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Background on distributions

Let Ω ⊂ Rn and C∞c (Ω) be the space of test functions.

We say that ϕn → ϕ in C∞c if

1 The supports of ϕn are contained in a compact set depending

on the sequence.

2 ‖ϕn − ϕ‖Cn → 0 for any n = 1, 2, 3, . . . .

A distribution T is a continuous linear functional on C∞c (Ω), that

is an assignment

T : C∞c (Ω)→ R

which respects linearity and convergence.
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Examples of distributions

1 For p ∈ Ω, the delta mass δp[ϕ] := ϕ(p).

2 Any locally finite measure µ defines a distribution by

µ[ϕ] :=

ˆ
Ω
ϕdµ.

3 More specifically, any f ∈ L1
loc defines a distribution by

Tf [ϕ] :=

ˆ
Ω
f ϕ|dz |n.

4 There are distributions that are not measures, e.g.

T [ϕ] = −ϕ′(p).
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Differentiating distributions

Motivation. If ϕ,ψ ∈ C∞c (Ω), then

ˆ
Ω
ψ′(x)ϕ(x) |dz |n = −

ˆ
Ω
ϕ′(x)ψ(x) |dz |n.

One defines the derivative of a distribution T as

T ′[ϕ] := −T [ϕ′].

Example. In R, the distributional derivative of |x | is δ0.
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Laplacians of distributions

Motivation. If ϕ,ψ ∈ C∞c (Ω), then

ˆ
Ω

∆ψ(x)ϕ(x) |dz |n =

ˆ
Ω

∆ϕ(x)ψ(x) |dz |n.

It follows that the distributional Laplacian of T as

∆T [ϕ] = T [∆ϕ].

Example. In C, the distributional Laplacian of log |z | is 2πδ0.
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Positive distributions

A distribution T ∈ C∞c (Ω)∗ is called positive if

T [ϕ] ≥ 0, whenever ϕ ≥ 0.

This implies that ‖ϕ‖∞ ≤ ε then T [ϕ] ≤ εT [1].

Therefore, a positive distribution extends to a bounded linear

functional on Cc(Ω).

It follows that T [ϕ] =
´

Ω ϕµ for some positive measure µ

with ‖µ‖M = T [1].
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Weyl’s lemma

Lemma. A function u : Ω→ R is harmonic if and only if u ∈ L1
loc

and ˆ
Ω
u∆φ = 0

for all φ ∈ C∞c (Ω).

Proof. If u was C 2, we could integrate by parts to see that

ˆ
Ω

∆u · φ = 0, for all φ ∈ C∞c (Ω),

which would imply that ∆u = 0.
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Weyl’s lemma

For the general case, form the functions uε = u ∗ ηε. The functions

uε are smooth and converge to u in L1
loc.

Geometry ⇒ PDE. If u satisfied the MVP, then u = uε.

PDE ⇒ Geometry. If ∆u = 0 in the sense of distributions,

ˆ
Ω
uε∆ϕ =

ˆ
Ω
u ∗ ηε ·∆ϕ =

ˆ
Ω
u · ((∆ϕ) ∗ ηε) =

=

ˆ
Ω
u ·∆(ϕ ∗ ηε) = 0,

the same is true for each uε.

As each uε satisfies MVP on balls, so does u.
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What is a subharmonic function?

Let Ω ⊂ Rn. A function u : Ω→ R is subharmonic if it upper

semicontinuous and satisfies the sub mean-value property (sMVP)

u(x) ≤
 
∂B(x ,r)

u(y)dS(y),

provided B(x , r) ⊂ Ω.

Alternatively, a function is subharmonic if it is in L1(Ω) and

∆u ≥ 0 in the sense of distributions.
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Upper semi-continuity

A function u : Ω→ [−∞,∞) is upper semi-continuous if it can

only jump up:

lim sup f (y) ≤ f (x), yn → x .

Remark. Upper semicontinuous functions are allowed to take the

value −∞.

Lemma. A function is upper semicontinuous if and only if it can be

written as a decreasing limit of continuous functions.
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Distributional definition of subharmonic functions

The second definition means thatˆ
C
u∆ϕ ≥ 0, ϕ ∈ C∞c (Ω), ϕ ≥ 0.

As ∆u is a positive distribution, it is actually a locally finite

measure.

Warning. The distributional definition defines u up to a set of

measure 0.

Remark. The equivalence of the two definitions means that u can

be uniquely redefined on a set of measure 0 to make it upper

semicontinuous.

Oleg Ivrii Subharmonic functions



Lebesgue set

The Lebesgue set Lf of f ∈ L1
loc(Ω) is the set of points z for which

∃v : lim
z→r

 
B(z,r)

|f (z)− v | |dz |2 → 0.

In this case, v is called the Lebesgue value of u.

According to Lebesgue’s differentiation theorem, a.e. x ∈ Ω is a

Lebesgue point.

In the precise representative of f ∈ L1
loc(Ω), we ask that if z is a

Lebesgue point, then f (z) = v .
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Motivation from complex analysis

Suppose f (z) is a holomorphic function on Ω and B(z , r) is a disk

compactly contained in Ω.

If f (z) is zero-free, then log |f (z)| is harmonic.

If f has zeros at {ak} ⊂ B(z , r), Jensen’s formula says

1

2π

ˆ
∂B(z,r)

log |f (w)|dθ = log |f (z)|+
∑
k

log
r

|ak |
.

To prove this, assume that B(z , r) = D and factor

f (z) = g(z)
n∏

k=1

z − ak
1− akz

.
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Motivation from complex analysis

In terms of distributions,(
∆ log |f (z)|

)∣∣∣
B(z,r)

= 2π
∑

δak .

To see this, factor,

f (z) = g(z)
n∏

k=1

(z − ak)

so that

log |f (z)| =
n∑

k=1

log |z − ak |+
{

a function in C 2
}
.
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Potentials

Clearly linear combinations with positive coefficients of

subharmonic functions are subharmonic:

f1, f2 ∈ sh(Ω), λ1, λ2 ≥ 0, =⇒ λ1f1 + λ2f2 ∈ sh(Ω).

For the same reason, if µ is a finite positive measure on C, then

p(z) =

ˆ
C

log |ζ − z |dµ

is subharmonic.
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Riesz Representation Theorem

If h(z) is harmonic, then

u(z) = h(z) +

ˆ
C

log |ζ − z |dµ

is a subharmonic function. The converse is also true:

Riesz representation theorem. Locally, any subharmonic function

u(z) can be uniquely decomposed into a harmonic function and a

potential.

Here, µ = ∆u (distributional), i.e.

ˆ
Ω
u∆ϕ =

ˆ
Ω
ϕdµ, ϕ ∈ C∞c (Ω).
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Basic properties of subharmonic functions

1 Subharmonic functions satisfy the maximum modulus

principle, but may not satisfy the minimum modulus principle.

2 Subharmonic functions lie below harmonic functions: Suppose

h is harmonic and u is subharmonic on Ω. If u ≤ h on ∂Ω in

lim sup-sense, then u ≤ h in Ω.

3 Being subharmonic is equivalent to lying below harmonic

functions for all subdomains G ⊂ Ω.

4 Being subharmonic is a local property: the local s-MVP

implies (1) and (3).

5 The set where {u(z) = −∞} has Lebesgue measure 0. In

fact, Lu = {u(z) 6= −∞}.
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Taking maxima and disk modification

Taking maxima. The advantage of working with subharmonic

functions is that they are more flexible than harmonic functions:

u, v ∈ sh(Ω) =⇒ max(u, v) ∈ sh(Ω).

Disk modification. Suppose u ∈ C (Ω) ∩ sh(Ω). Given a ball B

compactly contained in Ω,

MBu =

{
u, in Ω \ B,
P[u|∂B ], in B.

∈ sh(Ω).
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Decreasing sequences, convex functions

Lemma. Suppose un → u is a decreasing sequence of

subharmonic functions. The limit function is subharmonic.

Lemma. Suppose u ∈ sh(Ω). If g : R→ R is convex, then

g ◦ u ∈ sh(Ω).

Example. As the function g(x) = ex is convex,

|f (z)|p = exp
(
p log |f (z)|

)
is subharmonic for any 0 < p <∞.
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Increasing averages

Theorem. Suppose u ∈ sh(B(0,R)). Define

Mr = max
|z|=r

u(z),

Cr =

 
|z|=r

u(z)|dz |,

Br =

 
|z|<r

u(z)|dz |2,

are increasing in r .

As r → 0, each quantity Mr → u(0),Cr → u(0) and Br → u(0).
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Increasing averages

Proof. The convergence of the three quantities

Mr → u(0), Cr → u(0), Br → u(0)

follows from the maximum modulus principle and USC.

- By the maximum modulus principle, Mr is increasing.

- To see that Cr is increasing, apply the maximum modulus

principle to the radially-invariant subharmonic function

v(r) =

 
|z|=r

u(z)|dz |.

- Finally, Br is increasing since Cr is increasing.

Oleg Ivrii Subharmonic functions



Increasing averages

Proof. The convergence of the three quantities

Mr → u(0), Cr → u(0), Br → u(0)

follows from the maximum modulus principle and USC.

- By the maximum modulus principle, Mr is increasing.

- To see that Cr is increasing, apply the maximum modulus

principle to the radially-invariant subharmonic function

v(r) =

 
|z|=r

u(z)|dz |.

- Finally, Br is increasing since Cr is increasing.

Oleg Ivrii Subharmonic functions



Increasing averages

Proof. The convergence of the three quantities

Mr → u(0), Cr → u(0), Br → u(0)

follows from the maximum modulus principle and USC.

- By the maximum modulus principle, Mr is increasing.

- To see that Cr is increasing, apply the maximum modulus

principle to the radially-invariant subharmonic function

v(r) =

 
|z|=r

u(z)|dz |.

- Finally, Br is increasing since Cr is increasing.

Oleg Ivrii Subharmonic functions



Increasing averages

Proof. The convergence of the three quantities

Mr → u(0), Cr → u(0), Br → u(0)

follows from the maximum modulus principle and USC.

- By the maximum modulus principle, Mr is increasing.

- To see that Cr is increasing, apply the maximum modulus

principle to the radially-invariant subharmonic function

v(r) =

 
|z|=r

u(z)|dz |.

- Finally, Br is increasing since Cr is increasing.

Oleg Ivrii Subharmonic functions



Equivalence of definitions

Our current goal is to show the Geometric and PDE definitions of

subharmonic functions are equivalent.

This is clear for C 2 functions in light of Green’s formula.

PDE ⇒ Geometry. Suppose u is subharmonic in the sense of

distributions.

Then, uε := u ∗ ηε are C 2-sh functions that tend to u in L1
loc.

Since each uε satisfies sMVP on balls, so does u.
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Equivalence of definitions

Geometry ⇒ PDE. Conversely, suppose that u satisfies the sMVP.

Then, uε := u ∗ ηε also satisfy the sMVP. Hence,

∆(u ∗ ηε) ≥ 0.

Since ˆ
Ω

∆(u ∗ ηε) · ϕ→
ˆ

Ω
∆u · ϕ,

∆u ≥ 0.

As u ∗ ηε are decreasing as ε→ 0, u is upper semicontinuous.
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Increasing sequences of subharmonic functions

Theorem (Brelot-Cartan). Suppose un is an increasing sequence

of subharmonic functions which are locally uniformly bounded

above. The limiting function u is subharmonic.

Proof. Since un is subharmonic,
ˆ

Ω
un ·∆ϕ ≥ 0, ϕ ≥ 0.

Since the inequality is preserved in the limit, u is subharmonic.

Counterexample. Consider un(z) = (1/n) log |z |. As n→∞,

un(z)→ u(z) =

{
0, z 6= 0

−∞, z = 0.
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Upper semicontinous regularization

Given a function u : Ω→ [−∞,∞), its upper semicontinous

regularization is defined as

u∗(z) := lim sup
y→x

u(y).

It is easily checked that u∗(z) is the least USC function which is

≥ u(z).

In the last slide, the limit function u was not USC, but its

USC-regularization (=precise repesentative) u∗ differed from u on

a set of measure 0.

Oleg Ivrii Subharmonic functions



Thank you for your attention!
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