Run BM starting from O until it reaches the unit circle in C. Since
|B:|> —2t = x®> +y? — 2t

is a perfectly reasonable martingale,
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Two dimensions

Run BM starting from O until it reaches the unit circle in C. Since
|B:|> —2t = x®> +y? — 2t
is a perfectly reasonable martingale,

0=E[1-27r]=1-2E°[sy] = EO[T]:%.
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Two dimensions

Run BM starting from O until it reaches the unit circle in C. Since
|B:|> —2t = x®> +y? — 2t
is a perfectly reasonable martingale,

0=E[1-27r]=1-2E°[sy] = EO[T]:%.

Remark. Alternatively, E°[7] = fD |dz|? = %
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Two dimensions

Run BM starting from O until it reaches the unit circle in C. Since
|B:|> —2t = x®> +y? — 2t
is a perfectly reasonable martingale,
1
0=E[1-27]=1-2E°[r] = E°[r]= >
Remark. Alternatively, E°[r] = [} |dz|?> = 1.

(You can compute this directly or apply Green's formula with
u(z) = [2]*.)
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Thank you for your attention!
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