Subharmonic functions

Oleg Ivrii

November 2, 2020

イロン イヨン イヨン イヨン

æ

Let $\Omega \subset \mathbb{R}^n$ and $C_c^{\infty}(\Omega)$ be the space of test functions.

/⊒ ▶ < ≣ ▶

Let $\Omega \subset \mathbb{R}^n$ and $C_c^{\infty}(\Omega)$ be the space of test functions.

We say that $\varphi_n \to \varphi$ in C_c^{∞} if

The supports of φ_n are contained in a compact set depending on the sequence.

$$||\varphi_n - \varphi||_{C^n} \to 0 \text{ for any } n = 1, 2, 3, \dots$$

Let $\Omega \subset \mathbb{R}^n$ and $C_c^{\infty}(\Omega)$ be the space of test functions.

We say that $\varphi_n \to \varphi$ in C_c^{∞} if

 The supports of φ_n are contained in a compact set depending on the sequence.

2
$$\|\varphi_n - \varphi\|_{C^n} \to 0$$
 for any $n = 1, 2, 3, \ldots$

A distribution T is a continuous linear functional on $C_c^{\infty}(\Omega)$, that is an assignment

$$T: C^\infty_c(\Omega) o \mathbb{R}$$

which respects linearity and convergence.

• For $p \in \Omega$, the delta mass $\delta_p[\varphi] := \varphi(p)$.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

æ

- For $p \in \Omega$, the delta mass $\delta_p[\varphi] := \varphi(p)$.
- $\ensure{0.5ex} \ensure{0.5ex} \ens$

$$\mu[\varphi] := \int_{\Omega} \varphi d\mu.$$

個 と く ヨ と く ヨ と

• For $p \in \Omega$, the delta mass $\delta_p[\varphi] := \varphi(p)$.

 $\ensure{0.5ex} \ensure{0.5ex} \ens$

$$\mu[\varphi] := \int_{\Omega} \varphi d\mu.$$

③ More specifically, any $f \in L^1_{loc}$ defines a distribution by

$$T_f[\varphi] := \int_{\Omega} f\varphi |dz|^n.$$

• For $p \in \Omega$, the delta mass $\delta_p[\varphi] := \varphi(p)$.

 ${\it 2}{\it 0}$ Any locally finite measure μ defines a distribution by

$$\mu[\varphi] := \int_{\Omega} \varphi d\mu.$$

3 More specifically, any $f \in L^1_{loc}$ defines a distribution by

$$T_f[\varphi] := \int_{\Omega} f\varphi |dz|^n.$$

There are distributions that are not measures, e.g.

$$T[\varphi] = -\varphi'(p).$$

Motivation. If $\varphi, \psi \in C^{\infty}_{c}(\Omega)$, then

$$\int_{\Omega} \psi'(x) \varphi(x) \, |dz|^n = - \int_{\Omega} \varphi'(x) \psi(x) \, |dz|^n.$$

One defines the derivative of a distribution T as

$$T'[\varphi] := -T[\varphi'].$$

Example. In \mathbb{R} , the distributional derivative of |x| is δ_0 .

Motivation. If $\varphi, \psi \in C^{\infty}_{c}(\Omega)$, then

$$\int_{\Omega} \Delta \psi(x) \varphi(x) \, |dz|^n = \int_{\Omega} \Delta \varphi(x) \psi(x) \, |dz|^n.$$

It follows that the distributional Laplacian of T as

$$\Delta T[\varphi] = T[\Delta \varphi].$$

Example. In \mathbb{C} , the distributional Laplacian of log |z| is $2\pi\delta_0$.

A distribution $T \in C_c^{\infty}(\Omega)^*$ is called positive if

 $T[\varphi] \ge 0,$ whenever $\varphi \ge 0.$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

æ

A distribution $T \in C_c^{\infty}(\Omega)^*$ is called positive if

 $\mathcal{T}[\varphi] \geq 0,$ whenever $\varphi \geq 0.$

• This implies that $\|\varphi\|_{\infty} \leq \varepsilon$ then $T[\varphi] \leq \varepsilon T[1]$.

回 と く ヨ と く ヨ と

æ

A distribution $T \in C^{\infty}_{c}(\Omega)^{*}$ is called positive if

 $T[\varphi] \ge 0,$ whenever $\varphi \ge 0.$

- This implies that $\|\varphi\|_{\infty} \leq \varepsilon$ then $T[\varphi] \leq \varepsilon T[1]$.
- Therefore, a positive distribution extends to a bounded linear functional on $C_c(\Omega)$.

A distribution $T \in C^{\infty}_{c}(\Omega)^{*}$ is called positive if

 $T[\varphi] \ge 0,$ whenever $\varphi \ge 0.$

- This implies that $\|\varphi\|_{\infty} \leq \varepsilon$ then $T[\varphi] \leq \varepsilon T[1]$.
- Therefore, a positive distribution extends to a bounded linear functional on $C_c(\Omega)$.
- It follows that $T[\varphi] = \int_{\Omega} \varphi \mu$ for some positive measure μ with $\|\mu\|_{\mathcal{M}} = T[1]$.

Lemma. A function $u: \Omega \to \mathbb{R}$ is harmonic if and only if $u \in L^1_{loc}$ and

$$\int_{\Omega} u\Delta\phi = 0$$

for all $\phi \in C^{\infty}_{c}(\Omega)$.

・ 回 と ・ ヨ と ・ ヨ と …

æ

Lemma. A function $u: \Omega \to \mathbb{R}$ is harmonic if and only if $u \in L^1_{loc}$ and

$$\int_{\Omega} u\Delta\phi = 0$$

for all $\phi \in C^{\infty}_{c}(\Omega)$.

Proof. If u was C^2 , we could integrate by parts to see that

$$\int_\Omega \Delta u \cdot \phi = 0, \qquad ext{for all } \phi \in \mathit{C}^\infty_{c}(\Omega),$$

which would imply that $\Delta u = 0$.

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

Geometry \Rightarrow PDE. If *u* satisfied the MVP, then $u = u^{\varepsilon}$.

向 ト く ヨ ト

Geometry \Rightarrow PDE. If *u* satisfied the MVP, then $u = u^{\varepsilon}$.

 $\mathsf{PDE} \Rightarrow \mathsf{Geometry}$. If $\Delta u = 0$ in the sense of distributions,

$$egin{aligned} &\int_{\Omega} u^arepsilon \Delta arphi &= \int_{\Omega} u * \eta^arepsilon \cdot \Delta arphi &= \int_{\Omega} u \cdot ((\Delta arphi) * \eta^arepsilon) = \ &= \int_{\Omega} u \cdot \Delta (arphi * \eta^arepsilon) = 0, \end{aligned}$$

the same is true for each u_{ε} .

Geometry \Rightarrow PDE. If *u* satisfied the MVP, then $u = u^{\varepsilon}$.

 $\mathsf{PDE} \Rightarrow \mathsf{Geometry}$. If $\Delta u = 0$ in the sense of distributions,

$$egin{aligned} &\int_{\Omega} u^arepsilon \Delta arphi &= \int_{\Omega} u * \eta^arepsilon \cdot \Delta arphi &= \int_{\Omega} u \cdot ((\Delta arphi) * \eta^arepsilon) = \ &= \int_{\Omega} u \cdot \Delta (arphi * \eta^arepsilon) = 0, \end{aligned}$$

the same is true for each u_{ε} .

As each u_{ε} satisfies MVP on balls, so does u.

Let $\Omega \subset \mathbb{R}^n$. A function $u : \Omega \to \mathbb{R}$ is subharmonic if it upper semicontinuous and satisfies the sub mean-value property (sMVP)

$$u(x) \leq \int_{\partial B(x,r)} u(y) dS(y),$$

provided $\overline{B(x,r)} \subset \Omega$.

Alternatively, a function is subharmonic if it is in $L^1(\Omega)$ and $\Delta u \ge 0$ in the sense of distributions.

A function $u: \Omega \to [-\infty, \infty)$ is upper semi-continuous if it can only jump up:

$$\limsup f(y) \le f(x), \qquad y_n \to x.$$

Remark. Upper semicontinuous functions are allowed to take the value $-\infty$.

Lemma. A function is upper semicontinuous if and only if it can be written as a **decreasing** limit of continuous functions.

The second definition means that

$$\int_{\mathbb{C}} u \Delta \varphi \geq 0, \qquad \varphi \in C^{\infty}_{c}(\Omega), \quad \varphi \geq 0.$$

As Δu is a positive distribution, it is actually a locally finite measure.

Warning. The distributional definition defines u up to a set of measure 0.

Remark. The equivalence of the two definitions means that u can be uniquely redefined on a set of measure 0 to make it upper semicontinuous.

The Lebesgue set \mathcal{L}_f of $f \in L^1_{loc}(\Omega)$ is the set of points z for which

$$\exists v: \qquad \lim_{z\to r} \oint_{B(z,r)} |f(z)-v| \, |dz|^2 \to 0.$$

In this case, v is called the Lebesgue value of u.

According to Lebesgue's differentiation theorem, a.e. $x \in \Omega$ is a Lebesgue point.

In the precise representative of $f \in L^1_{loc}(\Omega)$, we ask that if z is a Lebesgue point, then f(z) = v.

Suppose f(z) is a holomorphic function on Ω and B(z, r) is a disk compactly contained in Ω .

- If f(z) is zero-free, then $\log |f(z)|$ is harmonic.
- If f has zeros at $\{a_k\} \subset B(z, r)$, Jensen's formula says

$$\frac{1}{2\pi}\int_{\partial B(z,r)} \log |f(w)| d\theta = \log |f(z)| + \sum_k \log \frac{r}{|a_k|}.$$

To prove this, assume that $B(z,r) = \mathbb{D}$ and factor

$$f(z) = g(z) \prod_{k=1}^{n} \frac{z-a_k}{1-\overline{a_k}z}.$$

Motivation from complex analysis

In terms of distributions,

$$\left(\Delta \log |f(z)|\right)\Big|_{B(z,r)} = 2\pi \sum \delta_{a_k}.$$

To see this, factor,

$$f(z) = g(z) \prod_{k=1}^{n} (z - a_k)$$

so that

$$\log |f(z)| = \sum_{k=1}^n \log |z - a_k| + \{ \text{a function in } C^2 \}.$$

Clearly linear combinations with **positive** coefficients of subharmonic functions are subharmonic:

$$f_1, f_2 \in \mathsf{sh}(\Omega), \quad \lambda_1, \lambda_2 \ge 0, \quad \Longrightarrow \quad \lambda_1 f_1 + \lambda_2 f_2 \in \mathsf{sh}(\Omega).$$

For the same reason, if μ is a finite positive measure on $\mathbb{C},$ then

$$p(z) = \int_{\mathbb{C}} \log |\zeta - z| d\mu$$

is subharmonic.

Riesz Representation Theorem

If h(z) is harmonic, then

$$u(z) = h(z) + \int_{\mathbb{C}} \log |\zeta - z| d\mu$$

is a subharmonic function. The converse is also true:

Riesz Representation Theorem

If h(z) is harmonic, then

$$u(z) = h(z) + \int_{\mathbb{C}} \log |\zeta - z| d\mu$$

is a subharmonic function. The converse is also true:

Riesz representation theorem. Locally, any subharmonic function u(z) can be uniquely decomposed into a harmonic function and a potential.

If h(z) is harmonic, then

$$u(z) = h(z) + \int_{\mathbb{C}} \log |\zeta - z| d\mu$$

is a subharmonic function. The converse is also true:

Riesz representation theorem. Locally, any subharmonic function u(z) can be uniquely decomposed into a harmonic function and a potential.

Here, $\mu = \Delta u$ (distributional), i.e.

$$\int_{\Omega} u \Delta \varphi = \int_{\Omega} \varphi d\mu, \qquad \varphi \in C^{\infty}_{c}(\Omega).$$

 Subharmonic functions satisfy the maximum modulus principle, but may not satisfy the minimum modulus principle.

- Subharmonic functions satisfy the maximum modulus principle, but may not satisfy the minimum modulus principle.
- Subharmonic functions lie below harmonic functions: Suppose h is harmonic and u is subharmonic on Ω. If u ≤ h on ∂Ω in lim sup-sense, then u ≤ h in Ω.

- Subharmonic functions satisfy the maximum modulus principle, but may not satisfy the minimum modulus principle.
- Subharmonic functions lie below harmonic functions: Suppose h is harmonic and u is subharmonic on Ω. If u ≤ h on ∂Ω in lim sup-sense, then u ≤ h in Ω.
- Seing subharmonic is equivalent to lying below harmonic functions for all subdomains G ⊂ Ω.

- Subharmonic functions satisfy the maximum modulus principle, but may not satisfy the minimum modulus principle.
- Subharmonic functions lie below harmonic functions: Suppose h is harmonic and u is subharmonic on Ω. If u ≤ h on ∂Ω in lim sup-sense, then u ≤ h in Ω.
- Seing subharmonic is equivalent to lying below harmonic functions for all subdomains G ⊂ Ω.
- Being subharmonic is a local property: the local s-MVP implies (1) and (3).

- Subharmonic functions satisfy the maximum modulus principle, but may not satisfy the minimum modulus principle.
- Subharmonic functions lie below harmonic functions: Suppose h is harmonic and u is subharmonic on Ω. If u ≤ h on ∂Ω in lim sup-sense, then u ≤ h in Ω.
- Seing subharmonic is equivalent to lying below harmonic functions for all subdomains G ⊂ Ω.
- Being subharmonic is a local property: the local s-MVP implies (1) and (3).
- The set where {u(z) = -∞} has Lebesgue measure 0. In fact, L_u = {u(z) ≠ -∞}.

白 と く ヨ と く ヨ と …

Taking maxima. The advantage of working with subharmonic functions is that they are more flexible than harmonic functions:

$$u, v \in \mathsf{sh}(\Omega) \implies \max(u, v) \in \mathsf{sh}(\Omega).$$

Disk modification. Suppose $u \in C(\Omega) \cap sh(\Omega)$. Given a ball B compactly contained in Ω ,

$$M_B u = egin{cases} u, & ext{in } \Omega \setminus B, \ P[u|_{\partial B}], & ext{in } B. \end{cases} \in \mathfrak{sh}(\Omega).$$

Lemma. Suppose $u_n \rightarrow u$ is a **decreasing** sequence of subharmonic functions. The limit function is subharmonic.

Lemma. Suppose $u_n \rightarrow u$ is a **decreasing** sequence of subharmonic functions. The limit function is subharmonic.

Lemma. Suppose $u \in sh(\Omega)$. If $g : \mathbb{R} \to \mathbb{R}$ is convex, then $g \circ u \in sh(\Omega)$.

Lemma. Suppose $u_n \rightarrow u$ is a **decreasing** sequence of subharmonic functions. The limit function is subharmonic.

Lemma. Suppose $u \in sh(\Omega)$. If $g : \mathbb{R} \to \mathbb{R}$ is convex, then $g \circ u \in sh(\Omega)$.

Example. As the function $g(x) = e^x$ is convex,

 $|f(z)|^p = \exp(p \log |f(z)|)$

is subharmonic for any 0 .

Theorem. Suppose $u \in sh(B(0, R))$. Define

$$M_r = \max_{|z|=r} u(z),$$

$$C_r = \int_{|z|=r} u(z) |dz|,$$

$$B_r = \int_{|z|$$

are increasing in r.

As $r \to 0$, each quantity $M_r \to u(0), C_r \to u(0)$ and $B_r \to u(0)$.

回 と く ヨ と く ヨ と

$$M_r \rightarrow u(0), \quad C_r \rightarrow u(0), \quad B_r \rightarrow u(0)$$

follows from the maximum modulus principle and USC.

$$M_r \rightarrow u(0), \quad C_r \rightarrow u(0), \quad B_r \rightarrow u(0)$$

follows from the maximum modulus principle and USC.

- By the maximum modulus principle, M_r is increasing.

$$M_r \rightarrow u(0), \quad C_r \rightarrow u(0), \quad B_r \rightarrow u(0)$$

follows from the maximum modulus principle and USC.

- By the maximum modulus principle, M_r is increasing.
- To see that C_r is increasing, apply the maximum modulus principle to the radially-invariant subharmonic function

$$v(r) = \int_{|z|=r} u(z)|dz|.$$

$$M_r \rightarrow u(0), \quad C_r \rightarrow u(0), \quad B_r \rightarrow u(0)$$

follows from the maximum modulus principle and USC.

- By the maximum modulus principle, M_r is increasing.
- To see that C_r is increasing, apply the maximum modulus principle to the radially-invariant subharmonic function

$$v(r) = \int_{|z|=r} u(z)|dz|.$$

- Finally, B_r is increasing since C_r is increasing.

Our current goal is to show the Geometric and PDE definitions of subharmonic functions are equivalent.

This is clear for C^2 functions in light of Green's formula.

 $PDE \Rightarrow$ Geometry. Suppose *u* is subharmonic in the sense of distributions.

Then, $u_{\varepsilon} := u * \eta_{\varepsilon}$ are C^2 -sh functions that tend to u in L^1_{loc} .

Since each u_{ε} satisfies sMVP on balls, so does u.

Geometry \Rightarrow PDE. Conversely, suppose that *u* satisfies the sMVP. Then, $u_{\varepsilon} := u * \eta_{\varepsilon}$ also satisfy the sMVP. Hence,

$$\Delta(u*\eta_{\varepsilon})\geq 0.$$

Since

$$\int_{\Omega} \Delta(u * \eta_{\varepsilon}) \cdot \varphi \to \int_{\Omega} \Delta u \cdot \varphi,$$

 $\Delta u \geq 0.$

As $u * \eta_{\varepsilon}$ are decreasing as $\varepsilon \to 0$, u is upper semicontinuous.

Increasing sequences of subharmonic functions

Theorem (Brelot-Cartan). Suppose u_n is an **increasing** sequence of subharmonic functions which are locally uniformly bounded above. The limiting function u is subharmonic.

Increasing sequences of subharmonic functions

Theorem (Brelot-Cartan). Suppose u_n is an **increasing** sequence of subharmonic functions which are locally uniformly bounded above. The limiting function u is subharmonic.

Proof. Since u_n is subharmonic,

$$\int_{\Omega} u_n \cdot \Delta \varphi \ge 0, \qquad \varphi \ge 0.$$

Since the inequality is preserved in the limit, u is subharmonic.

Increasing sequences of subharmonic functions

Theorem (Brelot-Cartan). Suppose u_n is an **increasing** sequence of subharmonic functions which are locally uniformly bounded above. The limiting function u is subharmonic.

Proof. Since u_n is subharmonic,

$$\int_{\Omega} u_n \cdot \Delta \varphi \ge 0, \qquad \varphi \ge 0.$$

Since the inequality is preserved in the limit, u is subharmonic.

Counterexample. Consider $u_n(z) = (1/n) \log |z|$. As $n \to \infty$,

$$u_n(z)
ightarrow u(z) = egin{cases} 0, & z
eq 0 \ -\infty, & z = 0. \end{cases}$$

Given a function $u: \Omega \to [-\infty, \infty)$, its upper semicontinous regularization is defined as

$$u^*(z) := \limsup_{y \to x} u(y).$$

It is easily checked that $u^*(z)$ is the least USC function which is $\geq u(z)$.

In the last slide, the limit function u was not USC, but its USC-regularization (=precise repesentative) u^* differed from u on a set of measure 0.

Thank you for your attention!

╗▶ ∢ ≧▶